Back to Multiple platform build/check report for BioC 3.21: simplified long |
|
This page was generated on 2025-04-22 13:18 -0400 (Tue, 22 Apr 2025).
Hostname | OS | Arch (*) | R version | Installed pkgs |
---|---|---|---|---|
nebbiolo1 | Linux (Ubuntu 24.04.1 LTS) | x86_64 | 4.5.0 RC (2025-04-04 r88126) -- "How About a Twenty-Six" | 4831 |
palomino7 | Windows Server 2022 Datacenter | x64 | 4.5.0 RC (2025-04-04 r88126 ucrt) -- "How About a Twenty-Six" | 4573 |
lconway | macOS 12.7.1 Monterey | x86_64 | 4.5.0 RC (2025-04-04 r88126) -- "How About a Twenty-Six" | 4599 |
kjohnson3 | macOS 13.7.1 Ventura | arm64 | 4.5.0 RC (2025-04-04 r88126) -- "How About a Twenty-Six" | 4553 |
kunpeng2 | Linux (openEuler 24.03 LTS) | aarch64 | R Under development (unstable) (2025-02-19 r87757) -- "Unsuffered Consequences" | 4570 |
Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X |
Package 997/2341 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
HPiP 1.14.0 (landing page) Matineh Rahmatbakhsh
| nebbiolo1 | Linux (Ubuntu 24.04.1 LTS) / x86_64 | OK | OK | OK | ![]() | ||||||||
palomino7 | Windows Server 2022 Datacenter / x64 | OK | OK | OK | OK | ![]() | ||||||||
lconway | macOS 12.7.1 Monterey / x86_64 | OK | OK | OK | OK | ![]() | ||||||||
kjohnson3 | macOS 13.7.1 Ventura / arm64 | OK | OK | OK | OK | ![]() | ||||||||
kunpeng2 | Linux (openEuler 24.03 LTS) / aarch64 | OK | OK | OK | ||||||||||
To the developers/maintainers of the HPiP package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. |
Package: HPiP |
Version: 1.14.0 |
Command: /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.14.0.tar.gz |
StartedAt: 2025-04-21 19:51:01 -0400 (Mon, 21 Apr 2025) |
EndedAt: 2025-04-21 19:54:15 -0400 (Mon, 21 Apr 2025) |
EllapsedTime: 193.5 seconds |
RetCode: 0 |
Status: OK |
CheckDir: HPiP.Rcheck |
Warnings: 0 |
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:HPiP.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings HPiP_1.14.0.tar.gz ### ############################################################################## ############################################################################## * using log directory ‘/Users/biocbuild/bbs-3.21-bioc/meat/HPiP.Rcheck’ * using R version 4.5.0 RC (2025-04-04 r88126) * using platform: aarch64-apple-darwin20 * R was compiled by Apple clang version 14.0.0 (clang-1400.0.29.202) GNU Fortran (GCC) 14.2.0 * running under: macOS Ventura 13.7.1 * using session charset: UTF-8 * using option ‘--no-vignettes’ * checking for file ‘HPiP/DESCRIPTION’ ... OK * checking extension type ... Package * this is package ‘HPiP’ version ‘1.14.0’ * package encoding: UTF-8 * checking package namespace information ... OK * checking package dependencies ... OK * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for hidden files and directories ... OK * checking for portable file names ... OK * checking for sufficient/correct file permissions ... OK * checking whether package ‘HPiP’ can be installed ... OK * checking installed package size ... OK * checking package directory ... OK * checking ‘build’ directory ... OK * checking DESCRIPTION meta-information ... NOTE License stub is invalid DCF. * checking top-level files ... OK * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking code files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * checking whether the package can be loaded ... OK * checking whether the package can be loaded with stated dependencies ... OK * checking whether the package can be unloaded cleanly ... OK * checking whether the namespace can be loaded with stated dependencies ... OK * checking whether the namespace can be unloaded cleanly ... OK * checking dependencies in R code ... OK * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... OK * checking Rd files ... NOTE checkRd: (-1) getHPI.Rd:29: Lost braces 29 | then the Kronecker product is the code{(pm × qn)} block matrix | ^ * checking Rd metadata ... OK * checking Rd cross-references ... INFO Package unavailable to check Rd xrefs: ‘ftrCOOL’ * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking contents of ‘data’ directory ... OK * checking data for non-ASCII characters ... OK * checking data for ASCII and uncompressed saves ... OK * checking R/sysdata.rda ... OK * checking files in ‘vignettes’ ... OK * checking examples ... OK Examples with CPU (user + system) or elapsed time > 5s user system elapsed var_imp 18.505 0.855 19.416 FSmethod 17.938 0.870 19.023 corr_plot 17.615 0.687 18.533 pred_ensembel 5.470 0.115 5.178 enrichfindP 0.167 0.030 9.456 * checking for unstated dependencies in ‘tests’ ... OK * checking tests ... Running ‘runTests.R’ OK * checking for unstated dependencies in vignettes ... OK * checking package vignettes ... OK * checking running R code from vignettes ... SKIPPED * checking re-building of vignette outputs ... SKIPPED * checking PDF version of manual ... OK * DONE Status: 2 NOTEs See ‘/Users/biocbuild/bbs-3.21-bioc/meat/HPiP.Rcheck/00check.log’ for details.
HPiP.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /Library/Frameworks/R.framework/Resources/bin/R CMD INSTALL HPiP ### ############################################################################## ############################################################################## * installing to library ‘/Library/Frameworks/R.framework/Versions/4.5-arm64/Resources/library’ * installing *source* package ‘HPiP’ ... ** this is package ‘HPiP’ version ‘1.14.0’ ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (HPiP)
HPiP.Rcheck/tests/runTests.Rout
R version 4.5.0 RC (2025-04-04 r88126) -- "How About a Twenty-Six" Copyright (C) 2025 The R Foundation for Statistical Computing Platform: aarch64-apple-darwin20 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > BiocGenerics:::testPackage('HPiP') No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE avNNet Loading required package: ggplot2 Loading required package: lattice Fitting Repeat 1 # weights: 103 initial value 103.397143 final value 93.582418 converged Fitting Repeat 2 # weights: 103 initial value 98.167782 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 104.287687 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 96.782951 final value 94.052448 converged Fitting Repeat 5 # weights: 103 initial value 96.239730 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 95.974545 final value 93.671509 converged Fitting Repeat 2 # weights: 305 initial value 94.620895 final value 94.052910 converged Fitting Repeat 3 # weights: 305 initial value 103.536552 iter 10 value 93.329959 iter 20 value 93.320547 final value 93.320441 converged Fitting Repeat 4 # weights: 305 initial value 103.023357 iter 10 value 94.032329 iter 10 value 94.032329 iter 10 value 94.032329 final value 94.032329 converged Fitting Repeat 5 # weights: 305 initial value 100.333376 final value 94.052910 converged Fitting Repeat 1 # weights: 507 initial value 100.042779 final value 93.582418 converged Fitting Repeat 2 # weights: 507 initial value 97.557488 final value 94.052909 converged Fitting Repeat 3 # weights: 507 initial value 111.686430 iter 10 value 93.925551 iter 20 value 92.199646 iter 30 value 92.197763 iter 40 value 92.177988 final value 92.177986 converged Fitting Repeat 4 # weights: 507 initial value 101.270560 iter 10 value 93.582422 final value 93.582418 converged Fitting Repeat 5 # weights: 507 initial value 121.333775 iter 10 value 93.301910 iter 20 value 86.942629 iter 30 value 86.797060 iter 40 value 86.796910 final value 86.796909 converged Fitting Repeat 1 # weights: 103 initial value 96.763655 iter 10 value 94.041103 iter 20 value 92.914049 iter 30 value 89.509878 iter 40 value 87.694754 iter 50 value 87.524779 iter 60 value 86.600004 iter 70 value 85.857321 iter 80 value 80.459945 iter 90 value 79.758448 iter 100 value 78.630566 final value 78.630566 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 104.735294 iter 10 value 94.057124 iter 20 value 89.294796 iter 30 value 84.222398 iter 40 value 80.354590 iter 50 value 80.003450 iter 60 value 79.591944 iter 70 value 79.090828 iter 80 value 78.408626 iter 90 value 77.822584 iter 100 value 77.816259 final value 77.816259 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 99.000122 iter 10 value 93.917010 iter 20 value 82.040920 iter 30 value 81.530169 iter 40 value 81.421388 iter 50 value 80.806656 iter 60 value 80.168432 iter 70 value 79.866429 final value 79.866427 converged Fitting Repeat 4 # weights: 103 initial value 95.830378 iter 10 value 94.057145 iter 20 value 93.767272 iter 30 value 93.692768 iter 40 value 93.685961 iter 50 value 93.684929 iter 60 value 87.162461 iter 70 value 80.437916 iter 80 value 79.644078 iter 90 value 78.236719 iter 100 value 77.784607 final value 77.784607 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 103.235890 iter 10 value 93.930712 iter 20 value 86.108883 iter 30 value 83.772411 iter 40 value 83.364618 iter 50 value 83.000996 iter 60 value 82.522620 iter 70 value 82.399119 iter 80 value 82.397220 final value 82.397215 converged Fitting Repeat 1 # weights: 305 initial value 107.645065 iter 10 value 94.035840 iter 20 value 93.658789 iter 30 value 91.183552 iter 40 value 86.751454 iter 50 value 83.384756 iter 60 value 83.016786 iter 70 value 81.300914 iter 80 value 79.311177 iter 90 value 78.679076 iter 100 value 78.492597 final value 78.492597 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 102.841850 iter 10 value 92.928273 iter 20 value 91.448393 iter 30 value 82.345777 iter 40 value 81.522743 iter 50 value 80.808007 iter 60 value 79.540024 iter 70 value 77.791958 iter 80 value 77.321629 iter 90 value 76.802592 iter 100 value 76.405222 final value 76.405222 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 109.885916 iter 10 value 94.352446 iter 20 value 90.998284 iter 30 value 90.639263 iter 40 value 90.477613 iter 50 value 90.195775 iter 60 value 84.071247 iter 70 value 79.265821 iter 80 value 78.836283 iter 90 value 78.629532 iter 100 value 78.164870 final value 78.164870 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 109.037548 iter 10 value 94.072656 iter 20 value 87.303023 iter 30 value 84.699535 iter 40 value 82.738490 iter 50 value 80.480032 iter 60 value 79.623335 iter 70 value 78.532544 iter 80 value 77.322887 iter 90 value 76.795552 iter 100 value 76.674887 final value 76.674887 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 105.372635 iter 10 value 94.055776 iter 20 value 86.319189 iter 30 value 81.831486 iter 40 value 80.411762 iter 50 value 80.075100 iter 60 value 79.795503 iter 70 value 78.840698 iter 80 value 77.756789 iter 90 value 76.571722 iter 100 value 76.473826 final value 76.473826 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 105.019408 iter 10 value 92.624389 iter 20 value 91.636667 iter 30 value 86.176472 iter 40 value 82.557087 iter 50 value 80.670946 iter 60 value 79.194526 iter 70 value 77.702049 iter 80 value 76.780386 iter 90 value 76.657900 iter 100 value 76.618396 final value 76.618396 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 109.814192 iter 10 value 94.022593 iter 20 value 84.534045 iter 30 value 80.460997 iter 40 value 80.034787 iter 50 value 78.301083 iter 60 value 77.625432 iter 70 value 77.474127 iter 80 value 77.079186 iter 90 value 76.899587 iter 100 value 76.703574 final value 76.703574 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 107.684058 iter 10 value 94.094943 iter 20 value 88.551174 iter 30 value 84.488053 iter 40 value 83.083731 iter 50 value 81.040315 iter 60 value 79.007060 iter 70 value 77.841085 iter 80 value 77.567946 iter 90 value 77.227215 iter 100 value 76.558292 final value 76.558292 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 105.662036 iter 10 value 94.297075 iter 20 value 89.508728 iter 30 value 84.095379 iter 40 value 83.077285 iter 50 value 82.465316 iter 60 value 82.348319 iter 70 value 82.173554 iter 80 value 79.726080 iter 90 value 77.674177 iter 100 value 77.109181 final value 77.109181 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 103.640331 iter 10 value 93.722608 iter 20 value 86.829061 iter 30 value 81.902622 iter 40 value 81.573166 iter 50 value 80.764688 iter 60 value 80.215935 iter 70 value 78.830188 iter 80 value 77.098624 iter 90 value 76.584977 iter 100 value 76.351326 final value 76.351326 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 99.444260 iter 10 value 94.054574 final value 94.052912 converged Fitting Repeat 2 # weights: 103 initial value 95.701250 final value 94.054456 converged Fitting Repeat 3 # weights: 103 initial value 100.703082 final value 94.054909 converged Fitting Repeat 4 # weights: 103 initial value 96.048353 final value 94.054784 converged Fitting Repeat 5 # weights: 103 initial value 104.349408 iter 10 value 94.054950 final value 94.053157 converged Fitting Repeat 1 # weights: 305 initial value 96.889862 iter 10 value 94.057975 iter 20 value 94.052910 iter 30 value 93.580434 iter 40 value 92.810094 final value 92.803996 converged Fitting Repeat 2 # weights: 305 initial value 101.239179 iter 10 value 94.057245 iter 20 value 94.052646 iter 30 value 93.664238 final value 93.583182 converged Fitting Repeat 3 # weights: 305 initial value 103.651203 iter 10 value 93.464666 iter 20 value 93.197047 iter 30 value 93.194591 final value 93.194294 converged Fitting Repeat 4 # weights: 305 initial value 106.468734 iter 10 value 94.058316 iter 20 value 93.955939 iter 30 value 84.848194 final value 84.745885 converged Fitting Repeat 5 # weights: 305 initial value 95.223802 iter 10 value 94.057038 iter 20 value 94.052946 final value 94.052916 converged Fitting Repeat 1 # weights: 507 initial value 103.325088 iter 10 value 94.061461 iter 20 value 92.543324 iter 30 value 81.823816 iter 40 value 79.495736 iter 50 value 79.204485 iter 60 value 79.199798 iter 70 value 78.710928 iter 80 value 77.594874 iter 90 value 75.846498 iter 100 value 75.790993 final value 75.790993 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 106.386737 iter 10 value 94.061477 iter 20 value 94.016116 iter 30 value 92.862092 iter 30 value 92.862092 iter 30 value 92.862092 final value 92.862092 converged Fitting Repeat 3 # weights: 507 initial value 105.711377 iter 10 value 92.854443 iter 20 value 92.812371 iter 30 value 92.809211 iter 40 value 92.804427 iter 50 value 92.804339 iter 60 value 92.692725 iter 70 value 92.307924 iter 80 value 89.382946 iter 90 value 78.869347 iter 100 value 76.677023 final value 76.677023 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 94.229809 iter 10 value 94.055122 iter 20 value 93.715270 iter 30 value 87.619572 iter 40 value 87.085280 iter 50 value 86.933876 iter 60 value 86.931343 iter 70 value 85.005982 iter 80 value 84.933061 iter 90 value 84.932558 final value 84.932556 converged Fitting Repeat 5 # weights: 507 initial value 110.661684 iter 10 value 87.627893 iter 20 value 85.205766 final value 85.202729 converged Fitting Repeat 1 # weights: 103 initial value 99.178925 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 101.000336 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 99.521619 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 97.061083 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 98.975895 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 98.822139 final value 94.026542 converged Fitting Repeat 2 # weights: 305 initial value 114.163767 iter 10 value 94.227298 iter 20 value 91.717281 iter 30 value 91.527710 final value 91.527452 converged Fitting Repeat 3 # weights: 305 initial value 96.457695 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 97.892860 iter 10 value 94.202038 iter 10 value 94.202037 iter 10 value 94.202037 final value 94.202037 converged Fitting Repeat 5 # weights: 305 initial value 98.056725 final value 94.448052 converged Fitting Repeat 1 # weights: 507 initial value 99.304912 iter 10 value 93.786590 iter 20 value 93.696363 final value 93.696359 converged Fitting Repeat 2 # weights: 507 initial value 100.603393 iter 10 value 93.674449 iter 20 value 93.668311 iter 30 value 93.634576 final value 93.633783 converged Fitting Repeat 3 # weights: 507 initial value 111.667555 final value 94.484212 converged Fitting Repeat 4 # weights: 507 initial value 95.690886 iter 10 value 94.355491 iter 20 value 94.354287 iter 20 value 94.354287 iter 20 value 94.354286 final value 94.354286 converged Fitting Repeat 5 # weights: 507 initial value 101.544669 final value 94.088889 converged Fitting Repeat 1 # weights: 103 initial value 102.356242 iter 10 value 94.441259 iter 20 value 94.199577 iter 30 value 94.161815 final value 94.161779 converged Fitting Repeat 2 # weights: 103 initial value 100.062634 iter 10 value 94.421836 iter 20 value 94.126195 iter 30 value 94.125952 iter 40 value 91.618217 iter 50 value 87.745229 iter 60 value 87.445767 iter 70 value 87.161548 iter 80 value 86.025887 iter 90 value 84.336523 iter 100 value 84.099071 final value 84.099071 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 103.773723 iter 10 value 94.475197 iter 20 value 94.203622 iter 30 value 94.141434 iter 40 value 90.354247 iter 50 value 85.588864 iter 60 value 84.725762 iter 70 value 84.599307 iter 80 value 84.464552 iter 90 value 84.444155 iter 100 value 84.443859 final value 84.443859 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 107.468934 iter 10 value 94.208846 iter 20 value 92.651966 iter 30 value 92.287215 iter 40 value 92.285218 final value 92.285205 converged Fitting Repeat 5 # weights: 103 initial value 96.731647 iter 10 value 94.486457 iter 20 value 94.146656 iter 30 value 94.126017 iter 40 value 93.843778 iter 50 value 86.364927 iter 60 value 85.085579 iter 70 value 84.623751 iter 80 value 84.533575 iter 90 value 84.427748 iter 100 value 84.216809 final value 84.216809 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 111.803910 iter 10 value 94.461486 iter 20 value 93.300945 iter 30 value 87.372629 iter 40 value 86.817036 iter 50 value 86.634003 iter 60 value 84.616718 iter 70 value 83.759819 iter 80 value 83.612735 iter 90 value 83.488159 iter 100 value 82.784699 final value 82.784699 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 120.049909 iter 10 value 89.028176 iter 20 value 85.292666 iter 30 value 85.166392 iter 40 value 84.850678 iter 50 value 84.352235 iter 60 value 84.210566 iter 70 value 83.844392 iter 80 value 82.399191 iter 90 value 81.346789 iter 100 value 81.240042 final value 81.240042 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 103.653766 iter 10 value 94.519827 iter 20 value 88.354000 iter 30 value 85.878194 iter 40 value 85.409147 iter 50 value 84.801098 iter 60 value 83.513639 iter 70 value 81.990502 iter 80 value 81.776182 iter 90 value 81.538298 iter 100 value 81.336134 final value 81.336134 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 107.394448 iter 10 value 94.462242 iter 20 value 86.481864 iter 30 value 85.720527 iter 40 value 85.208020 iter 50 value 84.446298 iter 60 value 82.658976 iter 70 value 81.472677 iter 80 value 81.333433 iter 90 value 81.204537 iter 100 value 81.025398 final value 81.025398 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 103.317111 iter 10 value 94.583471 iter 20 value 94.509658 iter 30 value 94.481290 iter 40 value 92.426419 iter 50 value 87.954501 iter 60 value 87.478115 iter 70 value 84.507997 iter 80 value 82.702872 iter 90 value 82.439991 iter 100 value 82.274194 final value 82.274194 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 118.282124 iter 10 value 95.157012 iter 20 value 94.312063 iter 30 value 94.133845 iter 40 value 92.337473 iter 50 value 88.352692 iter 60 value 86.564553 iter 70 value 85.152881 iter 80 value 83.480819 iter 90 value 82.533980 iter 100 value 81.902786 final value 81.902786 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 113.117710 iter 10 value 95.034940 iter 20 value 94.830989 iter 30 value 86.213660 iter 40 value 85.414318 iter 50 value 84.604475 iter 60 value 84.250106 iter 70 value 84.070054 iter 80 value 83.990852 iter 90 value 83.961779 iter 100 value 83.951864 final value 83.951864 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 104.311416 iter 10 value 94.649192 iter 20 value 92.461276 iter 30 value 88.376245 iter 40 value 87.340868 iter 50 value 86.285464 iter 60 value 84.123993 iter 70 value 83.017510 iter 80 value 81.668653 iter 90 value 81.313869 iter 100 value 81.095206 final value 81.095206 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 107.863073 iter 10 value 94.882703 iter 20 value 94.051363 iter 30 value 93.995723 iter 40 value 93.946555 iter 50 value 89.205399 iter 60 value 88.085877 iter 70 value 85.775480 iter 80 value 84.782377 iter 90 value 84.350670 iter 100 value 83.592744 final value 83.592744 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 99.813790 iter 10 value 85.631025 iter 20 value 84.726934 iter 30 value 83.335307 iter 40 value 82.253082 iter 50 value 82.108527 iter 60 value 81.926014 iter 70 value 81.490745 iter 80 value 81.139009 iter 90 value 81.029534 iter 100 value 80.859178 final value 80.859178 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 98.309554 final value 94.485676 converged Fitting Repeat 2 # weights: 103 initial value 107.186493 final value 94.485953 converged Fitting Repeat 3 # weights: 103 initial value 102.169772 iter 10 value 94.485930 final value 94.485406 converged Fitting Repeat 4 # weights: 103 initial value 102.728977 final value 94.028597 converged Fitting Repeat 5 # weights: 103 initial value 96.684453 iter 10 value 94.449829 iter 20 value 94.448567 final value 94.448099 converged Fitting Repeat 1 # weights: 305 initial value 112.501781 iter 10 value 94.031633 iter 20 value 94.011503 iter 30 value 92.542687 iter 40 value 88.792867 iter 50 value 88.501778 final value 88.496746 converged Fitting Repeat 2 # weights: 305 initial value 104.593362 iter 10 value 94.494168 iter 20 value 94.465117 iter 30 value 88.450457 iter 40 value 87.597568 iter 50 value 87.407858 iter 60 value 84.417547 iter 70 value 84.407145 iter 80 value 84.404785 iter 90 value 83.311163 iter 100 value 82.840255 final value 82.840255 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 99.361767 iter 10 value 94.031503 iter 20 value 93.943745 iter 30 value 86.341460 iter 40 value 84.439105 iter 50 value 84.380150 iter 60 value 84.379540 iter 70 value 84.379488 iter 80 value 84.379102 final value 84.377628 converged Fitting Repeat 4 # weights: 305 initial value 96.847165 iter 10 value 94.489428 iter 20 value 94.481699 iter 30 value 94.030088 iter 40 value 94.028069 iter 50 value 93.979408 final value 93.975597 converged Fitting Repeat 5 # weights: 305 initial value 97.386984 iter 10 value 94.485726 iter 20 value 94.423534 iter 30 value 94.021494 iter 40 value 91.339946 iter 50 value 87.150712 iter 60 value 87.037768 iter 70 value 86.943755 iter 80 value 86.930469 iter 90 value 84.360685 iter 100 value 83.059178 final value 83.059178 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 95.040897 iter 10 value 93.677288 iter 20 value 93.675146 iter 30 value 86.198101 iter 40 value 86.183722 iter 50 value 86.176308 iter 60 value 86.174382 iter 70 value 86.110831 iter 80 value 86.109522 final value 86.109508 converged Fitting Repeat 2 # weights: 507 initial value 100.556273 iter 10 value 93.800906 iter 20 value 93.796544 iter 30 value 93.791508 iter 40 value 93.226290 iter 50 value 89.373864 iter 60 value 85.106683 iter 70 value 85.068455 iter 80 value 84.869073 iter 90 value 84.695184 iter 100 value 84.674790 final value 84.674790 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 101.376505 iter 10 value 94.485268 iter 20 value 93.320630 iter 30 value 83.425223 iter 40 value 82.829625 iter 50 value 82.557041 final value 82.556849 converged Fitting Repeat 4 # weights: 507 initial value 102.302711 iter 10 value 94.495249 iter 20 value 94.486620 iter 30 value 94.236557 iter 40 value 92.465425 iter 50 value 92.110351 iter 60 value 92.109090 iter 70 value 88.433249 iter 80 value 83.156448 iter 90 value 82.799509 iter 100 value 82.567278 final value 82.567278 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 94.698578 iter 10 value 94.485382 iter 20 value 93.346266 iter 30 value 92.605542 iter 40 value 91.977712 iter 50 value 87.580255 iter 60 value 87.529888 iter 70 value 87.100198 iter 80 value 87.095628 iter 80 value 87.095628 final value 87.095628 converged Fitting Repeat 1 # weights: 103 initial value 97.342097 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 100.050645 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 104.115582 iter 10 value 90.110983 iter 20 value 86.307333 iter 30 value 86.120102 iter 40 value 86.108297 iter 50 value 86.033314 iter 60 value 85.943423 final value 85.942126 converged Fitting Repeat 4 # weights: 103 initial value 96.164373 iter 10 value 88.757917 iter 20 value 86.193330 iter 30 value 85.962100 iter 40 value 85.960530 iter 40 value 85.960529 iter 40 value 85.960529 final value 85.960529 converged Fitting Repeat 5 # weights: 103 initial value 99.431493 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 104.802166 final value 94.052910 converged Fitting Repeat 2 # weights: 305 initial value 95.329905 final value 94.052910 converged Fitting Repeat 3 # weights: 305 initial value 118.553577 iter 10 value 94.052910 iter 10 value 94.052910 iter 10 value 94.052910 final value 94.052910 converged Fitting Repeat 4 # weights: 305 initial value 93.416893 iter 10 value 88.166968 iter 20 value 86.316401 iter 30 value 86.088392 iter 40 value 85.939953 final value 85.939856 converged Fitting Repeat 5 # weights: 305 initial value 112.018159 final value 94.052910 converged Fitting Repeat 1 # weights: 507 initial value 96.875185 final value 93.874286 converged Fitting Repeat 2 # weights: 507 initial value 101.963051 final value 94.052910 converged Fitting Repeat 3 # weights: 507 initial value 99.489508 final value 94.032967 converged Fitting Repeat 4 # weights: 507 initial value 97.609894 iter 10 value 92.487607 iter 20 value 89.216322 iter 30 value 89.131840 iter 40 value 89.125490 final value 89.125064 converged Fitting Repeat 5 # weights: 507 initial value 94.799673 final value 94.052910 converged Fitting Repeat 1 # weights: 103 initial value 108.897790 iter 10 value 90.578664 iter 20 value 87.750920 iter 30 value 84.862691 iter 40 value 84.803880 iter 50 value 84.794607 iter 60 value 84.763162 iter 70 value 84.678546 iter 80 value 84.612228 final value 84.604455 converged Fitting Repeat 2 # weights: 103 initial value 99.144078 iter 10 value 94.056842 iter 20 value 94.054701 iter 30 value 91.192759 iter 40 value 86.764781 iter 50 value 86.397926 iter 60 value 85.829565 iter 70 value 85.742656 iter 80 value 84.565691 iter 90 value 83.810291 iter 100 value 83.098839 final value 83.098839 stopped after 100 iterations Fitting Repeat 3 # weights: 103 initial value 100.842902 iter 10 value 94.054892 iter 20 value 89.638829 iter 30 value 88.500086 iter 40 value 85.873371 iter 50 value 85.156048 iter 60 value 85.101774 iter 70 value 84.793094 iter 80 value 84.647220 iter 90 value 84.612777 iter 100 value 84.607381 final value 84.607381 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 99.223862 iter 10 value 94.005430 iter 20 value 86.134128 iter 30 value 85.943530 iter 40 value 85.217842 iter 50 value 84.679076 iter 60 value 84.433972 iter 70 value 83.326630 iter 80 value 82.791200 final value 82.790918 converged Fitting Repeat 5 # weights: 103 initial value 103.016605 iter 10 value 94.211396 iter 20 value 91.888945 iter 30 value 87.480737 iter 40 value 86.772640 iter 50 value 85.802758 iter 60 value 85.352690 iter 70 value 85.120740 iter 80 value 83.657995 iter 90 value 82.818040 iter 100 value 82.790952 final value 82.790952 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 99.026861 iter 10 value 94.112615 iter 20 value 92.027649 iter 30 value 85.416830 iter 40 value 84.677912 iter 50 value 84.226737 iter 60 value 84.176630 iter 70 value 83.978609 iter 80 value 83.268879 iter 90 value 82.637018 iter 100 value 82.274388 final value 82.274388 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 104.073102 iter 10 value 94.119822 iter 20 value 94.045617 iter 30 value 92.877328 iter 40 value 86.670294 iter 50 value 86.393751 iter 60 value 84.827446 iter 70 value 84.043082 iter 80 value 83.483861 iter 90 value 83.455281 iter 100 value 83.228679 final value 83.228679 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 108.594927 iter 10 value 94.018803 iter 20 value 92.967959 iter 30 value 92.791021 iter 40 value 92.409933 iter 50 value 92.136429 iter 60 value 86.894896 iter 70 value 86.121779 iter 80 value 84.928056 iter 90 value 83.878545 iter 100 value 83.541298 final value 83.541298 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 110.177839 iter 10 value 94.246361 iter 20 value 89.853771 iter 30 value 85.973603 iter 40 value 85.459299 iter 50 value 84.737416 iter 60 value 84.434158 iter 70 value 84.125508 iter 80 value 82.684763 iter 90 value 82.453851 iter 100 value 81.789312 final value 81.789312 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 101.136717 iter 10 value 93.934209 iter 20 value 92.652478 iter 30 value 89.121629 iter 40 value 88.109657 iter 50 value 85.205402 iter 60 value 83.245099 iter 70 value 82.800150 iter 80 value 82.596691 iter 90 value 82.473534 iter 100 value 82.406653 final value 82.406653 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 144.373062 iter 10 value 94.057670 iter 20 value 93.887991 iter 30 value 89.956591 iter 40 value 87.112962 iter 50 value 86.562181 iter 60 value 85.421944 iter 70 value 83.743658 iter 80 value 83.394630 iter 90 value 83.254278 iter 100 value 82.826099 final value 82.826099 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 111.598791 iter 10 value 93.994931 iter 20 value 92.002332 iter 30 value 91.598765 iter 40 value 89.222134 iter 50 value 86.814466 iter 60 value 86.004228 iter 70 value 84.622950 iter 80 value 83.720971 iter 90 value 83.424803 iter 100 value 82.998537 final value 82.998537 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 118.843479 iter 10 value 94.334353 iter 20 value 94.235978 iter 30 value 93.664584 iter 40 value 92.631880 iter 50 value 91.737309 iter 60 value 87.941086 iter 70 value 85.233673 iter 80 value 83.732345 iter 90 value 83.298575 iter 100 value 83.258040 final value 83.258040 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 126.424226 iter 10 value 94.218320 iter 20 value 94.043618 iter 30 value 92.322585 iter 40 value 86.819768 iter 50 value 86.192813 iter 60 value 84.277151 iter 70 value 83.351712 iter 80 value 82.535684 iter 90 value 81.976272 iter 100 value 81.643615 final value 81.643615 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 108.959603 iter 10 value 94.039088 iter 20 value 87.422345 iter 30 value 85.545849 iter 40 value 82.735456 iter 50 value 82.502285 iter 60 value 82.394409 iter 70 value 82.257475 iter 80 value 82.080345 iter 90 value 81.841679 iter 100 value 81.725968 final value 81.725968 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 110.858339 final value 94.054672 converged Fitting Repeat 2 # weights: 103 initial value 114.067128 iter 10 value 94.054316 iter 20 value 93.921535 iter 30 value 85.617670 final value 85.600350 converged Fitting Repeat 3 # weights: 103 initial value 99.135148 final value 94.054528 converged Fitting Repeat 4 # weights: 103 initial value 103.817902 final value 94.054348 converged Fitting Repeat 5 # weights: 103 initial value 97.001714 final value 94.054537 converged Fitting Repeat 1 # weights: 305 initial value 114.368996 iter 10 value 94.038065 iter 20 value 94.034688 iter 30 value 93.805916 iter 40 value 87.056557 iter 50 value 85.327593 iter 60 value 84.751316 final value 84.736616 converged Fitting Repeat 2 # weights: 305 initial value 99.279352 iter 10 value 93.278237 iter 20 value 91.597023 iter 30 value 91.536478 iter 40 value 91.517853 iter 50 value 91.474648 iter 60 value 91.184129 final value 91.182278 converged Fitting Repeat 3 # weights: 305 initial value 94.330903 iter 10 value 94.026445 iter 20 value 90.386738 iter 30 value 86.048698 iter 40 value 85.457486 iter 40 value 85.457485 iter 40 value 85.457485 final value 85.457485 converged Fitting Repeat 4 # weights: 305 initial value 95.181820 iter 10 value 93.918600 iter 20 value 93.901654 iter 30 value 93.858341 iter 40 value 93.853939 final value 93.852218 converged Fitting Repeat 5 # weights: 305 initial value 94.414844 iter 10 value 94.057634 iter 20 value 94.036337 iter 30 value 93.377603 iter 40 value 93.141432 iter 50 value 91.147698 iter 60 value 85.561850 iter 70 value 85.542150 iter 80 value 85.541807 iter 90 value 85.472565 iter 100 value 85.470119 final value 85.470119 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 99.644630 iter 10 value 94.041107 iter 20 value 93.433416 iter 30 value 86.636823 iter 30 value 86.636822 iter 30 value 86.636822 final value 86.636822 converged Fitting Repeat 2 # weights: 507 initial value 111.623806 iter 10 value 93.883320 iter 20 value 90.235293 iter 30 value 89.012739 iter 40 value 84.875009 iter 50 value 83.776292 iter 60 value 83.733881 iter 70 value 82.989716 iter 80 value 82.895448 iter 90 value 82.858039 iter 100 value 82.837323 final value 82.837323 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 97.683034 iter 10 value 94.061120 iter 20 value 94.053163 iter 30 value 93.542599 iter 40 value 93.539819 final value 93.539801 converged Fitting Repeat 4 # weights: 507 initial value 94.665070 iter 10 value 94.060730 iter 20 value 93.201317 iter 30 value 86.550246 iter 40 value 85.908591 iter 50 value 85.886326 iter 60 value 83.470599 iter 70 value 83.397941 iter 80 value 83.396041 iter 90 value 83.392577 iter 100 value 83.390508 final value 83.390508 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 106.622063 iter 10 value 84.197391 iter 20 value 83.728440 iter 30 value 82.929802 iter 40 value 81.443693 iter 50 value 81.218743 iter 60 value 80.727437 iter 70 value 80.651345 iter 80 value 80.568077 iter 90 value 80.311967 iter 100 value 80.178350 final value 80.178350 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 102.996587 final value 94.443243 converged Fitting Repeat 2 # weights: 103 initial value 102.008911 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 102.674829 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 96.189879 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 100.407044 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 105.480910 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 106.880600 final value 94.443243 converged Fitting Repeat 3 # weights: 305 initial value 105.157780 final value 94.443243 converged Fitting Repeat 4 # weights: 305 initial value 96.639135 final value 94.132871 converged Fitting Repeat 5 # weights: 305 initial value 108.704652 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 100.006814 iter 10 value 94.275183 iter 20 value 94.057031 iter 30 value 94.051994 final value 94.051984 converged Fitting Repeat 2 # weights: 507 initial value 113.722857 final value 94.312038 converged Fitting Repeat 3 # weights: 507 initial value 94.352546 iter 10 value 91.200167 iter 20 value 91.120763 iter 30 value 91.119871 final value 91.119852 converged Fitting Repeat 4 # weights: 507 initial value 114.238956 iter 10 value 94.432863 final value 94.409639 converged Fitting Repeat 5 # weights: 507 initial value 94.627131 final value 94.443243 converged Fitting Repeat 1 # weights: 103 initial value 99.875352 iter 10 value 94.486576 iter 20 value 94.358634 iter 30 value 89.272009 iter 40 value 88.861667 iter 50 value 81.310976 iter 60 value 81.042089 iter 70 value 80.187963 iter 80 value 79.673165 iter 90 value 79.566381 iter 100 value 79.555875 final value 79.555875 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 97.219848 iter 10 value 94.362790 iter 20 value 88.723050 iter 30 value 84.333056 iter 40 value 83.714393 iter 50 value 83.032801 iter 60 value 82.559990 iter 70 value 82.141161 iter 80 value 82.115161 final value 82.109848 converged Fitting Repeat 3 # weights: 103 initial value 105.462865 iter 10 value 94.247602 iter 20 value 91.911639 iter 30 value 90.155224 iter 40 value 90.003293 iter 50 value 89.687764 iter 60 value 89.654270 iter 70 value 83.595709 iter 80 value 81.651000 iter 90 value 80.940905 iter 100 value 80.620574 final value 80.620574 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 97.608145 iter 10 value 94.498108 iter 20 value 94.456631 iter 30 value 94.192138 iter 40 value 94.100496 iter 50 value 94.089710 iter 60 value 90.565517 iter 70 value 85.707302 iter 80 value 84.089555 iter 90 value 83.319011 iter 100 value 82.947491 final value 82.947491 stopped after 100 iterations Fitting Repeat 5 # weights: 103 initial value 102.903459 iter 10 value 94.345714 iter 20 value 91.852735 iter 30 value 91.622611 iter 40 value 91.609429 iter 50 value 91.543603 iter 60 value 89.909048 iter 70 value 89.665859 iter 80 value 89.653248 iter 90 value 84.824597 iter 100 value 82.043673 final value 82.043673 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 104.681755 iter 10 value 94.491295 iter 20 value 90.848493 iter 30 value 87.708713 iter 40 value 84.424483 iter 50 value 83.297340 iter 60 value 81.153910 iter 70 value 80.745441 iter 80 value 80.098612 iter 90 value 79.578689 iter 100 value 78.718202 final value 78.718202 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 106.440727 iter 10 value 94.600282 iter 20 value 94.496093 iter 30 value 93.453131 iter 40 value 86.586849 iter 50 value 81.219227 iter 60 value 80.882433 iter 70 value 80.830532 iter 80 value 80.236297 iter 90 value 79.278043 iter 100 value 78.342729 final value 78.342729 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 103.531361 iter 10 value 94.327390 iter 20 value 83.733387 iter 30 value 80.694578 iter 40 value 80.118269 iter 50 value 79.013878 iter 60 value 78.726741 iter 70 value 78.430701 iter 80 value 78.266164 iter 90 value 78.196963 iter 100 value 78.163892 final value 78.163892 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 124.111912 iter 10 value 94.774320 iter 20 value 94.492521 iter 30 value 94.450111 iter 40 value 90.426634 iter 50 value 87.491512 iter 60 value 83.984109 iter 70 value 83.110861 iter 80 value 80.286059 iter 90 value 79.636662 iter 100 value 79.302262 final value 79.302262 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 100.900414 iter 10 value 94.523369 iter 20 value 87.541078 iter 30 value 83.551638 iter 40 value 83.244965 iter 50 value 81.714642 iter 60 value 80.347883 iter 70 value 79.115939 iter 80 value 78.867187 iter 90 value 78.610470 iter 100 value 78.108743 final value 78.108743 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 111.447854 iter 10 value 94.498176 iter 20 value 87.807066 iter 30 value 84.738955 iter 40 value 81.989059 iter 50 value 81.646740 iter 60 value 80.512974 iter 70 value 79.925466 iter 80 value 79.309774 iter 90 value 78.869684 iter 100 value 78.715711 final value 78.715711 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 103.268297 iter 10 value 93.870369 iter 20 value 85.863260 iter 30 value 83.704617 iter 40 value 83.321019 iter 50 value 81.374938 iter 60 value 80.524486 iter 70 value 79.268380 iter 80 value 78.996711 iter 90 value 78.735916 iter 100 value 78.610060 final value 78.610060 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 128.850853 iter 10 value 95.151411 iter 20 value 92.733224 iter 30 value 84.765077 iter 40 value 83.846944 iter 50 value 83.171949 iter 60 value 82.408891 iter 70 value 81.441222 iter 80 value 80.804070 iter 90 value 80.669812 iter 100 value 80.341928 final value 80.341928 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 137.964872 iter 10 value 102.410921 iter 20 value 93.561749 iter 30 value 87.803687 iter 40 value 85.275935 iter 50 value 84.849923 iter 60 value 83.298221 iter 70 value 82.036324 iter 80 value 80.382269 iter 90 value 79.620921 iter 100 value 79.181852 final value 79.181852 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 107.818178 iter 10 value 94.331257 iter 20 value 85.370179 iter 30 value 83.974110 iter 40 value 82.181469 iter 50 value 81.435470 iter 60 value 80.882415 iter 70 value 80.542905 iter 80 value 80.420121 iter 90 value 79.983957 iter 100 value 79.369980 final value 79.369980 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 97.208992 iter 10 value 94.485872 iter 20 value 94.484271 final value 94.484216 converged Fitting Repeat 2 # weights: 103 initial value 98.222357 iter 10 value 94.445047 iter 20 value 94.443368 iter 30 value 94.209711 iter 40 value 94.057850 final value 94.057463 converged Fitting Repeat 3 # weights: 103 initial value 96.825515 iter 10 value 85.886915 iter 20 value 84.360516 iter 30 value 83.711348 iter 40 value 83.693636 iter 50 value 83.692995 final value 83.692908 converged Fitting Repeat 4 # weights: 103 initial value 107.516907 final value 94.485691 converged Fitting Repeat 5 # weights: 103 initial value 98.192624 final value 94.485706 converged Fitting Repeat 1 # weights: 305 initial value 98.732953 iter 10 value 94.488566 iter 20 value 94.461764 iter 30 value 85.989832 iter 40 value 83.841500 iter 50 value 83.837484 final value 83.837465 converged Fitting Repeat 2 # weights: 305 initial value 97.431106 iter 10 value 94.487686 iter 20 value 88.198190 iter 30 value 87.084555 iter 40 value 86.414308 iter 50 value 86.410757 iter 60 value 86.352975 iter 70 value 85.981420 iter 80 value 85.977839 iter 90 value 85.976955 iter 100 value 85.439898 final value 85.439898 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 117.901966 iter 10 value 94.490940 iter 20 value 90.005354 iter 30 value 87.816574 iter 40 value 87.363148 iter 50 value 86.098072 final value 86.097726 converged Fitting Repeat 4 # weights: 305 initial value 101.502605 iter 10 value 94.489052 iter 20 value 94.484341 iter 30 value 94.465590 iter 40 value 94.058668 iter 50 value 94.057759 final value 94.057735 converged Fitting Repeat 5 # weights: 305 initial value 102.069057 iter 10 value 94.316716 iter 20 value 94.312264 iter 30 value 94.162952 iter 40 value 94.052151 iter 50 value 90.747071 iter 60 value 83.498615 iter 70 value 83.498228 iter 80 value 83.481297 iter 90 value 83.405709 iter 100 value 82.037930 final value 82.037930 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 101.904178 iter 10 value 94.243513 iter 20 value 84.360088 iter 30 value 82.872026 iter 40 value 82.719176 iter 50 value 82.714605 iter 60 value 82.711565 iter 70 value 82.710310 iter 80 value 82.698027 iter 90 value 82.627078 iter 100 value 81.946016 final value 81.946016 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 107.921918 iter 10 value 94.491308 iter 20 value 94.473721 iter 30 value 83.644357 iter 40 value 81.434795 iter 50 value 80.542384 iter 60 value 80.535809 iter 70 value 79.706913 iter 80 value 78.976015 iter 90 value 78.970459 iter 100 value 78.829601 final value 78.829601 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 105.437692 iter 10 value 88.176255 iter 20 value 88.155781 iter 30 value 86.595596 iter 40 value 86.593952 iter 50 value 86.012017 iter 60 value 83.891898 iter 70 value 80.929806 iter 80 value 80.923929 iter 90 value 80.457491 iter 100 value 78.891608 final value 78.891608 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 99.162595 iter 10 value 94.451872 iter 20 value 94.428055 iter 30 value 93.131294 iter 40 value 84.063376 iter 50 value 82.008649 iter 60 value 81.410060 final value 81.404722 converged Fitting Repeat 5 # weights: 507 initial value 103.183152 iter 10 value 86.727472 iter 20 value 86.242854 iter 30 value 86.242404 iter 40 value 85.746920 iter 50 value 85.055172 iter 60 value 85.054964 final value 85.054784 converged Fitting Repeat 1 # weights: 103 initial value 97.963873 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 98.600049 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 112.216226 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 95.695489 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 98.980440 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 102.038039 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 96.845574 final value 94.467391 converged Fitting Repeat 3 # weights: 305 initial value 99.728300 final value 94.467391 converged Fitting Repeat 4 # weights: 305 initial value 100.645907 final value 94.484211 converged Fitting Repeat 5 # weights: 305 initial value 106.986964 iter 10 value 94.443270 final value 94.443265 converged Fitting Repeat 1 # weights: 507 initial value 100.120647 final value 94.484211 converged Fitting Repeat 2 # weights: 507 initial value 95.839811 final value 94.484211 converged Fitting Repeat 3 # weights: 507 initial value 119.332060 iter 10 value 94.484193 iter 20 value 94.473946 final value 94.467391 converged Fitting Repeat 4 # weights: 507 initial value 110.143646 final value 94.484211 converged Fitting Repeat 5 # weights: 507 initial value 101.132595 final value 94.484211 converged Fitting Repeat 1 # weights: 103 initial value 106.805845 iter 10 value 94.216542 iter 20 value 88.999559 iter 30 value 86.536928 iter 40 value 85.763336 iter 50 value 85.598314 iter 60 value 85.568085 iter 70 value 85.540754 iter 80 value 85.532692 final value 85.531180 converged Fitting Repeat 2 # weights: 103 initial value 97.770725 iter 10 value 94.312509 iter 20 value 92.894480 iter 30 value 91.855605 iter 40 value 90.972073 iter 50 value 89.503898 iter 60 value 84.784396 iter 70 value 83.724914 iter 80 value 83.632259 final value 83.632143 converged Fitting Repeat 3 # weights: 103 initial value 96.974923 iter 10 value 94.436481 iter 20 value 88.433863 iter 30 value 86.080701 iter 40 value 85.939250 iter 50 value 85.915561 iter 60 value 85.901254 final value 85.901121 converged Fitting Repeat 4 # weights: 103 initial value 103.375445 iter 10 value 94.414090 iter 20 value 93.394444 iter 30 value 91.140519 iter 40 value 90.922933 iter 50 value 87.071587 iter 60 value 86.066818 iter 70 value 85.976474 final value 85.976109 converged Fitting Repeat 5 # weights: 103 initial value 105.378256 iter 10 value 94.388109 iter 20 value 87.158800 iter 30 value 85.191258 iter 40 value 84.845468 iter 50 value 84.611920 iter 60 value 84.393099 final value 84.390892 converged Fitting Repeat 1 # weights: 305 initial value 103.551655 iter 10 value 94.411902 iter 20 value 87.051667 iter 30 value 86.931608 iter 40 value 86.746728 iter 50 value 85.630185 iter 60 value 85.528623 iter 70 value 85.481299 iter 80 value 84.943016 iter 90 value 84.682435 iter 100 value 83.805505 final value 83.805505 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 103.857140 iter 10 value 94.464563 iter 20 value 92.418309 iter 30 value 90.801266 iter 40 value 90.025946 iter 50 value 89.401807 iter 60 value 88.342890 iter 70 value 85.659786 iter 80 value 85.052392 iter 90 value 84.655696 iter 100 value 84.469741 final value 84.469741 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 112.629290 iter 10 value 94.030415 iter 20 value 87.754201 iter 30 value 85.523017 iter 40 value 84.630372 iter 50 value 84.176055 iter 60 value 83.928443 iter 70 value 83.589061 iter 80 value 82.789770 iter 90 value 82.725600 iter 100 value 82.720816 final value 82.720816 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 105.199160 iter 10 value 94.276131 iter 20 value 87.448354 iter 30 value 86.056309 iter 40 value 85.629647 iter 50 value 85.419760 iter 60 value 85.367235 iter 70 value 84.460561 iter 80 value 83.456713 iter 90 value 83.123562 iter 100 value 82.750484 final value 82.750484 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 103.706429 iter 10 value 94.657163 iter 20 value 94.513187 iter 30 value 91.882824 iter 40 value 89.652869 iter 50 value 88.230888 iter 60 value 87.532839 iter 70 value 86.349196 iter 80 value 86.022959 iter 90 value 85.950802 iter 100 value 85.725891 final value 85.725891 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 130.328278 iter 10 value 94.675631 iter 20 value 94.502176 iter 30 value 88.373722 iter 40 value 86.334681 iter 50 value 85.740291 iter 60 value 85.115870 iter 70 value 84.435585 iter 80 value 83.106097 iter 90 value 82.463729 iter 100 value 82.412180 final value 82.412180 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 124.068943 iter 10 value 94.835276 iter 20 value 91.064129 iter 30 value 88.162275 iter 40 value 86.811124 iter 50 value 86.552058 iter 60 value 84.780111 iter 70 value 83.779999 iter 80 value 82.784531 iter 90 value 82.378156 iter 100 value 82.163641 final value 82.163641 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 114.449115 iter 10 value 95.029859 iter 20 value 90.111447 iter 30 value 86.168836 iter 40 value 85.817231 iter 50 value 85.602029 iter 60 value 85.453223 iter 70 value 84.722059 iter 80 value 83.376951 iter 90 value 82.951984 iter 100 value 82.459103 final value 82.459103 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 109.445848 iter 10 value 94.763088 iter 20 value 94.546032 iter 30 value 94.374304 iter 40 value 93.235285 iter 50 value 92.973668 iter 60 value 92.261423 iter 70 value 92.169631 iter 80 value 90.563424 iter 90 value 89.235800 iter 100 value 88.552046 final value 88.552046 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 109.453235 iter 10 value 94.536032 iter 20 value 93.741214 iter 30 value 87.433783 iter 40 value 85.182810 iter 50 value 84.601065 iter 60 value 84.451202 iter 70 value 84.325465 iter 80 value 83.512071 iter 90 value 82.846998 iter 100 value 82.658584 final value 82.658584 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 96.044577 final value 94.469049 converged Fitting Repeat 2 # weights: 103 initial value 104.796753 final value 94.485789 converged Fitting Repeat 3 # weights: 103 initial value 103.866582 iter 10 value 94.485741 iter 20 value 94.484271 iter 30 value 94.410242 iter 40 value 93.773400 final value 93.773391 converged Fitting Repeat 4 # weights: 103 initial value 105.093618 final value 94.468621 converged Fitting Repeat 5 # weights: 103 initial value 102.705073 final value 94.485833 converged Fitting Repeat 1 # weights: 305 initial value 105.449434 iter 10 value 94.487764 iter 20 value 94.474553 iter 30 value 94.105455 final value 94.105351 converged Fitting Repeat 2 # weights: 305 initial value 96.080381 iter 10 value 94.487094 iter 20 value 92.401932 iter 30 value 89.467747 iter 40 value 88.826759 iter 50 value 88.735837 iter 60 value 88.470201 iter 70 value 88.464687 iter 80 value 88.355945 iter 90 value 88.195389 final value 88.195203 converged Fitting Repeat 3 # weights: 305 initial value 100.463763 iter 10 value 94.489021 iter 20 value 94.412983 iter 30 value 89.968774 iter 40 value 84.986865 iter 50 value 84.970061 final value 84.967988 converged Fitting Repeat 4 # weights: 305 initial value 98.717413 iter 10 value 94.488695 iter 20 value 94.444871 iter 30 value 87.049215 iter 40 value 86.931068 iter 50 value 86.612142 iter 60 value 86.507132 iter 70 value 86.372679 final value 86.370864 converged Fitting Repeat 5 # weights: 305 initial value 116.322344 iter 10 value 94.489260 iter 20 value 94.481924 iter 30 value 88.439729 iter 40 value 86.221683 iter 50 value 86.185597 iter 60 value 86.154435 iter 70 value 85.912452 iter 80 value 85.887882 final value 85.887826 converged Fitting Repeat 1 # weights: 507 initial value 101.654432 iter 10 value 94.490568 iter 20 value 94.347672 iter 30 value 92.715145 iter 40 value 90.441414 iter 50 value 86.219542 iter 60 value 86.195470 iter 70 value 86.188441 iter 80 value 86.186270 iter 90 value 86.163815 iter 100 value 85.419474 final value 85.419474 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 99.573763 iter 10 value 94.488912 iter 20 value 94.172677 iter 30 value 93.459234 iter 40 value 93.407239 iter 50 value 92.956781 iter 60 value 90.006269 iter 70 value 89.586930 iter 80 value 89.547021 final value 89.546285 converged Fitting Repeat 3 # weights: 507 initial value 109.574640 iter 10 value 94.160901 iter 20 value 92.421542 iter 30 value 85.853659 iter 40 value 84.917991 iter 50 value 81.981810 iter 60 value 81.720652 iter 70 value 81.719810 final value 81.718941 converged Fitting Repeat 4 # weights: 507 initial value 102.288497 iter 10 value 94.483995 iter 20 value 94.467964 iter 30 value 94.448466 iter 40 value 94.448275 final value 94.448233 converged Fitting Repeat 5 # weights: 507 initial value 101.098405 iter 10 value 94.492804 iter 20 value 94.198867 iter 30 value 86.546517 iter 40 value 86.334966 iter 50 value 84.547845 iter 60 value 84.154194 iter 70 value 84.151364 iter 80 value 84.145182 iter 80 value 84.145182 final value 84.145182 converged Fitting Repeat 1 # weights: 305 initial value 130.890093 iter 10 value 117.895204 iter 20 value 117.890544 iter 30 value 117.574090 iter 40 value 105.870816 iter 50 value 105.530126 final value 105.529989 converged Fitting Repeat 2 # weights: 305 initial value 129.099745 iter 10 value 117.763907 iter 20 value 117.616116 iter 30 value 114.535607 iter 40 value 111.492842 iter 50 value 111.474067 iter 60 value 111.298591 iter 70 value 111.291031 iter 80 value 111.289433 iter 90 value 111.288706 iter 100 value 111.282885 final value 111.282885 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 138.642476 iter 10 value 117.895067 iter 20 value 117.736993 iter 30 value 107.050886 iter 40 value 106.487387 iter 50 value 106.414671 iter 60 value 106.413531 iter 70 value 106.412385 iter 80 value 105.131342 iter 90 value 100.963500 iter 100 value 100.294022 final value 100.294022 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 134.767372 iter 10 value 117.894731 iter 20 value 111.447953 iter 30 value 104.639030 iter 40 value 103.231720 iter 50 value 102.870748 iter 60 value 102.009039 final value 101.432752 converged Fitting Repeat 5 # weights: 305 initial value 129.293701 iter 10 value 117.805977 iter 20 value 117.748070 iter 30 value 117.518048 final value 117.512041 converged svmRadial ranger Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases RUNIT TEST PROTOCOL -- Mon Apr 21 19:54:11 2025 *********************************************** Number of test functions: 7 Number of errors: 0 Number of failures: 0 1 Test Suite : HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures Number of test functions: 7 Number of errors: 0 Number of failures: 0 Warning messages: 1: `repeats` has no meaning for this resampling method. 2: executing %dopar% sequentially: no parallel backend registered > > > > > proc.time() user system elapsed 17.208 0.453 78.260
HPiP.Rcheck/HPiP-Ex.timings
name | user | system | elapsed | |
FSmethod | 17.938 | 0.870 | 19.023 | |
FreqInteractors | 0.076 | 0.004 | 0.080 | |
calculateAAC | 0.013 | 0.002 | 0.016 | |
calculateAutocor | 0.130 | 0.024 | 0.155 | |
calculateCTDC | 0.026 | 0.002 | 0.029 | |
calculateCTDD | 0.180 | 0.012 | 0.193 | |
calculateCTDT | 0.080 | 0.007 | 0.087 | |
calculateCTriad | 0.145 | 0.013 | 0.159 | |
calculateDC | 0.030 | 0.003 | 0.033 | |
calculateF | 0.100 | 0.005 | 0.105 | |
calculateKSAAP | 0.032 | 0.004 | 0.034 | |
calculateQD_Sm | 0.616 | 0.085 | 0.704 | |
calculateTC | 0.555 | 0.061 | 0.616 | |
calculateTC_Sm | 0.103 | 0.007 | 0.110 | |
corr_plot | 17.615 | 0.687 | 18.533 | |
enrichfindP | 0.167 | 0.030 | 9.456 | |
enrichfind_hp | 0.026 | 0.007 | 1.024 | |
enrichplot | 0.124 | 0.003 | 0.130 | |
filter_missing_values | 0.001 | 0.000 | 0.001 | |
getFASTA | 0.028 | 0.006 | 3.150 | |
getHPI | 0.000 | 0.000 | 0.004 | |
get_negativePPI | 0.001 | 0.000 | 0.001 | |
get_positivePPI | 0 | 0 | 0 | |
impute_missing_data | 0.000 | 0.001 | 0.001 | |
plotPPI | 0.024 | 0.002 | 0.026 | |
pred_ensembel | 5.470 | 0.115 | 5.178 | |
var_imp | 18.505 | 0.855 | 19.416 | |