Back to Multiple platform build/check report for BioC 3.21:   simplified   long
ABCDEFGHIJKL[M]NOPQRSTUVWXYZ

This page was generated on 2025-04-17 11:47 -0400 (Thu, 17 Apr 2025).

HostnameOSArch (*)R versionInstalled pkgs
nebbiolo1Linux (Ubuntu 24.04.1 LTS)x86_644.5.0 RC (2025-04-04 r88126) -- "How About a Twenty-Six" 4667
palomino7Windows Server 2022 Datacenterx644.5.0 RC (2025-04-04 r88126 ucrt) -- "How About a Twenty-Six" 4573
lconwaymacOS 12.7.1 Montereyx86_644.5.0 RC (2025-04-04 r88126) -- "How About a Twenty-Six" 4599
kjohnson3macOS 13.7.1 Venturaarm644.5.0 RC (2025-04-04 r88126) -- "How About a Twenty-Six" 4553
kunpeng2Linux (openEuler 24.03 LTS)aarch64R Under development (unstable) (2025-02-19 r87757) -- "Unsuffered Consequences" 4570
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

Package 1195/2341HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
MBECS 1.12.0  (landing page)
Michael Olbrich
Snapshot Date: 2025-04-16 13:40 -0400 (Wed, 16 Apr 2025)
git_url: https://git.bioconductor.org/packages/MBECS
git_branch: RELEASE_3_21
git_last_commit: 6f746d2
git_last_commit_date: 2025-04-15 12:46:50 -0400 (Tue, 15 Apr 2025)
nebbiolo1Linux (Ubuntu 24.04.1 LTS) / x86_64  OK    OK    OK  UNNEEDED, same version is already published
palomino7Windows Server 2022 Datacenter / x64  OK    OK    OK    OK  UNNEEDED, same version is already published
lconwaymacOS 12.7.1 Monterey / x86_64  OK    OK    OK    OK  UNNEEDED, same version is already published
kjohnson3macOS 13.7.1 Ventura / arm64  OK    OK    OK    OK  UNNEEDED, same version is already published
kunpeng2Linux (openEuler 24.03 LTS) / aarch64  OK    OK    OK  


CHECK results for MBECS on kunpeng2

To the developers/maintainers of the MBECS package:
- Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/MBECS.git to reflect on this report. See Troubleshooting Build Report for more information.
- Use the following Renviron settings to reproduce errors and warnings.
- If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information.
- See Martin Grigorov's blog post for how to debug Linux ARM64 related issues on a x86_64 host.

raw results


Summary

Package: MBECS
Version: 1.12.0
Command: /home/biocbuild/R/R/bin/R CMD check --install=check:MBECS.install-out.txt --library=/home/biocbuild/R/R/site-library --no-vignettes --timings MBECS_1.12.0.tar.gz
StartedAt: 2025-04-17 08:18:26 -0000 (Thu, 17 Apr 2025)
EndedAt: 2025-04-17 08:23:45 -0000 (Thu, 17 Apr 2025)
EllapsedTime: 318.3 seconds
RetCode: 0
Status:   OK  
CheckDir: MBECS.Rcheck
Warnings: 0

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/R/R/bin/R CMD check --install=check:MBECS.install-out.txt --library=/home/biocbuild/R/R/site-library --no-vignettes --timings MBECS_1.12.0.tar.gz
###
##############################################################################
##############################################################################


* using log directory ‘/home/biocbuild/bbs-3.21-bioc/meat/MBECS.Rcheck’
* using R Under development (unstable) (2025-02-19 r87757)
* using platform: aarch64-unknown-linux-gnu
* R was compiled by
    aarch64-unknown-linux-gnu-gcc (GCC) 14.2.0
    GNU Fortran (GCC) 14.2.0
* running under: openEuler 24.03 (LTS-SP1)
* using session charset: UTF-8
* using option ‘--no-vignettes’
* checking for file ‘MBECS/DESCRIPTION’ ... OK
* this is package ‘MBECS’ version ‘1.12.0’
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘MBECS’ can be installed ... OK
* checking installed package size ... OK
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking loading without being on the library search path ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... OK
* checking Rd metadata ... OK
* checking Rd cross-references ... NOTE
Found the following Rd file(s) with Rd \link{} targets missing package
anchors:
  dummy.ps.Rd: phyloseq
Please provide package anchors for all Rd \link{} targets not in the
package itself and the base packages.
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of ‘data’ directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... OK
Examples with CPU (user + system) or elapsed time > 5s
                       user system elapsed
mbecCorrection        7.780  0.304   8.103
mbecModelVariance     7.818  0.104   7.942
mbecVarianceStatsPlot 6.681  0.072   6.798
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
  Running ‘testthat.R’
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE

Status: 1 NOTE
See
  ‘/home/biocbuild/bbs-3.21-bioc/meat/MBECS.Rcheck/00check.log’
for details.


Installation output

MBECS.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/R/R/bin/R CMD INSTALL MBECS
###
##############################################################################
##############################################################################


* installing to library ‘/home/biocbuild/R/R-devel_2025-02-19/site-library’
* installing *source* package ‘MBECS’ ...
** this is package ‘MBECS’ version ‘1.12.0’
** using staged installation
** R
** data
** inst
** byte-compile and prepare package for lazy loading
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (MBECS)

Tests output

MBECS.Rcheck/tests/testthat.Rout


R Under development (unstable) (2025-02-19 r87757) -- "Unsuffered Consequences"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: aarch64-unknown-linux-gnu

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(testthat)
> library(MBECS)
> 
> test_check("MBECS")
Set tss-transformed counts.
Found zeros, function will add a small pseudo-count
                (1/#features) for log-ratio transformation.
Set tss-transformed counts.
Found zeros, function will add a small pseudo-count
                (1/#features) for log-ratio transformation.
Set tss-transformed counts.
Found zeros, function will add a small pseudo-count
                (1/#features) for log-ratio transformation.
Set tss-transformed counts.
Found zeros, function will add a small pseudo-count
                (1/#features) for log-ratio transformation.
Set tss-transformed counts.
Found zeros, function will add a small pseudo-count
                (1/#features) for log-ratio transformation.
No negative control features provided.
                Using pseudo-negative controls.
Applying Remove Unwanted Variantion v3 (RUV-III).
No 'sID' column present, creating from rownames now.
No 'sID' column present, creating from rownames now.
Set tss-transformed counts.
No 'sID' column present, creating from rownames now.
Set tss-transformed counts.
Construct lm-formula from covariates.
Construct lm-formula from covariates.
There is a problem with the estimatibility of your model.
            Check out covariate: 'sIDS40'
Found zeros, function will add a small pseudo-count
                (1/#features) for log-ratio transformation.
Set tss-transformed counts.
Found zeros, function will add a small pseudo-count
                (1/#features) for log-ratio transformation.
Set tss-transformed counts.
Found zeros, function will add a small pseudo-count
                (1/#features) for log-ratio transformation.
Set tss-transformed counts.
Found zeros, function will add a small pseudo-count
                (1/#features) for log-ratio transformation.
Calculating RLE for group: A
Calculating RLE for group: B
Fitting linear model to every feature and extract proportion of
          variance explained by covariates.
Construct formula from covariates.

  |                                                                                      
  |                                                                                |   0%
  |                                                                                      
  |====                                                                            |   5%
  |                                                                                      
  |========                                                                        |  10%
  |                                                                                      
  |============                                                                    |  15%
  |                                                                                      
  |================                                                                |  20%
  |                                                                                      
  |====================                                                            |  25%
  |                                                                                      
  |========================                                                        |  30%
  |                                                                                      
  |============================                                                    |  35%
  |                                                                                      
  |================================                                                |  40%
  |                                                                                      
  |====================================                                            |  45%
  |                                                                                      
  |========================================                                        |  50%
  |                                                                                      
  |============================================                                    |  55%
  |                                                                                      
  |================================================                                |  60%
  |                                                                                      
  |====================================================                            |  65%
  |                                                                                      
  |========================================================                        |  70%
  |                                                                                      
  |============================================================                    |  75%
  |                                                                                      
  |================================================================                |  80%
  |                                                                                      
  |====================================================================            |  85%
  |                                                                                      
  |========================================================================        |  90%
  |                                                                                      
  |============================================================================    |  95%
  |                                                                                      
  |================================================================================| 100%
Fitting linear-mixed model to every feature and extract proportion
            of variance explained by covariates.
Construct formula from covariates.

  |                                                                                      
  |                                                                                |   0%boundary (singular) fit: see help('isSingular')

  |                                                                                      
  |====                                                                            |   5%boundary (singular) fit: see help('isSingular')

  |                                                                                      
  |========                                                                        |  10%
  |                                                                                      
  |============                                                                    |  15%boundary (singular) fit: see help('isSingular')

  |                                                                                      
  |================                                                                |  20%
  |                                                                                      
  |====================                                                            |  25%
  |                                                                                      
  |========================                                                        |  30%boundary (singular) fit: see help('isSingular')

  |                                                                                      
  |============================                                                    |  35%
  |                                                                                      
  |================================                                                |  40%
  |                                                                                      
  |====================================                                            |  45%boundary (singular) fit: see help('isSingular')

  |                                                                                      
  |========================================                                        |  50%boundary (singular) fit: see help('isSingular')

  |                                                                                      
  |============================================                                    |  55%boundary (singular) fit: see help('isSingular')

  |                                                                                      
  |================================================                                |  60%boundary (singular) fit: see help('isSingular')

  |                                                                                      
  |====================================================                            |  65%boundary (singular) fit: see help('isSingular')

  |                                                                                      
  |========================================================                        |  70%boundary (singular) fit: see help('isSingular')

  |                                                                                      
  |============================================================                    |  75%boundary (singular) fit: see help('isSingular')

  |                                                                                      
  |================================================================                |  80%boundary (singular) fit: see help('isSingular')

  |                                                                                      
  |====================================================================            |  85%
  |                                                                                      
  |========================================================================        |  90%boundary (singular) fit: see help('isSingular')

  |                                                                                      
  |============================================================================    |  95%boundary (singular) fit: see help('isSingular')

  |                                                                                      
  |================================================================================| 100%

  |                                                                                      
  |                                                                                |   0%
  |                                                                                      
  |========================================                                        |  50%
  |                                                                                      
  |================================================================================| 100%
boundary (singular) fit: see help('isSingular')
boundary (singular) fit: see help('isSingular')
boundary (singular) fit: see help('isSingular')
boundary (singular) fit: see help('isSingular')
boundary (singular) fit: see help('isSingular')
boundary (singular) fit: see help('isSingular')
[1] "batch"
[1] "group"
Set tss-transformed counts.
Found zeros, function will add a small pseudo-count
                (1/#features) for log-ratio transformation.
Applying ComBat (sva) for batch-correction.
Found2batches
Adjusting for1covariate(s) or covariate level(s)
Standardizing Data across genes
Fitting L/S model and finding priors
Finding nonparametric adjustments
Adjusting the Data

[ FAIL 0 | WARN 101 | SKIP 0 | PASS 282 ]

[ FAIL 0 | WARN 101 | SKIP 0 | PASS 282 ]
> 
> proc.time()
   user  system elapsed 
 86.680   1.275  88.202 

Example timings

MBECS.Rcheck/MBECS-Ex.timings

nameusersystemelapsed
MbecData0.1400.0040.144
colinScore0.4090.0440.454
dot-mbecGetData0.0370.0040.041
dot-mbecGetPhyloseq0.0510.0040.055
dot-mbecSetData0.0550.0000.056
dummy.list0.0050.0000.006
dummy.mbec0.0280.0000.028
dummy.ps0.0050.0000.005
mbecBox3.8200.2994.128
mbecBoxPlot3.1650.0563.230
mbecCorrection7.7800.3048.103
mbecDummy0.1740.0000.174
mbecGetData-MbecData-method0.0350.0000.036
mbecGetData0.0350.0000.034
mbecGetPhyloseq-MbecData-method0.0540.0000.054
mbecGetPhyloseq0.050.000.05
mbecHeat0.2590.0040.264
mbecHeatPlot0.1980.0000.199
mbecHelpFactor0.0050.0000.006
mbecLM1.2390.0161.258
mbecMixedVariance0.0520.0000.053
mbecModelVariance7.8180.1047.942
mbecMosaic1.2280.0071.239
mbecMosaicPlot1.1700.0121.185
mbecPCA-MbecData-method1.2350.0041.243
mbecPCA1.2330.0001.235
mbecPCAPlot1.1410.0351.180
mbecPVCAStatsPlot1.4890.0111.505
mbecProcessInput-MbecData-method0.0250.0030.027
mbecProcessInput-list-method0.0280.0000.027
mbecProcessInput-phyloseq-method0.0420.0000.042
mbecProcessInput0.0240.0030.028
mbecRDAStatsPlot0.1370.0000.138
mbecRLE0.3610.0040.366
mbecRLEPlot0.1670.0000.168
mbecReportPost4.6490.0414.700
mbecReportPrelim2.3240.0192.349
mbecRunCorrections2.8130.0202.839
mbecSCOEFStatsPlot0.0690.0040.074
mbecSetData-MbecData-method0.0520.0000.053
mbecSetData0.0550.0000.054
mbecTestModel0.0350.0000.035
mbecTransform0.2030.0000.204
mbecValidateModel0.0370.0000.037
mbecVarianceStats0.0160.0000.019
mbecVarianceStatsPlot6.6810.0726.798
percentileNorm3.4880.0603.556
poscore000