Back to Multiple platform build/check report for BioC 3.21: simplified long |
|
This page was generated on 2025-04-22 13:19 -0400 (Tue, 22 Apr 2025).
Hostname | OS | Arch (*) | R version | Installed pkgs |
---|---|---|---|---|
nebbiolo1 | Linux (Ubuntu 24.04.1 LTS) | x86_64 | 4.5.0 RC (2025-04-04 r88126) -- "How About a Twenty-Six" | 4831 |
palomino7 | Windows Server 2022 Datacenter | x64 | 4.5.0 RC (2025-04-04 r88126 ucrt) -- "How About a Twenty-Six" | 4573 |
lconway | macOS 12.7.1 Monterey | x86_64 | 4.5.0 RC (2025-04-04 r88126) -- "How About a Twenty-Six" | 4599 |
kjohnson3 | macOS 13.7.1 Ventura | arm64 | 4.5.0 RC (2025-04-04 r88126) -- "How About a Twenty-Six" | 4553 |
kunpeng2 | Linux (openEuler 24.03 LTS) | aarch64 | R Under development (unstable) (2025-02-19 r87757) -- "Unsuffered Consequences" | 4570 |
Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X |
Package 94/2341 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
aroma.light 3.38.0 (landing page) Henrik Bengtsson
| nebbiolo1 | Linux (Ubuntu 24.04.1 LTS) / x86_64 | OK | OK | OK | ![]() | ||||||||
palomino7 | Windows Server 2022 Datacenter / x64 | OK | OK | OK | OK | ![]() | ||||||||
lconway | macOS 12.7.1 Monterey / x86_64 | OK | OK | OK | OK | ![]() | ||||||||
kjohnson3 | macOS 13.7.1 Ventura / arm64 | OK | OK | OK | OK | ![]() | ||||||||
kunpeng2 | Linux (openEuler 24.03 LTS) / aarch64 | OK | OK | OK | ||||||||||
To the developers/maintainers of the aroma.light package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/aroma.light.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. - See Martin Grigorov's blog post for how to debug Linux ARM64 related issues on a x86_64 host. |
Package: aroma.light |
Version: 3.38.0 |
Command: /home/biocbuild/R/R/bin/R CMD check --install=check:aroma.light.install-out.txt --library=/home/biocbuild/R/R/site-library --no-vignettes --timings aroma.light_3.38.0.tar.gz |
StartedAt: 2025-04-22 06:01:42 -0000 (Tue, 22 Apr 2025) |
EndedAt: 2025-04-22 06:03:13 -0000 (Tue, 22 Apr 2025) |
EllapsedTime: 91.1 seconds |
RetCode: 0 |
Status: OK |
CheckDir: aroma.light.Rcheck |
Warnings: 0 |
############################################################################## ############################################################################## ### ### Running command: ### ### /home/biocbuild/R/R/bin/R CMD check --install=check:aroma.light.install-out.txt --library=/home/biocbuild/R/R/site-library --no-vignettes --timings aroma.light_3.38.0.tar.gz ### ############################################################################## ############################################################################## * using log directory ‘/home/biocbuild/bbs-3.21-bioc/meat/aroma.light.Rcheck’ * using R Under development (unstable) (2025-02-19 r87757) * using platform: aarch64-unknown-linux-gnu * R was compiled by aarch64-unknown-linux-gnu-gcc (GCC) 14.2.0 GNU Fortran (GCC) 14.2.0 * running under: openEuler 24.03 (LTS-SP1) * using session charset: UTF-8 * using option ‘--no-vignettes’ * checking for file ‘aroma.light/DESCRIPTION’ ... OK * this is package ‘aroma.light’ version ‘3.38.0’ * package encoding: latin1 * checking package namespace information ... OK * checking package dependencies ... OK * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for hidden files and directories ... NOTE Found the following hidden files and directories: inst/rsp/.rspPlugins These were most likely included in error. See section ‘Package structure’ in the ‘Writing R Extensions’ manual. * checking for portable file names ... OK * checking for sufficient/correct file permissions ... OK * checking whether package ‘aroma.light’ can be installed ... OK * checking installed package size ... OK * checking package directory ... OK * checking DESCRIPTION meta-information ... OK * checking top-level files ... OK * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking code files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * checking whether the package can be loaded ... OK * checking whether the package can be loaded with stated dependencies ... OK * checking whether the package can be unloaded cleanly ... OK * checking whether the namespace can be loaded with stated dependencies ... OK * checking whether the namespace can be unloaded cleanly ... OK * checking loading without being on the library search path ... OK * checking whether startup messages can be suppressed ... OK * checking dependencies in R code ... OK * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... OK * checking Rd files ... OK * checking Rd metadata ... OK * checking Rd cross-references ... OK * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking examples ... OK Examples with CPU (user + system) or elapsed time > 5s user system elapsed normalizeAffine 10.193 0.112 10.322 normalizeCurveFit 10.265 0.028 10.306 * checking for unstated dependencies in ‘tests’ ... OK * checking tests ... Running ‘backtransformAffine.matrix.R’ Running ‘backtransformPrincipalCurve.matrix.R’ Running ‘callNaiveGenotypes.R’ Running ‘distanceBetweenLines.R’ Running ‘findPeaksAndValleys.R’ Running ‘fitPrincipalCurve.matrix.R’ Running ‘fitXYCurve.matrix.R’ Running ‘iwpca.matrix.R’ Running ‘likelihood.smooth.spline.R’ Running ‘medianPolish.matrix.R’ Running ‘normalizeAffine.matrix.R’ Running ‘normalizeAverage.list.R’ Running ‘normalizeAverage.matrix.R’ Running ‘normalizeCurveFit.matrix.R’ Running ‘normalizeDifferencesToAverage.R’ Running ‘normalizeFragmentLength-ex1.R’ Running ‘normalizeFragmentLength-ex2.R’ Running ‘normalizeQuantileRank.list.R’ Running ‘normalizeQuantileRank.matrix.R’ Running ‘normalizeQuantileSpline.matrix.R’ Running ‘normalizeTumorBoost,flavors.R’ Running ‘normalizeTumorBoost.R’ Running ‘robustSmoothSpline.R’ Running ‘rowAverages.matrix.R’ Running ‘sampleCorrelations.matrix.R’ Running ‘sampleTuples.R’ Running ‘wpca.matrix.R’ Running ‘wpca2.matrix.R’ OK * checking PDF version of manual ... OK * DONE Status: 1 NOTE See ‘/home/biocbuild/bbs-3.21-bioc/meat/aroma.light.Rcheck/00check.log’ for details.
aroma.light.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /home/biocbuild/R/R/bin/R CMD INSTALL aroma.light ### ############################################################################## ############################################################################## * installing to library ‘/home/biocbuild/R/R-devel_2025-02-19/site-library’ * installing *source* package ‘aroma.light’ ... ** this is package ‘aroma.light’ version ‘3.38.0’ ** using staged installation ** R ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (aroma.light)
aroma.light.Rcheck/tests/backtransformAffine.matrix.Rout
R Under development (unstable) (2025-02-19 r87757) -- "Unsuffered Consequences" Copyright (C) 2025 The R Foundation for Statistical Computing Platform: aarch64-unknown-linux-gnu R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library("aroma.light") aroma.light v3.38.0 (2025-04-21) successfully loaded. See ?aroma.light for help. > > X <- matrix(1:8, nrow=4, ncol=2) > X[2,2] <- NA_integer_ > > print(X) [,1] [,2] [1,] 1 5 [2,] 2 NA [3,] 3 7 [4,] 4 8 > > # Returns a 4x2 matrix > print(backtransformAffine(X, a=c(1,5))) [,1] [,2] [1,] 0 0 [2,] 1 NA [3,] 2 2 [4,] 3 3 > > # Returns a 4x2 matrix > print(backtransformAffine(X, b=c(1,1/2))) [,1] [,2] [1,] 1 10 [2,] 2 NA [3,] 3 14 [4,] 4 16 > > # Returns a 4x2 matrix > print(backtransformAffine(X, a=matrix(1:4,ncol=1))) [,1] [,2] [1,] 0 4 [2,] 0 NA [3,] 0 4 [4,] 0 4 > > # Returns a 4x2 matrix > print(backtransformAffine(X, a=matrix(1:3,ncol=1))) [,1] [,2] [1,] 0 4 [2,] 0 NA [3,] 0 4 [4,] 3 7 > > # Returns a 4x2 matrix > print(backtransformAffine(X, a=matrix(1:2,ncol=1), b=c(1,2))) [,1] [,2] [1,] 0 2 [2,] 0 NA [3,] 2 3 [4,] 2 3 > > # Returns a 4x1 matrix > print(backtransformAffine(X, b=c(1,1/2), project=TRUE)) [,1] [1,] 2.8 [2,] 1.6 [3,] 5.2 [4,] 6.4 > > # If the columns of X are identical, and a identity > # backtransformation is applied and projected, the > # same matrix is returned. > X <- matrix(1:4, nrow=4, ncol=3) > Y <- backtransformAffine(X, b=c(1,1,1), project=TRUE) > print(X) [,1] [,2] [,3] [1,] 1 1 1 [2,] 2 2 2 [3,] 3 3 3 [4,] 4 4 4 > print(Y) [,1] [1,] 1 [2,] 2 [3,] 3 [4,] 4 > stopifnot(sum(X[,1]-Y) <= .Machine$double.eps) > > > # If the columns of X are identical, and a identity > # backtransformation is applied and projected, the > # same matrix is returned. > X <- matrix(1:4, nrow=4, ncol=3) > X[,2] <- X[,2]*2; X[,3] <- X[,3]*3 > print(X) [,1] [,2] [,3] [1,] 1 2 3 [2,] 2 4 6 [3,] 3 6 9 [4,] 4 8 12 > Y <- backtransformAffine(X, b=c(1,2,3)) > print(Y) [,1] [,2] [,3] [1,] 1 1 1 [2,] 2 2 2 [3,] 3 3 3 [4,] 4 4 4 > Y <- backtransformAffine(X, b=c(1,2,3), project=TRUE) > print(Y) [,1] [1,] 1 [2,] 2 [3,] 3 [4,] 4 > stopifnot(sum(X[,1]-Y) <= .Machine$double.eps) > > proc.time() user system elapsed 0.283 0.039 0.311
aroma.light.Rcheck/tests/backtransformPrincipalCurve.matrix.Rout
R Under development (unstable) (2025-02-19 r87757) -- "Unsuffered Consequences" Copyright (C) 2025 The R Foundation for Statistical Computing Platform: aarch64-unknown-linux-gnu R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library("aroma.light") aroma.light v3.38.0 (2025-04-21) successfully loaded. See ?aroma.light for help. > > # Consider the case where K=4 measurements have been done > # for the same underlying signals 'x'. The different measurements > # have different systematic variation > # > # y_k = f(x_k) + eps_k; k = 1,...,K. > # > # In this example, we assume non-linear measurement functions > # > # f(x) = a + b*x + x^c + eps(b*x) > # > # where 'a' is an offset, 'b' a scale factor, and 'c' an exponential. > # We also assume heteroscedastic zero-mean noise with standard > # deviation proportional to the rescaled underlying signal 'x'. > # > # Furthermore, we assume that measurements k=2 and k=3 undergo the > # same transformation, which may illustrate that the come from > # the same batch. However, when *fitting* the model below we > # will assume they are independent. > > # Transforms > a <- c(2, 15, 15, 3) > b <- c(2, 3, 3, 4) > c <- c(1, 2, 2, 1/2) > K <- length(a) > > # The true signal > N <- 1000 > x <- rexp(N) > > # The noise > bX <- outer(b,x) > E <- apply(bX, MARGIN=2, FUN=function(x) rnorm(K, mean=0, sd=0.1*x)) > > # The transformed signals with noise > Xc <- t(sapply(c, FUN=function(c) x^c)) > Y <- a + bX + Xc + E > Y <- t(Y) > > > > # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - > # Fit principal curve > # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - > # Fit principal curve through Y = (y_1, y_2, ..., y_K) > fit <- fitPrincipalCurve(Y) > > # Flip direction of 'lambda'? > rho <- cor(fit$lambda, Y[,1], use="complete.obs") > flip <- (rho < 0) > if (flip) { + fit$lambda <- max(fit$lambda, na.rm=TRUE)-fit$lambda + } > > L <- ncol(fit$s) > > # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - > # Backtransform data according to model fit > # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - > # Backtransform toward the principal curve (the "common scale") > YN1 <- backtransformPrincipalCurve(Y, fit=fit) > stopifnot(ncol(YN1) == K) > > > # Backtransform toward the first dimension > YN2 <- backtransformPrincipalCurve(Y, fit=fit, targetDimension=1) > stopifnot(ncol(YN2) == K) > > > # Backtransform toward the last (fitted) dimension > YN3 <- backtransformPrincipalCurve(Y, fit=fit, targetDimension=L) > stopifnot(ncol(YN3) == K) > > > # Backtransform toward the third dimension (dimension by dimension) > # Note, this assumes that K == L. > YN4 <- Y > for (cc in 1:L) { + YN4[,cc] <- backtransformPrincipalCurve(Y, fit=fit, + targetDimension=1, dimensions=cc) + } > stopifnot(identical(YN4, YN2)) > > > # Backtransform a subset toward the first dimension > # Note, this assumes that K == L. > YN5 <- backtransformPrincipalCurve(Y, fit=fit, + targetDimension=1, dimensions=2:3) > stopifnot(identical(YN5, YN2[,2:3])) > stopifnot(ncol(YN5) == 2) > > > # Extract signals from measurement #2 and backtransform according > # its model fit. Signals are standardized to target dimension 1. > y6 <- Y[,2,drop=FALSE] > yN6 <- backtransformPrincipalCurve(y6, fit=fit, dimensions=2, + targetDimension=1) > stopifnot(identical(yN6, YN2[,2,drop=FALSE])) > stopifnot(ncol(yN6) == 1) > > > # Extract signals from measurement #2 and backtransform according > # the the model fit of measurement #3 (because we believe these > # two have undergone very similar transformations. > # Signals are standardized to target dimension 1. > y7 <- Y[,2,drop=FALSE] > yN7 <- backtransformPrincipalCurve(y7, fit=fit, dimensions=3, + targetDimension=1) > stopifnot(ncol(yN7) == 1) > > rho <- cor(yN7, yN6) > print(rho) [,1] [1,] 0.9999766 > stopifnot(rho > 0.999) > > proc.time() user system elapsed 0.961 0.090 1.054
aroma.light.Rcheck/tests/callNaiveGenotypes.Rout
R Under development (unstable) (2025-02-19 r87757) -- "Unsuffered Consequences" Copyright (C) 2025 The R Foundation for Statistical Computing Platform: aarch64-unknown-linux-gnu R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library("aroma.light") aroma.light v3.38.0 (2025-04-21) successfully loaded. See ?aroma.light for help. > > layout(matrix(1:3, ncol=1)) > par(mar=c(2,4,4,1)+0.1) > > # - - - - - - - - - - - - - - - - - - - - - - - - - - - - > # A bimodal distribution > # - - - - - - - - - - - - - - - - - - - - - - - - - - - - > xAA <- rnorm(n=10000, mean=0, sd=0.1) > xBB <- rnorm(n=10000, mean=1, sd=0.1) > x <- c(xAA,xBB) > fit <- findPeaksAndValleys(x) > print(fit) type x density 1 peak -0.00261691 1.6849831243 2 valley 0.50358485 0.0002791341 3 peak 0.99723616 1.6891238890 > calls <- callNaiveGenotypes(x, cn=rep(1,length(x)), verbose=-20) Calling genotypes from allele B fractions (BAFs)... Fitting naive genotype model... Fitting naive genotype model from normal allele B fractions (BAFs)... Flavor: density Censoring BAFs... Before: Min. 1st Qu. Median Mean 3rd Qu. Max. -0.386057 0.001153 0.510739 0.500371 1.000143 1.372309 [1] 20000 After: Min. 1st Qu. Median Mean 3rd Qu. Max. -Inf 0.001153 0.510739 1.000143 Inf [1] 16882 Censoring BAFs...done Copy number level #1 (C=1) of 1... Identified extreme points in density of BAF: type x density 1 peak 0.0147868 1.640577042 2 valley 0.4982913 0.003592461 3 peak 0.9783667 1.637564155 Local minimas ("valleys") in BAF: type x density 2 valley 0.4982913 0.003592461 Copy number level #1 (C=1) of 1...done Fitting naive genotype model from normal allele B fractions (BAFs)...done [[1]] [[1]]$flavor [1] "density" [[1]]$cn [1] 1 [[1]]$nbrOfGenotypeGroups [1] 2 [[1]]$tau [1] 0.4982913 [[1]]$n [1] 16882 [[1]]$fit type x density 1 peak 0.0147868 1.640577042 2 valley 0.4982913 0.003592461 3 peak 0.9783667 1.637564155 [[1]]$fitValleys type x density 2 valley 0.4982913 0.003592461 attr(,"class") [1] "NaiveGenotypeModelFit" "list" Fitting naive genotype model...done Copy number level #1 (C=1) of 1... Model fit: $flavor [1] "density" $cn [1] 1 $nbrOfGenotypeGroups [1] 2 $tau [1] 0.4982913 $n [1] 16882 $fit type x density 1 peak 0.0147868 1.640577042 2 valley 0.4982913 0.003592461 3 peak 0.9783667 1.637564155 $fitValleys type x density 2 valley 0.4982913 0.003592461 Genotype threshholds [1]: 0.498291324176894 TCN=1 => BAF in {0,1}. Call regions: A = (-Inf,0.498], B = (0.498,+Inf) Copy number level #1 (C=1) of 1...done Calling genotypes from allele B fractions (BAFs)...done > xc <- split(x, calls) > print(table(calls)) calls 0 1 10000 10000 > xx <- c(list(x),xc) > plotDensity(xx, adjust=1.5, lwd=2, col=seq_along(xx), main="(AA,BB)") > abline(v=fit$x) > > # - - - - - - - - - - - - - - - - - - - - - - - - - - - - > # A trimodal distribution with missing values > # - - - - - - - - - - - - - - - - - - - - - - - - - - - - > xAB <- rnorm(n=10000, mean=1/2, sd=0.1) > x <- c(xAA,xAB,xBB) > x[sample(length(x), size=0.05*length(x))] <- NA_real_ > x[sample(length(x), size=0.01*length(x))] <- -Inf > x[sample(length(x), size=0.01*length(x))] <- +Inf > fit <- findPeaksAndValleys(x) > print(fit) type x density 1 peak 0.001494553 1.1708218 2 valley 0.250320336 0.1806276 3 peak 0.495132800 1.1748124 4 valley 0.747971902 0.1815087 5 peak 0.996797684 1.1706831 > calls <- callNaiveGenotypes(x) > xc <- split(x, calls) > print(table(calls)) calls 0 0.5 1 9622 9293 9620 > xx <- c(list(x),xc) > plotDensity(xx, adjust=1.5, lwd=2, col=seq_along(xx), main="(AA,AB,BB)") > abline(v=fit$x) > > # - - - - - - - - - - - - - - - - - - - - - - - - - - - - > # A trimodal distribution with clear separation > # - - - - - - - - - - - - - - - - - - - - - - - - - - - - > xAA <- rnorm(n=10000, mean=0, sd=0.02) > xAB <- rnorm(n=10000, mean=1/2, sd=0.02) > xBB <- rnorm(n=10000, mean=1, sd=0.02) > x <- c(xAA,xAB,xBB) > fit <- findPeaksAndValleys(x) > print(fit) type x density 1 peak -0.001588698 2.610954e+00 2 valley 0.246780952 3.180112e-05 3 peak 0.497941273 2.611460e+00 4 valley 0.746310922 3.191484e-05 5 peak 0.997471243 2.609288e+00 > calls <- callNaiveGenotypes(x) > xc <- split(x, calls) > print(table(calls)) calls 0 0.5 1 10000 10000 10000 > xx <- c(list(x),xc) > plotDensity(xx, adjust=1.5, lwd=2, col=seq_along(xx), main="(AA',AB',BB')") > abline(v=fit$x) > > proc.time() user system elapsed 0.634 0.060 0.690
aroma.light.Rcheck/tests/distanceBetweenLines.Rout
R Under development (unstable) (2025-02-19 r87757) -- "Unsuffered Consequences" Copyright (C) 2025 The R Foundation for Statistical Computing Platform: aarch64-unknown-linux-gnu R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library("aroma.light") aroma.light v3.38.0 (2025-04-21) successfully loaded. See ?aroma.light for help. > > for (zzz in 0) { + + # This example requires plot3d() in R.basic [http://www.braju.com/R/] + if (!require(pkgName <- "R.basic", character.only=TRUE)) break + + layout(matrix(1:4, nrow=2, ncol=2, byrow=TRUE)) + + ############################################################ + # Lines in two-dimensions + ############################################################ + x <- list(a=c(1,0), b=c(1,2)) + y <- list(a=c(0,2), b=c(1,1)) + fit <- distanceBetweenLines(ax=x$a, bx=x$b, ay=y$a, by=y$b) + + xlim <- ylim <- c(-1,8) + plot(NA, xlab="", ylab="", xlim=ylim, ylim=ylim) + + # Highlight the offset coordinates for both lines + points(t(x$a), pch="+", col="red") + text(t(x$a), label=expression(a[x]), adj=c(-1,0.5)) + points(t(y$a), pch="+", col="blue") + text(t(y$a), label=expression(a[y]), adj=c(-1,0.5)) + + v <- c(-1,1)*10 + xv <- list(x=x$a[1]+x$b[1]*v, y=x$a[2]+x$b[2]*v) + yv <- list(x=y$a[1]+y$b[1]*v, y=y$a[2]+y$b[2]*v) + + lines(xv, col="red") + lines(yv, col="blue") + + points(t(fit$xs), cex=2.0, col="red") + text(t(fit$xs), label=expression(x(s)), adj=c(+2,0.5)) + points(t(fit$yt), cex=1.5, col="blue") + text(t(fit$yt), label=expression(y(t)), adj=c(-1,0.5)) + print(fit) + + + ############################################################ + # Lines in three-dimensions + ############################################################ + x <- list(a=c(0,0,0), b=c(1,1,1)) # The 'diagonal' + y <- list(a=c(2,1,2), b=c(2,1,3)) # A 'fitted' line + fit <- distanceBetweenLines(ax=x$a, bx=x$b, ay=y$a, by=y$b) + + xlim <- ylim <- zlim <- c(-1,3) + dummy <- t(c(1,1,1))*100 + + # Coordinates for the lines in 3d + v <- seq(-10,10, by=1) + xv <- list(x=x$a[1]+x$b[1]*v, y=x$a[2]+x$b[2]*v, z=x$a[3]+x$b[3]*v) + yv <- list(x=y$a[1]+y$b[1]*v, y=y$a[2]+y$b[2]*v, z=y$a[3]+y$b[3]*v) + + for (theta in seq(30,140,length.out=3)) { + plot3d(dummy, theta=theta, phi=30, xlab="", ylab="", zlab="", + xlim=ylim, ylim=ylim, zlim=zlim) + + # Highlight the offset coordinates for both lines + points3d(t(x$a), pch="+", col="red") + text3d(t(x$a), label=expression(a[x]), adj=c(-1,0.5)) + points3d(t(y$a), pch="+", col="blue") + text3d(t(y$a), label=expression(a[y]), adj=c(-1,0.5)) + + # Draw the lines + lines3d(xv, col="red") + lines3d(yv, col="blue") + + # Draw the two points that are closest to each other + points3d(t(fit$xs), cex=2.0, col="red") + text3d(t(fit$xs), label=expression(x(s)), adj=c(+2,0.5)) + points3d(t(fit$yt), cex=1.5, col="blue") + text3d(t(fit$yt), label=expression(y(t)), adj=c(-1,0.5)) + + # Draw the distance between the two points + lines3d(rbind(fit$xs,fit$yt), col="purple", lwd=2) + } + + print(fit) + + } # for (zzz in 0) Loading required package: R.basic Warning message: In library(package, lib.loc = lib.loc, character.only = TRUE, logical.return = TRUE, : there is no package called 'R.basic' > rm(zzz) > > proc.time() user system elapsed 0.429 0.052 0.469
aroma.light.Rcheck/tests/findPeaksAndValleys.Rout
R Under development (unstable) (2025-02-19 r87757) -- "Unsuffered Consequences" Copyright (C) 2025 The R Foundation for Statistical Computing Platform: aarch64-unknown-linux-gnu R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library("aroma.light") aroma.light v3.38.0 (2025-04-21) successfully loaded. See ?aroma.light for help. > > layout(matrix(1:3, ncol=1)) > par(mar=c(2,4,4,1)+0.1) > > # - - - - - - - - - - - - - - - - - - - - - - - - - - - - > # A unimodal distribution > # - - - - - - - - - - - - - - - - - - - - - - - - - - - - > x1 <- rnorm(n=10000, mean=0, sd=1) > x <- x1 > fit <- findPeaksAndValleys(x) > print(fit) type x density 1 peak -3.67342688 0.0002909769 2 valley -3.65682494 0.0002912327 3 peak 0.09521215 0.3871433163 > plot(density(x), lwd=2, main="x1") > abline(v=fit$x) > > # - - - - - - - - - - - - - - - - - - - - - - - - - - - - > # A trimodal distribution > # - - - - - - - - - - - - - - - - - - - - - - - - - - - - > x2 <- rnorm(n=10000, mean=4, sd=1) > x3 <- rnorm(n=10000, mean=8, sd=1) > x <- c(x1,x2,x3) > fit <- findPeaksAndValleys(x) > print(fit) type x density 1 peak 0.01291631 0.12209538 2 valley 1.94820686 0.04340518 3 peak 3.91868453 0.12478809 4 valley 5.95953639 0.04371369 5 peak 7.96520115 0.12303813 > plot(density(x), lwd=2, main="c(x1,x2,x3)") > abline(v=fit$x) > > > # - - - - - - - - - - - - - - - - - - - - - - - - - - - - > # A trimodal distribution with clear separation > # - - - - - - - - - - - - - - - - - - - - - - - - - - - - > x1b <- rnorm(n=10000, mean=0, sd=0.1) > x2b <- rnorm(n=10000, mean=4, sd=0.1) > x3b <- rnorm(n=10000, mean=8, sd=0.1) > x <- c(x1b,x2b,x3b) > > # Illustrating explicit usage of density() > d <- density(x) > fit <- findPeaksAndValleys(d, tol=0) > print(fit) type x density 1 peak -0.02105452 3.425481e-01 2 valley 1.97230383 1.213927e-06 3 peak 3.96566219 3.416860e-01 4 valley 5.98068747 1.178217e-06 5 peak 7.97404583 3.423189e-01 > plot(d, lwd=2, main="c(x1b,x2b,x3b)") > abline(v=fit$x) > > proc.time() user system elapsed 0.382 0.033 0.414
aroma.light.Rcheck/tests/fitPrincipalCurve.matrix.Rout
R Under development (unstable) (2025-02-19 r87757) -- "Unsuffered Consequences" Copyright (C) 2025 The R Foundation for Statistical Computing Platform: aarch64-unknown-linux-gnu R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library("aroma.light") aroma.light v3.38.0 (2025-04-21) successfully loaded. See ?aroma.light for help. > > # Simulate data from the model y <- a + bx + x^c + eps(bx) > J <- 1000 > x <- rexp(J) > a <- c(2,15,3) > b <- c(2,3,4) > c <- c(1,2,1/2) > bx <- outer(b,x) > xc <- t(sapply(c, FUN=function(c) x^c)) > eps <- apply(bx, MARGIN=2, FUN=function(x) rnorm(length(b), mean=0, sd=0.1*x)) > y <- a + bx + xc + eps > y <- t(y) > > # Fit principal curve through (y_1, y_2, y_3) > fit <- fitPrincipalCurve(y, verbose=TRUE) Fitting principal curve... Data size: 1000x3 Identifying missing values... Identifying missing values...done Data size after removing non-finite data points: 1000x3 Calling principal_curve()... Starting curve---distance^2: 1623805 Iteration 1---distance^2: 407.7129 Iteration 2---distance^2: 407.1808 Iteration 3---distance^2: 407.184 Converged: TRUE Number of iterations: 3 Processing time/iteration: 0.2s (0.1s/iteration) Calling principal_curve()...done Fitting principal curve...done > > # Flip direction of 'lambda'? > rho <- cor(fit$lambda, y[,1], use="complete.obs") > flip <- (rho < 0) > if (flip) { + fit$lambda <- max(fit$lambda, na.rm=TRUE)-fit$lambda + } > > > # Backtransform (y_1, y_2, y_3) to be proportional to each other > yN <- backtransformPrincipalCurve(y, fit=fit) > > # Same backtransformation dimension by dimension > yN2 <- y > for (cc in 1:ncol(y)) { + yN2[,cc] <- backtransformPrincipalCurve(y, fit=fit, dimensions=cc) + } > stopifnot(identical(yN2, yN)) > > > xlim <- c(0, 1.04*max(x)) > ylim <- range(c(y,yN), na.rm=TRUE) > > > # Pairwise signals vs x before and after transform > layout(matrix(1:4, nrow=2, byrow=TRUE)) > par(mar=c(4,4,3,2)+0.1) > for (cc in 1:3) { + ylab <- substitute(y[c], env=list(c=cc)) + plot(NA, xlim=xlim, ylim=ylim, xlab="x", ylab=ylab) + abline(h=a[cc], lty=3) + mtext(side=4, at=a[cc], sprintf("a=%g", a[cc]), + cex=0.8, las=2, line=0, adj=1.1, padj=-0.2) + points(x, y[,cc]) + points(x, yN[,cc], col="tomato") + legend("topleft", col=c("black", "tomato"), pch=19, + c("orignal", "transformed"), bty="n") + } > title(main="Pairwise signals vs x before and after transform", outer=TRUE, line=-2) > > > # Pairwise signals before and after transform > layout(matrix(1:4, nrow=2, byrow=TRUE)) > par(mar=c(4,4,3,2)+0.1) > for (rr in 3:2) { + ylab <- substitute(y[c], env=list(c=rr)) + for (cc in 1:2) { + if (cc == rr) { + plot.new() + next + } + xlab <- substitute(y[c], env=list(c=cc)) + plot(NA, xlim=ylim, ylim=ylim, xlab=xlab, ylab=ylab) + abline(a=0, b=1, lty=2) + points(y[,c(cc,rr)]) + points(yN[,c(cc,rr)], col="tomato") + legend("topleft", col=c("black", "tomato"), pch=19, + c("orignal", "transformed"), bty="n") + } + } > title(main="Pairwise signals before and after transform", outer=TRUE, line=-2) > > proc.time() user system elapsed 1.166 0.039 1.194
aroma.light.Rcheck/tests/fitXYCurve.matrix.Rout
R Under development (unstable) (2025-02-19 r87757) -- "Unsuffered Consequences" Copyright (C) 2025 The R Foundation for Statistical Computing Platform: aarch64-unknown-linux-gnu R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library("aroma.light") aroma.light v3.38.0 (2025-04-21) successfully loaded. See ?aroma.light for help. > > # Simulate data from the model y <- a + bx + x^c + eps(bx) > x <- rexp(1000) > a <- c(2,15) > b <- c(2,1) > c <- c(1,2) > bx <- outer(b,x) > xc <- t(sapply(c, FUN=function(c) x^c)) > eps <- apply(bx, MARGIN=2, FUN=function(x) rnorm(length(x), mean=0, sd=0.1*x)) > Y <- a + bx + xc + eps > Y <- t(Y) > > lim <- c(0,70) > plot(Y, xlim=lim, ylim=lim) > > # Fit principal curve through a subset of (y_1, y_2) > subset <- sample(nrow(Y), size=0.3*nrow(Y)) > fit <- fitXYCurve(Y[subset,], bandwidth=0.2) > > lines(fit, col="red", lwd=2) > > # Backtransform (y_1, y_2) keeping y_1 unchanged > YN <- backtransformXYCurve(Y, fit=fit) > points(YN, col="blue") > abline(a=0, b=1, col="red", lwd=2) > > proc.time() user system elapsed 0.414 0.035 0.437
aroma.light.Rcheck/tests/iwpca.matrix.Rout
R Under development (unstable) (2025-02-19 r87757) -- "Unsuffered Consequences" Copyright (C) 2025 The R Foundation for Statistical Computing Platform: aarch64-unknown-linux-gnu R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library("aroma.light") aroma.light v3.38.0 (2025-04-21) successfully loaded. See ?aroma.light for help. > > for (zzz in 0) { + + # This example requires plot3d() in R.basic [http://www.braju.com/R/] + if (!require(pkgName <- "R.basic", character.only=TRUE)) break + + # Simulate data from the model y <- a + bx + eps(bx) + x <- rexp(1000) + a <- c(2,15,3) + b <- c(2,3,4) + bx <- outer(b,x) + eps <- apply(bx, MARGIN=2, FUN=function(x) rnorm(length(x), mean=0, sd=0.1*x)) + y <- a + bx + eps + y <- t(y) + + # Add some outliers by permuting the dimensions for 1/10 of the observations + idx <- sample(1:nrow(y), size=1/10*nrow(y)) + y[idx,] <- y[idx,c(2,3,1)] + + # Plot the data with fitted lines at four different view points + opar <- par(mar=c(1,1,1,1)+0.1) + N <- 4 + layout(matrix(1:N, nrow=2, byrow=TRUE)) + theta <- seq(0,270,length.out=N) + phi <- rep(20, length.out=N) + xlim <- ylim <- zlim <- c(0,45) + persp <- list() + for (kk in seq_along(theta)) { + # Plot the data + persp[[kk]] <- plot3d(y, theta=theta[kk], phi=phi[kk], xlim=xlim, ylim=ylim, zlim=zlim) + } + + # Weights on the observations + # Example a: Equal weights + w <- NULL + # Example b: More weight on the outliers (uncomment to test) + w <- rep(1, length(x)); w[idx] <- 0.8 + + # ...and show all iterations too with different colors. + maxIter <- c(seq(1,20,length.out=10),Inf) + col <- topo.colors(length(maxIter)) + # Show the fitted value for every iteration + for (ii in seq_along(maxIter)) { + # Fit a line using IWPCA through data + fit <- iwpca(y, w=w, maxIter=maxIter[ii], swapDirections=TRUE) + + ymid <- fit$xMean + d0 <- apply(y, MARGIN=2, FUN=min) - ymid + d1 <- apply(y, MARGIN=2, FUN=max) - ymid + b <- fit$vt[1,] + y0 <- -b * max(abs(d0)) + y1 <- b * max(abs(d1)) + yline <- matrix(c(y0,y1), nrow=length(b), ncol=2) + yline <- yline + ymid + + for (kk in seq_along(theta)) { + # Set pane to draw in + par(mfg=c((kk-1) %/% 2, (kk-1) %% 2) + 1) + # Set the viewpoint of the pane + options(persp.matrix=persp[[kk]]) + + # Get the first principal component + points3d(t(ymid), col=col[ii]) + lines3d(t(yline), col=col[ii]) + + # Highlight the last one + if (ii == length(maxIter)) + lines3d(t(yline), col="red", lwd=3) + } + } + + par(opar) + + } # for (zzz in 0) Loading required package: R.basic Warning message: In library(package, lib.loc = lib.loc, character.only = TRUE, logical.return = TRUE, : there is no package called 'R.basic' > rm(zzz) > > proc.time() user system elapsed 0.386 0.042 0.416
aroma.light.Rcheck/tests/likelihood.smooth.spline.Rout
R Under development (unstable) (2025-02-19 r87757) -- "Unsuffered Consequences" Copyright (C) 2025 The R Foundation for Statistical Computing Platform: aarch64-unknown-linux-gnu R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library("aroma.light") aroma.light v3.38.0 (2025-04-21) successfully loaded. See ?aroma.light for help. > > # Define f(x) > f <- expression(0.1*x^4 + 1*x^3 + 2*x^2 + x + 10*sin(2*x)) > > # Simulate data from this function in the range [a,b] > a <- -2; b <- 5 > x <- seq(a, b, length.out=3000) > y <- eval(f) > > # Add some noise to the data > y <- y + rnorm(length(y), 0, 10) > > # Plot the function and its second derivative > plot(x,y, type="l", lwd=4) > > # Fit a cubic smoothing spline and plot it > g <- smooth.spline(x,y, df=16) > lines(g, col="yellow", lwd=2, lty=2) > > # Calculating the (log) likelihood of the fitted spline > l <- likelihood(g) > > cat("Log likelihood with unique x values:\n") Log likelihood with unique x values: > print(l) Likelihood of smoothing spline: -286101.3 Log base: 2.718282 Weighted residuals sum of square: 286101.4 Penalty: -0.1168295 Smoothing parameter lambda: 0.0009257147 Roughness score: 126.2047 > > # Note that this is not the same as the log likelihood of the > # data on the fitted spline iff the x values are non-unique > x[1:5] <- x[1] # Non-unique x values > g <- smooth.spline(x,y, df=16) > l <- likelihood(g) > > cat("\nLog likelihood of the *spline* data set:\n") Log likelihood of the *spline* data set: > print(l) Likelihood of smoothing spline: -285825.4 Log base: 2.718282 Weighted residuals sum of square: 285825.5 Penalty: -0.1168481 Smoothing parameter lambda: 0.0009261969 Roughness score: 126.159 > > # In cases with non unique x values one has to proceed as > # below if one want to get the log likelihood for the original > # data. > l <- likelihood(g, x=x, y=y) > cat("\nLog likelihood of the *original* data set:\n") Log likelihood of the *original* data set: > print(l) Likelihood of smoothing spline: -286103 Log base: 2.718282 Weighted residuals sum of square: 286103.1 Penalty: -0.116848 Smoothing parameter lambda: 0.0009261969 Roughness score: 126.1589 > > > > > > > proc.time() user system elapsed 0.445 0.045 0.478
aroma.light.Rcheck/tests/medianPolish.matrix.Rout
R Under development (unstable) (2025-02-19 r87757) -- "Unsuffered Consequences" Copyright (C) 2025 The R Foundation for Statistical Computing Platform: aarch64-unknown-linux-gnu R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library("aroma.light") aroma.light v3.38.0 (2025-04-21) successfully loaded. See ?aroma.light for help. > > # Deaths from sport parachuting; from ABC of EDA, p.224: > deaths <- matrix(c(14,15,14, 7,4,7, 8,2,10, 15,9,10, 0,2,0), ncol=3, byrow=TRUE) > rownames(deaths) <- c("1-24", "25-74", "75-199", "200++", "NA") > colnames(deaths) <- 1973:1975 > > print(deaths) 1973 1974 1975 1-24 14 15 14 25-74 7 4 7 75-199 8 2 10 200++ 15 9 10 NA 0 2 0 > > mp <- medianPolish(deaths) > mp1 <- medpolish(deaths, trace=FALSE) > print(mp) Median Polish Results (Dataset: "deaths") Overall: 8 Row Effects: 1-24 25-74 75-199 200++ NA 6 -1 0 2 -8 Column Effects: 1973 1974 1975 0 -1 0 Residuals: 1973 1974 1975 1-24 0 2 0 25-74 0 -2 0 75-199 0 -5 2 200++ 5 0 0 NA 0 3 0 > > ff <- c("overall", "row", "col", "residuals") > stopifnot(all.equal(mp[ff], mp1[ff])) > > # Validate decomposition: > stopifnot(all.equal(deaths, mp$overall+outer(mp$row,mp$col,"+")+mp$resid)) > > proc.time() user system elapsed 0.287 0.040 0.318
aroma.light.Rcheck/tests/normalizeAffine.matrix.Rout
R Under development (unstable) (2025-02-19 r87757) -- "Unsuffered Consequences" Copyright (C) 2025 The R Foundation for Statistical Computing Platform: aarch64-unknown-linux-gnu R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library("aroma.light") aroma.light v3.38.0 (2025-04-21) successfully loaded. See ?aroma.light for help. > > pathname <- system.file("data-ex", "PMT-RGData.dat", package="aroma.light") > rg <- read.table(pathname, header=TRUE, sep="\t") > nbrOfScans <- max(rg$slide) > > rg <- as.list(rg) > for (field in c("R", "G")) + rg[[field]] <- matrix(as.double(rg[[field]]), ncol=nbrOfScans) > rg$slide <- rg$spot <- NULL > rg <- as.matrix(as.data.frame(rg)) > colnames(rg) <- rep(c("R", "G"), each=nbrOfScans) > > rgC <- rg > > layout(matrix(c(1,2,0,3,4,0,5,6,7), ncol=3, byrow=TRUE)) > > for (channel in c("R", "G")) { + sidx <- which(colnames(rg) == channel) + channelColor <- switch(channel, R="red", G="green") + + # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + # The raw data + # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + plotMvsAPairs(rg, channel=channel) + title(main=paste("Observed", channel)) + box(col=channelColor) + + # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + # The calibrated data + # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + rgC[,sidx] <- calibrateMultiscan(rg[,sidx], average=NULL) + + plotMvsAPairs(rgC, channel=channel) + title(main=paste("Calibrated", channel)) + box(col=channelColor) + } # for (channel ...) There were 50 or more warnings (use warnings() to see the first 50) > > > # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - > # The average calibrated data > # > # Note how the red signals are weaker than the green. The reason > # for this can be that the scale factor in the green channel is > # greater than in the red channel, but it can also be that there > # is a remaining relative difference in bias between the green > # and the red channel, a bias that precedes the scanning. > # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - > rgCA <- matrix(NA_real_, nrow=nrow(rg), ncol=2) > colnames(rgCA) <- c("R", "G") > for (channel in c("R", "G")) { + sidx <- which(colnames(rg) == channel) + rgCA[,channel] <- calibrateMultiscan(rg[,sidx]) + } > > plotMvsA(rgCA) > title(main="Average calibrated") > > > # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - > # The affine normalized average calibrated data > # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - > # Create a matrix where the columns represent the channels > # to be normalized. > rgCAN <- rgCA > # Affine normalization of channels > rgCAN <- normalizeAffine(rgCAN) > > plotMvsA(rgCAN) > title(main="Affine normalized A.C.") > > > # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - > # It is always ok to rescale the affine normalized data if its > # done on (R,G); not on (A,M)! However, this is only needed for > # esthetic purposes. > # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - > rgCAN <- rgCAN * 2^5 > plotMvsA(rgCAN) > title(main="Rescaled normalized") > > > > proc.time() user system elapsed 2.471 0.137 2.655
aroma.light.Rcheck/tests/normalizeAverage.list.Rout
R Under development (unstable) (2025-02-19 r87757) -- "Unsuffered Consequences" Copyright (C) 2025 The R Foundation for Statistical Computing Platform: aarch64-unknown-linux-gnu R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library("aroma.light") aroma.light v3.38.0 (2025-04-21) successfully loaded. See ?aroma.light for help. > > # Simulate ten samples of different lengths > N <- 10000 > X <- list() > for (kk in 1:8) { + rfcn <- list(rnorm, rgamma)[[sample(2, size=1)]] + size <- runif(1, min=0.3, max=1) + a <- rgamma(1, shape=20, rate=10) + b <- rgamma(1, shape=10, rate=10) + values <- rfcn(size*N, a, b) + + # "Censor" values + values[values < 0 | values > 8] <- NA_real_ + + X[[kk]] <- values + } > > # Add 20% missing values > X <- lapply(X, FUN=function(x) { + x[sample(length(x), size=0.20*length(x))] <- NA_real_ + x + }) > > # Normalize quantiles > Xn <- normalizeAverage(X, na.rm=TRUE, targetAvg=median(unlist(X), na.rm=TRUE)) > > # Plot the data > layout(matrix(1:2, ncol=1)) > xlim <- range(X, Xn, na.rm=TRUE) > plotDensity(X, lwd=2, xlim=xlim, main="The original distributions") > plotDensity(Xn, lwd=2, xlim=xlim, main="The normalized distributions") > > proc.time() user system elapsed 0.436 0.058 0.480
aroma.light.Rcheck/tests/normalizeAverage.matrix.Rout
R Under development (unstable) (2025-02-19 r87757) -- "Unsuffered Consequences" Copyright (C) 2025 The R Foundation for Statistical Computing Platform: aarch64-unknown-linux-gnu R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library("aroma.light") aroma.light v3.38.0 (2025-04-21) successfully loaded. See ?aroma.light for help. > > # Simulate three samples with on average 20% missing values > N <- 10000 > X <- cbind(rnorm(N, mean=3, sd=1), + rnorm(N, mean=4, sd=2), + rgamma(N, shape=2, rate=1)) > X[sample(3*N, size=0.20*3*N)] <- NA_real_ > > # Normalize quantiles > Xn <- normalizeAverage(X, na.rm=TRUE, targetAvg=median(X, na.rm=TRUE)) > > # Plot the data > layout(matrix(1:2, ncol=1)) > xlim <- range(X, Xn, na.rm=TRUE) > plotDensity(X, lwd=2, xlim=xlim, main="The three original distributions") > plotDensity(Xn, lwd=2, xlim=xlim, main="The three normalized distributions") > > proc.time() user system elapsed 0.350 0.067 0.408
aroma.light.Rcheck/tests/normalizeCurveFit.matrix.Rout
R Under development (unstable) (2025-02-19 r87757) -- "Unsuffered Consequences" Copyright (C) 2025 The R Foundation for Statistical Computing Platform: aarch64-unknown-linux-gnu R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library("aroma.light") aroma.light v3.38.0 (2025-04-21) successfully loaded. See ?aroma.light for help. > > pathname <- system.file("data-ex", "PMT-RGData.dat", package="aroma.light") > rg <- read.table(pathname, header=TRUE, sep="\t") > nbrOfScans <- max(rg$slide) > > rg <- as.list(rg) > for (field in c("R", "G")) + rg[[field]] <- matrix(as.double(rg[[field]]), ncol=nbrOfScans) > rg$slide <- rg$spot <- NULL > rg <- as.matrix(as.data.frame(rg)) > colnames(rg) <- rep(c("R", "G"), each=nbrOfScans) > > layout(matrix(c(1,2,0,3,4,0,5,6,7), ncol=3, byrow=TRUE)) > > rgC <- rg > for (channel in c("R", "G")) { + sidx <- which(colnames(rg) == channel) + channelColor <- switch(channel, R="red", G="green") + + # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + # The raw data + # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + plotMvsAPairs(rg[,sidx]) + title(main=paste("Observed", channel)) + box(col=channelColor) + + # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + # The calibrated data + # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + rgC[,sidx] <- calibrateMultiscan(rg[,sidx], average=NULL) + + plotMvsAPairs(rgC[,sidx]) + title(main=paste("Calibrated", channel)) + box(col=channelColor) + } # for (channel ...) > > > # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - > # The average calibrated data > # > # Note how the red signals are weaker than the green. The reason > # for this can be that the scale factor in the green channel is > # greater than in the red channel, but it can also be that there > # is a remaining relative difference in bias between the green > # and the red channel, a bias that precedes the scanning. > # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - > rgCA <- rg > for (channel in c("R", "G")) { + sidx <- which(colnames(rg) == channel) + rgCA[,sidx] <- calibrateMultiscan(rg[,sidx]) + } > > rgCAavg <- matrix(NA_real_, nrow=nrow(rgCA), ncol=2) > colnames(rgCAavg) <- c("R", "G") > for (channel in c("R", "G")) { + sidx <- which(colnames(rg) == channel) + rgCAavg[,channel] <- apply(rgCA[,sidx], MARGIN=1, FUN=median, na.rm=TRUE) + } > > # Add some "fake" outliers > outliers <- 1:600 > rgCAavg[outliers,"G"] <- 50000 > > plotMvsA(rgCAavg) > title(main="Average calibrated (AC)") > > # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - > # Normalize data > # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - > # Weight-down outliers when normalizing > weights <- rep(1, nrow(rgCAavg)) > weights[outliers] <- 0.001 > > # Affine normalization of channels > rgCANa <- normalizeAffine(rgCAavg, weights=weights) > # It is always ok to rescale the affine normalized data if its > # done on (R,G); not on (A,M)! However, this is only needed for > # esthetic purposes. > rgCANa <- rgCANa *2^1.4 > plotMvsA(rgCANa) > title(main="Normalized AC") > > # Curve-fit (lowess) normalization > rgCANlw <- normalizeLowess(rgCAavg, weights=weights) Warning message: In normalizeCurveFit.matrix(X, method = "lowess", ...) : Weights were rounded to {0,1} since 'lowess' normalization supports only zero-one weights. > plotMvsA(rgCANlw, col="orange", add=TRUE) > > # Curve-fit (loess) normalization > rgCANl <- normalizeLoess(rgCAavg, weights=weights) > plotMvsA(rgCANl, col="red", add=TRUE) > > # Curve-fit (robust spline) normalization > rgCANrs <- normalizeRobustSpline(rgCAavg, weights=weights) > plotMvsA(rgCANrs, col="blue", add=TRUE) > > legend(x=0,y=16, legend=c("affine", "lowess", "loess", "r. spline"), pch=19, + col=c("black", "orange", "red", "blue"), ncol=2, x.intersp=0.3, bty="n") > > > plotMvsMPairs(cbind(rgCANa, rgCANlw), col="orange", xlab=expression(M[affine])) > title(main="Normalized AC") > plotMvsMPairs(cbind(rgCANa, rgCANl), col="red", add=TRUE) > plotMvsMPairs(cbind(rgCANa, rgCANrs), col="blue", add=TRUE) > abline(a=0, b=1, lty=2) > legend(x=-6,y=6, legend=c("lowess", "loess", "r. spline"), pch=19, + col=c("orange", "red", "blue"), ncol=2, x.intersp=0.3, bty="n") > > > proc.time() user system elapsed 10.616 0.092 10.730
aroma.light.Rcheck/tests/normalizeDifferencesToAverage.Rout
R Under development (unstable) (2025-02-19 r87757) -- "Unsuffered Consequences" Copyright (C) 2025 The R Foundation for Statistical Computing Platform: aarch64-unknown-linux-gnu R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library("aroma.light") aroma.light v3.38.0 (2025-04-21) successfully loaded. See ?aroma.light for help. > > # Simulate three shifted tracks of different lengths with same profiles > ns <- c(A=2, B=1, C=0.25)*1000 > xx <- lapply(ns, FUN=function(n) { seq(from=1, to=max(ns), length.out=n) }) > zz <- mapply(seq_along(ns), ns, FUN=function(z,n) rep(z,n)) > > yy <- list( + A = rnorm(ns["A"], mean=0, sd=0.5), + B = rnorm(ns["B"], mean=5, sd=0.4), + C = rnorm(ns["C"], mean=-5, sd=1.1) + ) > yy <- lapply(yy, FUN=function(y) { + n <- length(y) + y[1:(n/2)] <- y[1:(n/2)] + 2 + y[1:(n/4)] <- y[1:(n/4)] - 4 + y + }) > > # Shift all tracks toward the first track > yyN <- normalizeDifferencesToAverage(yy, baseline=1) > > # The baseline channel is not changed > stopifnot(identical(yy[[1]], yyN[[1]])) > > # Get the estimated parameters > fit <- attr(yyN, "fit") > > # Plot the tracks > layout(matrix(1:2, ncol=1)) > x <- unlist(xx) > col <- unlist(zz) > y <- unlist(yy) > yN <- unlist(yyN) > plot(x, y, col=col, ylim=c(-10,10)) > plot(x, yN, col=col, ylim=c(-10,10)) > > proc.time() user system elapsed 0.454 0.053 0.495
aroma.light.Rcheck/tests/normalizeFragmentLength-ex1.Rout
R Under development (unstable) (2025-02-19 r87757) -- "Unsuffered Consequences" Copyright (C) 2025 The R Foundation for Statistical Computing Platform: aarch64-unknown-linux-gnu R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library("aroma.light") aroma.light v3.38.0 (2025-04-21) successfully loaded. See ?aroma.light for help. > > # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - > # Example 1: Single-enzyme fragment-length normalization of 6 arrays > # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - > # Number samples > I <- 9 > > # Number of loci > J <- 1000 > > # Fragment lengths > fl <- seq(from=100, to=1000, length.out=J) > > # Simulate data points with unknown fragment lengths > hasUnknownFL <- seq(from=1, to=J, by=50) > fl[hasUnknownFL] <- NA_real_ > > # Simulate data > y <- matrix(0, nrow=J, ncol=I) > maxY <- 12 > for (kk in 1:I) { + k <- runif(n=1, min=3, max=5) + mu <- function(fl) { + mu <- rep(maxY, length(fl)) + ok <- !is.na(fl) + mu[ok] <- mu[ok] - fl[ok]^{1/k} + mu + } + eps <- rnorm(J, mean=0, sd=1) + y[,kk] <- mu(fl) + eps + } > > # Normalize data (to a zero baseline) > yN <- apply(y, MARGIN=2, FUN=function(y) { + normalizeFragmentLength(y, fragmentLengths=fl, onMissing="median") + }) > > # The correction factors > rho <- y-yN > print(summary(rho)) V1 V2 V3 V4 Min. :3.789 Min. :7.154 Min. :7.625 Min. :3.743 1st Qu.:4.496 1st Qu.:7.338 1st Qu.:7.839 1st Qu.:4.356 Median :5.258 Median :7.646 Median :8.115 Median :5.099 Mean :5.455 Mean :7.791 Mean :8.226 Mean :5.265 3rd Qu.:6.370 3rd Qu.:8.200 3rd Qu.:8.569 3rd Qu.:6.102 Max. :7.738 Max. :8.913 Max. :9.221 Max. :7.391 V5 V6 V7 V8 Min. :6.411 Min. :6.284 Min. :5.162 Min. :5.078 1st Qu.:6.785 1st Qu.:6.621 1st Qu.:5.745 1st Qu.:5.679 Median :7.199 Median :7.080 Median :6.347 Median :6.309 Mean :7.329 Mean :7.241 Mean :6.479 Mean :6.432 3rd Qu.:7.841 3rd Qu.:7.810 3rd Qu.:7.173 3rd Qu.:7.133 Max. :8.648 Max. :8.733 Max. :8.219 Max. :8.229 V9 Min. :6.091 1st Qu.:6.452 Median :6.895 Mean :7.040 3rd Qu.:7.583 Max. :8.480 > # The correction for units with unknown fragment lengths > # equals the median correction factor of all other units > print(summary(rho[hasUnknownFL,])) V1 V2 V3 V4 Min. :5.258 Min. :7.646 Min. :8.115 Min. :5.099 1st Qu.:5.258 1st Qu.:7.646 1st Qu.:8.115 1st Qu.:5.099 Median :5.258 Median :7.646 Median :8.115 Median :5.099 Mean :5.258 Mean :7.646 Mean :8.115 Mean :5.099 3rd Qu.:5.258 3rd Qu.:7.646 3rd Qu.:8.115 3rd Qu.:5.099 Max. :5.258 Max. :7.646 Max. :8.115 Max. :5.099 V5 V6 V7 V8 V9 Min. :7.199 Min. :7.08 Min. :6.347 Min. :6.309 Min. :6.895 1st Qu.:7.199 1st Qu.:7.08 1st Qu.:6.347 1st Qu.:6.309 1st Qu.:6.895 Median :7.199 Median :7.08 Median :6.347 Median :6.309 Median :6.895 Mean :7.199 Mean :7.08 Mean :6.347 Mean :6.309 Mean :6.895 3rd Qu.:7.199 3rd Qu.:7.08 3rd Qu.:6.347 3rd Qu.:6.309 3rd Qu.:6.895 Max. :7.199 Max. :7.08 Max. :6.347 Max. :6.309 Max. :6.895 > > # Plot raw data > layout(matrix(1:9, ncol=3)) > xlim <- c(0,max(fl, na.rm=TRUE)) > ylim <- c(0,max(y, na.rm=TRUE)) > xlab <- "Fragment length" > ylab <- expression(log2(theta)) > for (kk in 1:I) { + plot(fl, y[,kk], xlim=xlim, ylim=ylim, xlab=xlab, ylab=ylab) + ok <- (is.finite(fl) & is.finite(y[,kk])) + lines(lowess(fl[ok], y[ok,kk]), col="red", lwd=2) + } > > # Plot normalized data > layout(matrix(1:9, ncol=3)) > ylim <- c(-1,1)*max(y, na.rm=TRUE)/2 > for (kk in 1:I) { + plot(fl, yN[,kk], xlim=xlim, ylim=ylim, xlab=xlab, ylab=ylab) + ok <- (is.finite(fl) & is.finite(y[,kk])) + lines(lowess(fl[ok], yN[ok,kk]), col="blue", lwd=2) + } > > proc.time() user system elapsed 1.009 0.040 1.037
aroma.light.Rcheck/tests/normalizeFragmentLength-ex2.Rout
R Under development (unstable) (2025-02-19 r87757) -- "Unsuffered Consequences" Copyright (C) 2025 The R Foundation for Statistical Computing Platform: aarch64-unknown-linux-gnu R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library("aroma.light") aroma.light v3.38.0 (2025-04-21) successfully loaded. See ?aroma.light for help. > > # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - > # Example 2: Two-enzyme fragment-length normalization of 6 arrays > # - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - > set.seed(0xbeef) > > # Number samples > I <- 5 > > # Number of loci > J <- 3000 > > # Fragment lengths (two enzymes) > fl <- matrix(0, nrow=J, ncol=2) > fl[,1] <- seq(from=100, to=1000, length.out=J) > fl[,2] <- seq(from=1000, to=100, length.out=J) > > # Let 1/2 of the units be on both enzymes > fl[seq(from=1, to=J, by=4),1] <- NA_real_ > fl[seq(from=2, to=J, by=4),2] <- NA_real_ > > # Let some have unknown fragment lengths > hasUnknownFL <- seq(from=1, to=J, by=15) > fl[hasUnknownFL,] <- NA_real_ > > # Sty/Nsp mixing proportions: > rho <- rep(1, I) > rho[1] <- 1/3; # Less Sty in 1st sample > rho[3] <- 3/2; # More Sty in 3rd sample > > > # Simulate data > z <- array(0, dim=c(J,2,I)) > maxLog2Theta <- 12 > for (ii in 1:I) { + # Common effect for both enzymes + mu <- function(fl) { + k <- runif(n=1, min=3, max=5) + mu <- rep(maxLog2Theta, length(fl)) + ok <- is.finite(fl) + mu[ok] <- mu[ok] - fl[ok]^{1/k} + mu + } + + # Calculate the effect for each data point + for (ee in 1:2) { + z[,ee,ii] <- mu(fl[,ee]) + } + + # Update the Sty/Nsp mixing proportions + ee <- 2 + z[,ee,ii] <- rho[ii]*z[,ee,ii] + + # Add random errors + for (ee in 1:2) { + eps <- rnorm(J, mean=0, sd=1/sqrt(2)) + z[,ee,ii] <- z[,ee,ii] + eps + } + } > > > hasFl <- is.finite(fl) > > unitSets <- list( + nsp = which( hasFl[,1] & !hasFl[,2]), + sty = which(!hasFl[,1] & hasFl[,2]), + both = which( hasFl[,1] & hasFl[,2]), + none = which(!hasFl[,1] & !hasFl[,2]) + ) > > # The observed data is a mix of two enzymes > theta <- matrix(NA_real_, nrow=J, ncol=I) > > # Single-enzyme units > for (ee in 1:2) { + uu <- unitSets[[ee]] + theta[uu,] <- 2^z[uu,ee,] + } > > # Both-enzyme units (sum on intensity scale) > uu <- unitSets$both > theta[uu,] <- (2^z[uu,1,]+2^z[uu,2,])/2 > > # Missing units (sample from the others) > uu <- unitSets$none > theta[uu,] <- apply(theta, MARGIN=2, sample, size=length(uu)) > > # Calculate target array > thetaT <- rowMeans(theta, na.rm=TRUE) > targetFcns <- list() > for (ee in 1:2) { + uu <- unitSets[[ee]] + fit <- lowess(fl[uu,ee], log2(thetaT[uu])) + class(fit) <- "lowess" + targetFcns[[ee]] <- function(fl, ...) { + predict(fit, newdata=fl) + } + } > > > # Fit model only to a subset of the data > subsetToFit <- setdiff(1:J, seq(from=1, to=J, by=10)) > > # Normalize data (to a target baseline) > thetaN <- matrix(NA_real_, nrow=J, ncol=I) > fits <- vector("list", I) > for (ii in 1:I) { + lthetaNi <- normalizeFragmentLength(log2(theta[,ii]), targetFcns=targetFcns, + fragmentLengths=fl, onMissing="median", + subsetToFit=subsetToFit, .returnFit=TRUE) + fits[[ii]] <- attr(lthetaNi, "modelFit") + thetaN[,ii] <- 2^lthetaNi + } > > > # Plot raw data > xlim <- c(0, max(fl, na.rm=TRUE)) > ylim <- c(0, max(log2(theta), na.rm=TRUE)) > Mlim <- c(-1,1)*4 > xlab <- "Fragment length" > ylab <- expression(log2(theta)) > Mlab <- expression(M==log[2](theta/theta[R])) > > layout(matrix(1:(3*I), ncol=I, byrow=TRUE)) > for (ii in 1:I) { + plot(NA, xlim=xlim, ylim=ylim, xlab=xlab, ylab=ylab, main="raw") + + # Single-enzyme units + for (ee in 1:2) { + # The raw data + uu <- unitSets[[ee]] + points(fl[uu,ee], log2(theta[uu,ii]), col=ee+1) + } + + # Both-enzyme units (use fragment-length for enzyme #1) + uu <- unitSets$both + points(fl[uu,1], log2(theta[uu,ii]), col=3+1) + + for (ee in 1:2) { + # The true effects + uu <- unitSets[[ee]] + lines(lowess(fl[uu,ee], log2(theta[uu,ii])), col="black", lwd=4, lty=3) + + # The estimated effects + fit <- fits[[ii]][[ee]]$fit + lines(fit, col="orange", lwd=3) + + muT <- targetFcns[[ee]](fl[uu,ee]) + lines(fl[uu,ee], muT, col="cyan", lwd=1) + } + } > > # Calculate log-ratios > thetaR <- rowMeans(thetaN, na.rm=TRUE) > M <- log2(thetaN/thetaR) > > # Plot normalized data > for (ii in 1:I) { + plot(NA, xlim=xlim, ylim=Mlim, xlab=xlab, ylab=Mlab, main="normalized") + # Single-enzyme units + for (ee in 1:2) { + # The normalized data + uu <- unitSets[[ee]] + points(fl[uu,ee], M[uu,ii], col=ee+1) + } + # Both-enzyme units (use fragment-length for enzyme #1) + uu <- unitSets$both + points(fl[uu,1], M[uu,ii], col=3+1) + } > > ylim <- c(0,1.5) > for (ii in 1:I) { + data <- list() + for (ee in 1:2) { + # The normalized data + uu <- unitSets[[ee]] + data[[ee]] <- M[uu,ii] + } + uu <- unitSets$both + if (length(uu) > 0) + data[[3]] <- M[uu,ii] + + uu <- unitSets$none + if (length(uu) > 0) + data[[4]] <- M[uu,ii] + + cols <- seq_along(data)+1 + plotDensity(data, col=cols, xlim=Mlim, xlab=Mlab, main="normalized") + + abline(v=0, lty=2) + } > > > proc.time() user system elapsed 0.952 0.057 1.084
aroma.light.Rcheck/tests/normalizeQuantileRank.list.Rout
R Under development (unstable) (2025-02-19 r87757) -- "Unsuffered Consequences" Copyright (C) 2025 The R Foundation for Statistical Computing Platform: aarch64-unknown-linux-gnu R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library("aroma.light") aroma.light v3.38.0 (2025-04-21) successfully loaded. See ?aroma.light for help. > > # Simulate ten samples of different lengths > N <- 10000 > X <- list() > for (kk in 1:8) { + rfcn <- list(rnorm, rgamma)[[sample(2, size=1)]] + size <- runif(1, min=0.3, max=1) + a <- rgamma(1, shape=20, rate=10) + b <- rgamma(1, shape=10, rate=10) + values <- rfcn(size*N, a, b) + + # "Censor" values + values[values < 0 | values > 8] <- NA_real_ + + X[[kk]] <- values + } > > # Add 20% missing values > X <- lapply(X, FUN=function(x) { + x[sample(length(x), size=0.20*length(x))] <- NA_real_ + x + }) > > # Normalize quantiles > Xn <- normalizeQuantile(X) > > # Plot the data > layout(matrix(1:2, ncol=1)) > xlim <- range(X, na.rm=TRUE) > plotDensity(X, lwd=2, xlim=xlim, main="The original distributions") > plotDensity(Xn, lwd=2, xlim=xlim, main="The normalized distributions") > > proc.time() user system elapsed 0.466 0.053 0.506
aroma.light.Rcheck/tests/normalizeQuantileRank.matrix.Rout
R Under development (unstable) (2025-02-19 r87757) -- "Unsuffered Consequences" Copyright (C) 2025 The R Foundation for Statistical Computing Platform: aarch64-unknown-linux-gnu R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library("aroma.light") aroma.light v3.38.0 (2025-04-21) successfully loaded. See ?aroma.light for help. > > # Simulate three samples with on average 20% missing values > N <- 10000 > X <- cbind(rnorm(N, mean=3, sd=1), + rnorm(N, mean=4, sd=2), + rgamma(N, shape=2, rate=1)) > X[sample(3*N, size=0.20*3*N)] <- NA_real_ > > # Normalize quantiles > Xn <- normalizeQuantile(X) > > # Plot the data > layout(matrix(1:2, ncol=1)) > xlim <- range(X, Xn, na.rm=TRUE) > plotDensity(X, lwd=2, xlim=xlim, main="The three original distributions") > plotDensity(Xn, lwd=2, xlim=xlim, main="The three normalized distributions") > > proc.time() user system elapsed 0.386 0.032 0.405
aroma.light.Rcheck/tests/normalizeQuantileSpline.matrix.Rout
R Under development (unstable) (2025-02-19 r87757) -- "Unsuffered Consequences" Copyright (C) 2025 The R Foundation for Statistical Computing Platform: aarch64-unknown-linux-gnu R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library("aroma.light") aroma.light v3.38.0 (2025-04-21) successfully loaded. See ?aroma.light for help. > > # Simulate three samples with on average 20% missing values > N <- 10000 > X <- cbind(rnorm(N, mean=3, sd=1), + rnorm(N, mean=4, sd=2), + rgamma(N, shape=2, rate=1)) > X[sample(3*N, size=0.20*3*N)] <- NA_real_ > > # Plot the data > layout(matrix(c(1,0,2:5), ncol=2, byrow=TRUE)) > xlim <- range(X, na.rm=TRUE) > plotDensity(X, lwd=2, xlim=xlim, main="The three original distributions") > > Xn <- normalizeQuantile(X) > plotDensity(Xn, lwd=2, xlim=xlim, main="The three normalized distributions") > plotXYCurve(X, Xn, xlim=xlim, main="The three normalized distributions") > > Xn2 <- normalizeQuantileSpline(X, xTarget=Xn[,1], spar=0.99) > plotDensity(Xn2, lwd=2, xlim=xlim, main="The three normalized distributions") > plotXYCurve(X, Xn2, xlim=xlim, main="The three normalized distributions") > > proc.time() user system elapsed 1.197 0.085 1.288
aroma.light.Rcheck/tests/normalizeTumorBoost,flavors.Rout
R Under development (unstable) (2025-02-19 r87757) -- "Unsuffered Consequences" Copyright (C) 2025 The R Foundation for Statistical Computing Platform: aarch64-unknown-linux-gnu R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library("aroma.light") aroma.light v3.38.0 (2025-04-21) successfully loaded. See ?aroma.light for help. > library("R.utils") Loading required package: R.oo Loading required package: R.methodsS3 R.methodsS3 v1.8.2 (2022-06-13 22:00:14 UTC) successfully loaded. See ?R.methodsS3 for help. R.oo v1.27.0 (2024-11-01 18:00:02 UTC) successfully loaded. See ?R.oo for help. Attaching package: 'R.oo' The following object is masked from 'package:R.methodsS3': throw The following objects are masked from 'package:methods': getClasses, getMethods The following objects are masked from 'package:base': attach, detach, load, save R.utils v2.13.0 (2025-02-24 21:20:02 UTC) successfully loaded. See ?R.utils for help. Attaching package: 'R.utils' The following object is masked from 'package:utils': timestamp The following objects are masked from 'package:base': cat, commandArgs, getOption, isOpen, nullfile, parse, use, warnings > > # Load data > pathname <- system.file("data-ex/TumorBoost,fracB,exampleData.Rbin", package="aroma.light") > data <- loadObject(pathname) > > # Drop loci with missing values > data <- na.omit(data) > > attachLocally(data) > pos <- position/1e6 > > # Call naive genotypes > muN <- callNaiveGenotypes(betaN) > > # Genotype classes > isAA <- (muN == 0) > isAB <- (muN == 1/2) > isBB <- (muN == 1) > > # Sanity checks > stopifnot(all(muN[isAA] == 0)) > stopifnot(all(muN[isAB] == 1/2)) > stopifnot(all(muN[isBB] == 1)) > > # TumorBoost normalization with different flavors > betaTNs <- list() > for (flavor in c("v1", "v2", "v3", "v4")) { + betaTN <- normalizeTumorBoost(betaT=betaT, betaN=betaN, preserveScale=FALSE, flavor=flavor) + + # Assert that no non-finite values are introduced + stopifnot(all(is.finite(betaTN))) + + # Assert that nothing is flipped + stopifnot(all(betaTN[isAA] < 1/2)) + stopifnot(all(betaTN[isBB] > 1/2)) + + betaTNs[[flavor]] <- betaTN + } > > # Plot > layout(matrix(1:4, ncol=1)) > par(mar=c(2.5,4,0.5,1)+0.1) > ylim <- c(-0.05, 1.05) > col <- rep("#999999", length(muN)) > col[muN == 1/2] <- "#000000" > for (flavor in names(betaTNs)) { + betaTN <- betaTNs[[flavor]] + ylab <- sprintf("betaTN[%s]", flavor) + plot(pos, betaTN, col=col, ylim=ylim, ylab=ylab) + } > > proc.time() user system elapsed 0.672 0.056 0.717
aroma.light.Rcheck/tests/normalizeTumorBoost.Rout
R Under development (unstable) (2025-02-19 r87757) -- "Unsuffered Consequences" Copyright (C) 2025 The R Foundation for Statistical Computing Platform: aarch64-unknown-linux-gnu R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library("aroma.light") aroma.light v3.38.0 (2025-04-21) successfully loaded. See ?aroma.light for help. > library("R.utils") Loading required package: R.oo Loading required package: R.methodsS3 R.methodsS3 v1.8.2 (2022-06-13 22:00:14 UTC) successfully loaded. See ?R.methodsS3 for help. R.oo v1.27.0 (2024-11-01 18:00:02 UTC) successfully loaded. See ?R.oo for help. Attaching package: 'R.oo' The following object is masked from 'package:R.methodsS3': throw The following objects are masked from 'package:methods': getClasses, getMethods The following objects are masked from 'package:base': attach, detach, load, save R.utils v2.13.0 (2025-02-24 21:20:02 UTC) successfully loaded. See ?R.utils for help. Attaching package: 'R.utils' The following object is masked from 'package:utils': timestamp The following objects are masked from 'package:base': cat, commandArgs, getOption, isOpen, nullfile, parse, use, warnings > > # Load data > pathname <- system.file("data-ex/TumorBoost,fracB,exampleData.Rbin", package="aroma.light") > data <- loadObject(pathname) > attachLocally(data) > pos <- position/1e6 > muN <- genotypeN > > layout(matrix(1:4, ncol=1)) > par(mar=c(2.5,4,0.5,1)+0.1) > ylim <- c(-0.05, 1.05) > col <- rep("#999999", length(muN)) > col[muN == 1/2] <- "#000000" > > # Allele B fractions for the normal sample > plot(pos, betaN, col=col, ylim=ylim) > > # Allele B fractions for the tumor sample > plot(pos, betaT, col=col, ylim=ylim) > > # TumorBoost w/ naive genotype calls > betaTN <- normalizeTumorBoost(betaT=betaT, betaN=betaN, preserveScale=FALSE) > plot(pos, betaTN, col=col, ylim=ylim) > > # TumorBoost w/ external multi-sample genotype calls > betaTNx <- normalizeTumorBoost(betaT=betaT, betaN=betaN, muN=muN, preserveScale=FALSE) > plot(pos, betaTNx, col=col, ylim=ylim) > > proc.time() user system elapsed 0.581 0.046 0.615
aroma.light.Rcheck/tests/robustSmoothSpline.Rout
R Under development (unstable) (2025-02-19 r87757) -- "Unsuffered Consequences" Copyright (C) 2025 The R Foundation for Statistical Computing Platform: aarch64-unknown-linux-gnu R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library("aroma.light") aroma.light v3.38.0 (2025-04-21) successfully loaded. See ?aroma.light for help. > > data(cars) > attach(cars) > plot(speed, dist, main = "data(cars) & robust smoothing splines") > > # Fit a smoothing spline using L_2 norm > cars.spl <- smooth.spline(speed, dist) > lines(cars.spl, col = "blue") > > # Fit a smoothing spline using L_1 norm > cars.rspl <- robustSmoothSpline(speed, dist) > lines(cars.rspl, col = "red") > > # Fit a smoothing spline using L_2 norm with 10 degrees of freedom > lines(smooth.spline(speed, dist, df=10), lty=2, col = "blue") > > # Fit a smoothing spline using L_1 norm with 10 degrees of freedom > lines(robustSmoothSpline(speed, dist, df=10), lty=2, col = "red") > > # Fit a smoothing spline using Tukey's biweight norm > cars.rspl <- robustSmoothSpline(speed, dist, method = "symmetric") > lines(cars.rspl, col = "purple") > > legend(5,120, c( + paste("smooth.spline [C.V.] => df =",round(cars.spl$df,1)), + paste("robustSmoothSpline L1 [C.V.] => df =",round(cars.rspl$df,1)), + paste("robustSmoothSpline symmetric [C.V.] => df =",round(cars.rspl$df,1)), + "standard with s( * , df = 10)", "robust with s( * , df = 10)" + ), + col = c("blue","red","purple","blue","red"), lty = c(1,1,1,2,2), + bg='bisque') > > proc.time() user system elapsed 0.429 0.035 0.451
aroma.light.Rcheck/tests/rowAverages.matrix.Rout
R Under development (unstable) (2025-02-19 r87757) -- "Unsuffered Consequences" Copyright (C) 2025 The R Foundation for Statistical Computing Platform: aarch64-unknown-linux-gnu R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library("aroma.light") aroma.light v3.38.0 (2025-04-21) successfully loaded. See ?aroma.light for help. > > X <- matrix(1:30, nrow=5L, ncol=6L) > mu <- rowMeans(X) > sd <- apply(X, MARGIN=1L, FUN=sd) > > y <- rowAverages(X) > stopifnot(all(y == mu)) > stopifnot(all(attr(y,"deviance") == sd)) > stopifnot(all(attr(y,"df") == ncol(X))) > > proc.time() user system elapsed 0.305 0.020 0.313
aroma.light.Rcheck/tests/sampleCorrelations.matrix.Rout
R Under development (unstable) (2025-02-19 r87757) -- "Unsuffered Consequences" Copyright (C) 2025 The R Foundation for Statistical Computing Platform: aarch64-unknown-linux-gnu R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library("aroma.light") aroma.light v3.38.0 (2025-04-21) successfully loaded. See ?aroma.light for help. > > # Simulate 20000 genes with 10 observations each > X <- matrix(rnorm(n=20000), ncol=10) > > # Calculate the correlation for 5000 random gene pairs > cor <- sampleCorrelations(X, npairs=5000) > print(summary(cor)) Min. 1st Qu. Median Mean 3rd Qu. Max. -0.8765460 -0.2434962 -0.0014166 0.0004461 0.2521107 0.9365143 > > > proc.time() user system elapsed 0.640 0.067 0.694
aroma.light.Rcheck/tests/sampleTuples.Rout
R Under development (unstable) (2025-02-19 r87757) -- "Unsuffered Consequences" Copyright (C) 2025 The R Foundation for Statistical Computing Platform: aarch64-unknown-linux-gnu R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library("aroma.light") aroma.light v3.38.0 (2025-04-21) successfully loaded. See ?aroma.light for help. > > pairs <- sampleTuples(1:10, size=5, length=2) > print(pairs) [,1] [,2] [1,] 5 6 [2,] 9 3 [3,] 4 6 [4,] 1 4 [5,] 5 2 > > triples <- sampleTuples(1:10, size=5, length=3) > print(triples) [,1] [,2] [,3] [1,] 7 6 5 [2,] 1 2 5 [3,] 7 4 3 [4,] 5 8 3 [5,] 2 3 9 > > # Allow tuples with repeated elements > quadruples <- sampleTuples(1:3, size=5, length=4, replace=TRUE) > print(quadruples) [,1] [,2] [,3] [,4] [1,] 2 3 1 3 [2,] 3 2 3 2 [3,] 3 2 2 3 [4,] 2 3 2 1 [5,] 3 2 3 3 > > proc.time() user system elapsed 0.307 0.016 0.312
aroma.light.Rcheck/tests/wpca.matrix.Rout
R Under development (unstable) (2025-02-19 r87757) -- "Unsuffered Consequences" Copyright (C) 2025 The R Foundation for Statistical Computing Platform: aarch64-unknown-linux-gnu R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library("aroma.light") aroma.light v3.38.0 (2025-04-21) successfully loaded. See ?aroma.light for help. > > for (zzz in 0) { + + # This example requires plot3d() in R.basic [http://www.braju.com/R/] + if (!require(pkgName <- "R.basic", character.only=TRUE)) break + + # ------------------------------------------------------------- + # A first example + # ------------------------------------------------------------- + # Simulate data from the model y <- a + bx + eps(bx) + x <- rexp(1000) + a <- c(2,15,3) + b <- c(2,3,15) + bx <- outer(b,x) + eps <- apply(bx, MARGIN=2, FUN=function(x) rnorm(length(x), mean=0, sd=0.1*x)) + y <- a + bx + eps + y <- t(y) + + # Add some outliers by permuting the dimensions for 1/3 of the observations + idx <- sample(1:nrow(y), size=1/3*nrow(y)) + y[idx,] <- y[idx,c(2,3,1)] + + # Down-weight the outliers W times to demonstrate how weights are used + W <- 10 + + # Plot the data with fitted lines at four different view points + N <- 4 + theta <- seq(0,180,length.out=N) + phi <- rep(30, length.out=N) + + # Use a different color for each set of weights + col <- topo.colors(W) + + opar <- par(mar=c(1,1,1,1)+0.1) + layout(matrix(1:N, nrow=2, byrow=TRUE)) + for (kk in seq(theta)) { + # Plot the data + plot3d(y, theta=theta[kk], phi=phi[kk]) + + # First, same weights for all observations + w <- rep(1, length=nrow(y)) + + for (ww in 1:W) { + # Fit a line using IWPCA through data + fit <- wpca(y, w=w, swapDirections=TRUE) + + # Get the first principal component + ymid <- fit$xMean + d0 <- apply(y, MARGIN=2, FUN=min) - ymid + d1 <- apply(y, MARGIN=2, FUN=max) - ymid + b <- fit$vt[1,] + y0 <- -b * max(abs(d0)) + y1 <- b * max(abs(d1)) + yline <- matrix(c(y0,y1), nrow=length(b), ncol=2) + yline <- yline + ymid + + points3d(t(ymid), col=col) + lines3d(t(yline), col=col) + + # Down-weight outliers only, because here we know which they are. + w[idx] <- w[idx]/2 + } + + # Highlight the last one + lines3d(t(yline), col="red", lwd=3) + } + + par(opar) + + } # for (zzz in 0) Loading required package: R.basic Warning message: In library(package, lib.loc = lib.loc, character.only = TRUE, logical.return = TRUE, : there is no package called 'R.basic' > rm(zzz) > > proc.time() user system elapsed 0.373 0.046 0.408
aroma.light.Rcheck/tests/wpca2.matrix.Rout
R Under development (unstable) (2025-02-19 r87757) -- "Unsuffered Consequences" Copyright (C) 2025 The R Foundation for Statistical Computing Platform: aarch64-unknown-linux-gnu R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library("aroma.light") aroma.light v3.38.0 (2025-04-21) successfully loaded. See ?aroma.light for help. > > # ------------------------------------------------------------- > # A second example > # ------------------------------------------------------------- > # Data > x <- c(1,2,3,4,5) > y <- c(2,4,3,3,6) > > opar <- par(bty="L") > opalette <- palette(c("blue", "red", "black")) > xlim <- ylim <- c(0,6) > > # Plot the data and the center mass > plot(x,y, pch=16, cex=1.5, xlim=xlim, ylim=ylim) > points(mean(x), mean(y), cex=2, lwd=2, col="blue") > > > # Linear regression y ~ x > fit <- lm(y ~ x) > abline(fit, lty=1, col=1) > > # Linear regression y ~ x through without intercept > fit <- lm(y ~ x - 1) > abline(fit, lty=2, col=1) > > > # Linear regression x ~ y > fit <- lm(x ~ y) > c <- coefficients(fit) > b <- 1/c[2] > a <- -b*c[1] > abline(a=a, b=b, lty=1, col=2) > > # Linear regression x ~ y through without intercept > fit <- lm(x ~ y - 1) > b <- 1/coefficients(fit) > abline(a=0, b=b, lty=2, col=2) > > > # Orthogonal linear "regression" > fit <- wpca(cbind(x,y)) > > b <- fit$vt[1,2]/fit$vt[1,1] > a <- fit$xMean[2]-b*fit$xMean[1] > abline(a=a, b=b, lwd=2, col=3) > > # Orthogonal linear "regression" without intercept > fit <- wpca(cbind(x,y), center=FALSE) > b <- fit$vt[1,2]/fit$vt[1,1] > a <- fit$xMean[2]-b*fit$xMean[1] > abline(a=a, b=b, lty=2, lwd=2, col=3) > > legend(xlim[1],ylim[2], legend=c("lm(y~x)", "lm(y~x-1)", "lm(x~y)", + "lm(x~y-1)", "pca", "pca w/o intercept"), lty=rep(1:2,3), + lwd=rep(c(1,1,2),each=2), col=rep(1:3,each=2)) > > palette(opalette) > par(opar) > > proc.time() user system elapsed 0.336 0.048 0.371
aroma.light.Rcheck/aroma.light-Ex.timings
name | user | system | elapsed | |
backtransformAffine | 0.002 | 0.000 | 0.002 | |
backtransformPrincipalCurve | 0.684 | 0.012 | 0.709 | |
calibrateMultiscan | 0 | 0 | 0 | |
callNaiveGenotypes | 0.313 | 0.007 | 0.327 | |
distanceBetweenLines | 0.131 | 0.000 | 0.131 | |
findPeaksAndValleys | 0.049 | 0.004 | 0.054 | |
fitPrincipalCurve | 0.656 | 0.020 | 0.686 | |
fitXYCurve | 0.196 | 0.004 | 0.200 | |
iwpca | 0.087 | 0.000 | 0.087 | |
likelihood.smooth.spline | 0.150 | 0.004 | 0.155 | |
medianPolish | 0.006 | 0.000 | 0.006 | |
normalizeAffine | 10.193 | 0.112 | 10.322 | |
normalizeCurveFit | 10.265 | 0.028 | 10.306 | |
normalizeDifferencesToAverage | 0.257 | 0.008 | 0.266 | |
normalizeFragmentLength | 1.579 | 0.012 | 1.592 | |
normalizeQuantileRank | 0.789 | 0.008 | 0.798 | |
normalizeQuantileRank.matrix | 0.051 | 0.004 | 0.055 | |
normalizeQuantileSpline | 0.802 | 0.004 | 0.807 | |
normalizeTumorBoost | 0.262 | 0.016 | 0.289 | |
robustSmoothSpline | 0.387 | 0.004 | 0.399 | |
sampleCorrelations | 0.352 | 0.000 | 0.360 | |
sampleTuples | 0.000 | 0.000 | 0.001 | |
wpca | 0.075 | 0.007 | 0.083 | |