Back to Multiple platform build/check report for BioC 3.21:   simplified   long
A[B]CDEFGHIJKLMNOPQRSTUVWXYZ

This page was generated on 2025-04-17 11:43 -0400 (Thu, 17 Apr 2025).

HostnameOSArch (*)R versionInstalled pkgs
nebbiolo1Linux (Ubuntu 24.04.1 LTS)x86_644.5.0 RC (2025-04-04 r88126) -- "How About a Twenty-Six" 4667
palomino7Windows Server 2022 Datacenterx644.5.0 RC (2025-04-04 r88126 ucrt) -- "How About a Twenty-Six" 4573
lconwaymacOS 12.7.1 Montereyx86_644.5.0 RC (2025-04-04 r88126) -- "How About a Twenty-Six" 4599
kjohnson3macOS 13.7.1 Venturaarm644.5.0 RC (2025-04-04 r88126) -- "How About a Twenty-Six" 4553
kunpeng2Linux (openEuler 24.03 LTS)aarch64R Under development (unstable) (2025-02-19 r87757) -- "Unsuffered Consequences" 4570
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

Package 252/2341HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
BufferedMatrix 1.72.0  (landing page)
Ben Bolstad
Snapshot Date: 2025-04-16 13:40 -0400 (Wed, 16 Apr 2025)
git_url: https://git.bioconductor.org/packages/BufferedMatrix
git_branch: RELEASE_3_21
git_last_commit: aa9e634
git_last_commit_date: 2025-04-15 09:39:39 -0400 (Tue, 15 Apr 2025)
nebbiolo1Linux (Ubuntu 24.04.1 LTS) / x86_64  OK    OK    OK  UNNEEDED, same version is already published
palomino7Windows Server 2022 Datacenter / x64  OK    OK    OK    OK  UNNEEDED, same version is already published
lconwaymacOS 12.7.1 Monterey / x86_64  OK    OK    WARNINGS    OK  UNNEEDED, same version is already published
kjohnson3macOS 13.7.1 Ventura / arm64  OK    OK    WARNINGS    OK  UNNEEDED, same version is already published
kunpeng2Linux (openEuler 24.03 LTS) / aarch64  OK    OK    OK  


CHECK results for BufferedMatrix on lconway

To the developers/maintainers of the BufferedMatrix package:
- Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/BufferedMatrix.git to reflect on this report. See Troubleshooting Build Report for more information.
- Use the following Renviron settings to reproduce errors and warnings.
- If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information.

raw results


Summary

Package: BufferedMatrix
Version: 1.72.0
Command: /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:BufferedMatrix.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings BufferedMatrix_1.72.0.tar.gz
StartedAt: 2025-04-16 20:02:10 -0400 (Wed, 16 Apr 2025)
EndedAt: 2025-04-16 20:03:03 -0400 (Wed, 16 Apr 2025)
EllapsedTime: 52.9 seconds
RetCode: 0
Status:   WARNINGS  
CheckDir: BufferedMatrix.Rcheck
Warnings: 1

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   /Library/Frameworks/R.framework/Resources/bin/R CMD check --install=check:BufferedMatrix.install-out.txt --library=/Library/Frameworks/R.framework/Resources/library --no-vignettes --timings BufferedMatrix_1.72.0.tar.gz
###
##############################################################################
##############################################################################


* using log directory ‘/Users/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck’
* using R version 4.5.0 RC (2025-04-04 r88126)
* using platform: x86_64-apple-darwin20
* R was compiled by
    Apple clang version 14.0.0 (clang-1400.0.29.202)
    GNU Fortran (GCC) 14.2.0
* running under: macOS Monterey 12.7.6
* using session charset: UTF-8
* using option ‘--no-vignettes’
* checking for file ‘BufferedMatrix/DESCRIPTION’ ... OK
* this is package ‘BufferedMatrix’ version ‘1.72.0’
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘BufferedMatrix’ can be installed ... WARNING
Found the following significant warnings:
  doubleBufferedMatrix.c:1580:7: warning: logical not is only applied to the left hand side of this bitwise operator [-Wlogical-not-parentheses]
See ‘/Users/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/00install.out’ for details.
* used C compiler: ‘Apple clang version 14.0.0 (clang-1400.0.29.202)’
* used SDK: ‘MacOSX11.3.sdk’
* checking installed package size ... OK
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking code files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... NOTE
checkRd: (-1) BufferedMatrix-class.Rd:209: Lost braces; missing escapes or markup?
   209 |     $x^{power}$ elementwise of the matrix
       |        ^
prepare_Rd: createBufferedMatrix.Rd:26: Dropping empty section \keyword
prepare_Rd: createBufferedMatrix.Rd:17-18: Dropping empty section \details
prepare_Rd: createBufferedMatrix.Rd:15-16: Dropping empty section \value
prepare_Rd: createBufferedMatrix.Rd:19-20: Dropping empty section \references
prepare_Rd: createBufferedMatrix.Rd:21-22: Dropping empty section \seealso
prepare_Rd: createBufferedMatrix.Rd:23-24: Dropping empty section \examples
* checking Rd metadata ... OK
* checking Rd cross-references ... OK
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking line endings in C/C++/Fortran sources/headers ... OK
* checking compiled code ... NOTE
Note: information on .o files is not available
* checking sizes of PDF files under ‘inst/doc’ ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... NONE
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
  Running ‘Rcodetesting.R’
  Running ‘c_code_level_tests.R’
  Running ‘objectTesting.R’
  Running ‘rawCalltesting.R’
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes ... OK
* checking running R code from vignettes ... SKIPPED
* checking re-building of vignette outputs ... SKIPPED
* checking PDF version of manual ... OK
* DONE

Status: 1 WARNING, 2 NOTEs
See
  ‘/Users/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/00check.log’
for details.


Installation output

BufferedMatrix.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   /Library/Frameworks/R.framework/Resources/bin/R CMD INSTALL BufferedMatrix
###
##############################################################################
##############################################################################


* installing to library ‘/Library/Frameworks/R.framework/Versions/4.5-x86_64/Resources/library’
* installing *source* package ‘BufferedMatrix’ ...
** this is package ‘BufferedMatrix’ version ‘1.72.0’
** using staged installation
** libs
using C compiler: ‘Apple clang version 14.0.0 (clang-1400.0.29.202)’
using SDK: ‘MacOSX11.3.sdk’
clang -arch x86_64 -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG   -I/opt/R/x86_64/include    -fPIC  -falign-functions=64 -Wall -g -O2  -c RBufferedMatrix.c -o RBufferedMatrix.o
clang -arch x86_64 -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG   -I/opt/R/x86_64/include    -fPIC  -falign-functions=64 -Wall -g -O2  -c doubleBufferedMatrix.c -o doubleBufferedMatrix.o
doubleBufferedMatrix.c:1580:7: warning: logical not is only applied to the left hand side of this bitwise operator [-Wlogical-not-parentheses]
  if (!(Matrix->readonly) & setting){
      ^                   ~
doubleBufferedMatrix.c:1580:7: note: add parentheses after the '!' to evaluate the bitwise operator first
  if (!(Matrix->readonly) & setting){
      ^
       (                           )
doubleBufferedMatrix.c:1580:7: note: add parentheses around left hand side expression to silence this warning
  if (!(Matrix->readonly) & setting){
      ^
      (                  )
doubleBufferedMatrix.c:3327:12: warning: unused function 'sort_double' [-Wunused-function]
static int sort_double(const double *a1,const double *a2){
           ^
2 warnings generated.
clang -arch x86_64 -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG   -I/opt/R/x86_64/include    -fPIC  -falign-functions=64 -Wall -g -O2  -c doubleBufferedMatrix_C_tests.c -o doubleBufferedMatrix_C_tests.o
clang -arch x86_64 -I"/Library/Frameworks/R.framework/Resources/include" -DNDEBUG   -I/opt/R/x86_64/include    -fPIC  -falign-functions=64 -Wall -g -O2  -c init_package.c -o init_package.o
clang -arch x86_64 -dynamiclib -Wl,-headerpad_max_install_names -undefined dynamic_lookup -L/Library/Frameworks/R.framework/Resources/lib -L/opt/R/x86_64/lib -o BufferedMatrix.so RBufferedMatrix.o doubleBufferedMatrix.o doubleBufferedMatrix_C_tests.o init_package.o -F/Library/Frameworks/R.framework/.. -framework R
installing to /Library/Frameworks/R.framework/Versions/4.5-x86_64/Resources/library/00LOCK-BufferedMatrix/00new/BufferedMatrix/libs
** R
** inst
** byte-compile and prepare package for lazy loading
Creating a new generic function for ‘rowMeans’ in package ‘BufferedMatrix’
Creating a new generic function for ‘rowSums’ in package ‘BufferedMatrix’
Creating a new generic function for ‘colMeans’ in package ‘BufferedMatrix’
Creating a new generic function for ‘colSums’ in package ‘BufferedMatrix’
Creating a generic function for ‘ncol’ from package ‘base’ in package ‘BufferedMatrix’
Creating a generic function for ‘nrow’ from package ‘base’ in package ‘BufferedMatrix’
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** checking absolute paths in shared objects and dynamic libraries
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (BufferedMatrix)

Tests output

BufferedMatrix.Rcheck/tests/c_code_level_tests.Rout


R version 4.5.0 RC (2025-04-04 r88126) -- "How About a Twenty-Six"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin20

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix", "BufferedMatrix", .libPaths());.C("dbm_c_tester",integer(1))

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

Adding Additional Column
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
0.000000 1.000000 2.000000 3.000000 4.000000 0.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 0.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 0.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 0.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 0.000000 

Reassigning values
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Resizing Buffers
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 3
Buffer Cols: 3
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Activating Row Buffer
In row mode: 1
1.000000 6.000000 11.000000 16.000000 21.000000 26.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 27.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 28.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 29.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 30.000000 

Squaring Last Column
1.000000 6.000000 11.000000 16.000000 21.000000 676.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 729.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 784.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 841.000000 
5.000000 10.000000 15.000000 20.000000 25.000000 900.000000 

Square rooting Last Row, then turing off Row Buffer
In row mode: 0
Checking on value that should be not be in column buffer2.236068 
1.000000 6.000000 11.000000 16.000000 21.000000 676.000000 
2.000000 7.000000 12.000000 17.000000 22.000000 729.000000 
3.000000 8.000000 13.000000 18.000000 23.000000 784.000000 
4.000000 9.000000 14.000000 19.000000 24.000000 841.000000 
2.236068 3.162278 3.872983 4.472136 5.000000 30.000000 

Single Indexing. Assign each value its square
1.000000 36.000000 121.000000 256.000000 441.000000 676.000000 
4.000000 49.000000 144.000000 289.000000 484.000000 729.000000 
9.000000 64.000000 169.000000 324.000000 529.000000 784.000000 
16.000000 81.000000 196.000000 361.000000 576.000000 841.000000 
25.000000 100.000000 225.000000 400.000000 625.000000 900.000000 

Resizing Buffers Smaller
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
1.000000 36.000000 121.000000 256.000000 441.000000 676.000000 
4.000000 49.000000 144.000000 289.000000 484.000000 729.000000 
9.000000 64.000000 169.000000 324.000000 529.000000 784.000000 
16.000000 81.000000 196.000000 361.000000 576.000000 841.000000 
25.000000 100.000000 225.000000 400.000000 625.000000 900.000000 

Activating Row Mode.
Resizing Buffers
Checking dimensions
Rows: 5
Cols: 6
Buffer Rows: 1
Buffer Cols: 1
Activating ReadOnly Mode.
The results of assignment is: 0
Printing matrix reversed.
900.000000 625.000000 400.000000 225.000000 100.000000 25.000000 
841.000000 576.000000 361.000000 196.000000 81.000000 16.000000 
784.000000 529.000000 324.000000 169.000000 64.000000 9.000000 
729.000000 484.000000 289.000000 144.000000 49.000000 -30.000000 
676.000000 441.000000 256.000000 121.000000 -20.000000 -10.000000 

[[1]]
[1] 0

> 
> proc.time()
   user  system elapsed 
  0.346   0.150   0.494 

BufferedMatrix.Rcheck/tests/objectTesting.Rout


R version 4.5.0 RC (2025-04-04 r88126) -- "How About a Twenty-Six"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin20

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> 
> ### this is used to control how many repetitions in something below
> ### higher values result in more checks.
> nreps <-100 ##20000
> 
> 
> ## test creation and some simple assignments and subsetting operations
> 
> ## first on single elements
> tmp <- createBufferedMatrix(1000,10)
> 
> tmp[10,5]
[1] 0
> tmp[10,5] <- 10
> tmp[10,5]
[1] 10
> tmp[10,5] <- 12.445
> tmp[10,5]
[1] 12.445
> 
> 
> 
> ## now testing accessing multiple elements
> tmp2 <- createBufferedMatrix(10,20)
> 
> 
> tmp2[3,1] <- 51.34
> tmp2[9,2] <- 9.87654
> tmp2[,1:2]
       [,1]    [,2]
 [1,]  0.00 0.00000
 [2,]  0.00 0.00000
 [3,] 51.34 0.00000
 [4,]  0.00 0.00000
 [5,]  0.00 0.00000
 [6,]  0.00 0.00000
 [7,]  0.00 0.00000
 [8,]  0.00 0.00000
 [9,]  0.00 9.87654
[10,]  0.00 0.00000
> tmp2[,-(3:20)]
       [,1]    [,2]
 [1,]  0.00 0.00000
 [2,]  0.00 0.00000
 [3,] 51.34 0.00000
 [4,]  0.00 0.00000
 [5,]  0.00 0.00000
 [6,]  0.00 0.00000
 [7,]  0.00 0.00000
 [8,]  0.00 0.00000
 [9,]  0.00 9.87654
[10,]  0.00 0.00000
> tmp2[3,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
[1,] 51.34    0    0    0    0    0    0    0    0     0     0     0     0
     [,14] [,15] [,16] [,17] [,18] [,19] [,20]
[1,]     0     0     0     0     0     0     0
> tmp2[-3,]
      [,1]    [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [2,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [3,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [4,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [5,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [6,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [7,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [8,]    0 9.87654    0    0    0    0    0    0    0     0     0     0     0
 [9,]    0 0.00000    0    0    0    0    0    0    0     0     0     0     0
      [,14] [,15] [,16] [,17] [,18] [,19] [,20]
 [1,]     0     0     0     0     0     0     0
 [2,]     0     0     0     0     0     0     0
 [3,]     0     0     0     0     0     0     0
 [4,]     0     0     0     0     0     0     0
 [5,]     0     0     0     0     0     0     0
 [6,]     0     0     0     0     0     0     0
 [7,]     0     0     0     0     0     0     0
 [8,]     0     0     0     0     0     0     0
 [9,]     0     0     0     0     0     0     0
> tmp2[2,1:3]
     [,1] [,2] [,3]
[1,]    0    0    0
> tmp2[3:9,1:3]
      [,1]    [,2] [,3]
[1,] 51.34 0.00000    0
[2,]  0.00 0.00000    0
[3,]  0.00 0.00000    0
[4,]  0.00 0.00000    0
[5,]  0.00 0.00000    0
[6,]  0.00 0.00000    0
[7,]  0.00 9.87654    0
> tmp2[-4,-4]
       [,1]    [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [2,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [3,] 51.34 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [4,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [5,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [6,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [7,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
 [8,]  0.00 9.87654    0    0    0    0    0    0    0     0     0     0     0
 [9,]  0.00 0.00000    0    0    0    0    0    0    0     0     0     0     0
      [,14] [,15] [,16] [,17] [,18] [,19]
 [1,]     0     0     0     0     0     0
 [2,]     0     0     0     0     0     0
 [3,]     0     0     0     0     0     0
 [4,]     0     0     0     0     0     0
 [5,]     0     0     0     0     0     0
 [6,]     0     0     0     0     0     0
 [7,]     0     0     0     0     0     0
 [8,]     0     0     0     0     0     0
 [9,]     0     0     0     0     0     0
> 
> ## now testing accessing/assigning multiple elements
> tmp3 <- createBufferedMatrix(10,10)
> 
> for (i in 1:10){
+   for (j in 1:10){
+     tmp3[i,j] <- (j-1)*10 + i
+   }
+ }
> 
> tmp3[2:4,2:4]
     [,1] [,2] [,3]
[1,]   12   22   32
[2,]   13   23   33
[3,]   14   24   34
> tmp3[c(-10),c(2:4,2:4,10,1,2,1:10,10:1)]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
 [1,]   11   21   31   11   21   31   91    1   11     1    11    21    31
 [2,]   12   22   32   12   22   32   92    2   12     2    12    22    32
 [3,]   13   23   33   13   23   33   93    3   13     3    13    23    33
 [4,]   14   24   34   14   24   34   94    4   14     4    14    24    34
 [5,]   15   25   35   15   25   35   95    5   15     5    15    25    35
 [6,]   16   26   36   16   26   36   96    6   16     6    16    26    36
 [7,]   17   27   37   17   27   37   97    7   17     7    17    27    37
 [8,]   18   28   38   18   28   38   98    8   18     8    18    28    38
 [9,]   19   29   39   19   29   39   99    9   19     9    19    29    39
      [,14] [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25]
 [1,]    41    51    61    71    81    91    91    81    71    61    51    41
 [2,]    42    52    62    72    82    92    92    82    72    62    52    42
 [3,]    43    53    63    73    83    93    93    83    73    63    53    43
 [4,]    44    54    64    74    84    94    94    84    74    64    54    44
 [5,]    45    55    65    75    85    95    95    85    75    65    55    45
 [6,]    46    56    66    76    86    96    96    86    76    66    56    46
 [7,]    47    57    67    77    87    97    97    87    77    67    57    47
 [8,]    48    58    68    78    88    98    98    88    78    68    58    48
 [9,]    49    59    69    79    89    99    99    89    79    69    59    49
      [,26] [,27] [,28] [,29]
 [1,]    31    21    11     1
 [2,]    32    22    12     2
 [3,]    33    23    13     3
 [4,]    34    24    14     4
 [5,]    35    25    15     5
 [6,]    36    26    16     6
 [7,]    37    27    17     7
 [8,]    38    28    18     8
 [9,]    39    29    19     9
> tmp3[-c(1:5),-c(6:10)]
     [,1] [,2] [,3] [,4] [,5]
[1,]    6   16   26   36   46
[2,]    7   17   27   37   47
[3,]    8   18   28   38   48
[4,]    9   19   29   39   49
[5,]   10   20   30   40   50
> 
> ## assignment of whole columns
> tmp3[,1] <- c(1:10*100.0)
> tmp3[,1:2] <- tmp3[,1:2]*100
> tmp3[,1:2] <- tmp3[,2:1]
> tmp3[,1:2]
      [,1]  [,2]
 [1,] 1100 1e+04
 [2,] 1200 2e+04
 [3,] 1300 3e+04
 [4,] 1400 4e+04
 [5,] 1500 5e+04
 [6,] 1600 6e+04
 [7,] 1700 7e+04
 [8,] 1800 8e+04
 [9,] 1900 9e+04
[10,] 2000 1e+05
> 
> 
> tmp3[,-1] <- tmp3[,1:9]
> tmp3[,1:10]
      [,1] [,2]  [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,] 1100 1100 1e+04   21   31   41   51   61   71    81
 [2,] 1200 1200 2e+04   22   32   42   52   62   72    82
 [3,] 1300 1300 3e+04   23   33   43   53   63   73    83
 [4,] 1400 1400 4e+04   24   34   44   54   64   74    84
 [5,] 1500 1500 5e+04   25   35   45   55   65   75    85
 [6,] 1600 1600 6e+04   26   36   46   56   66   76    86
 [7,] 1700 1700 7e+04   27   37   47   57   67   77    87
 [8,] 1800 1800 8e+04   28   38   48   58   68   78    88
 [9,] 1900 1900 9e+04   29   39   49   59   69   79    89
[10,] 2000 2000 1e+05   30   40   50   60   70   80    90
> 
> tmp3[,1:2] <- rep(1,10)
> tmp3[,1:2] <- rep(1,20)
> tmp3[,1:2] <- matrix(c(1:5),1,5)
> 
> tmp3[,-c(1:8)] <- matrix(c(1:5),1,5)
> 
> tmp3[1,] <- 1:10
> tmp3[1,]
     [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,]    1    2    3    4    5    6    7    8    9    10
> tmp3[-1,] <- c(1,2)
> tmp3[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    1    2    3    4    5    6    7    8    9    10
 [2,]    1    2    1    2    1    2    1    2    1     2
 [3,]    2    1    2    1    2    1    2    1    2     1
 [4,]    1    2    1    2    1    2    1    2    1     2
 [5,]    2    1    2    1    2    1    2    1    2     1
 [6,]    1    2    1    2    1    2    1    2    1     2
 [7,]    2    1    2    1    2    1    2    1    2     1
 [8,]    1    2    1    2    1    2    1    2    1     2
 [9,]    2    1    2    1    2    1    2    1    2     1
[10,]    1    2    1    2    1    2    1    2    1     2
> tmp3[-c(1:8),] <- matrix(c(1:5),1,5)
> tmp3[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]    1    2    3    4    5    6    7    8    9    10
 [2,]    1    2    1    2    1    2    1    2    1     2
 [3,]    2    1    2    1    2    1    2    1    2     1
 [4,]    1    2    1    2    1    2    1    2    1     2
 [5,]    2    1    2    1    2    1    2    1    2     1
 [6,]    1    2    1    2    1    2    1    2    1     2
 [7,]    2    1    2    1    2    1    2    1    2     1
 [8,]    1    2    1    2    1    2    1    2    1     2
 [9,]    1    3    5    2    4    1    3    5    2     4
[10,]    2    4    1    3    5    2    4    1    3     5
> 
> 
> tmp3[1:2,1:2] <- 5555.04
> tmp3[-(1:2),1:2] <- 1234.56789
> 
> 
> 
> ## testing accessors for the directory and prefix
> directory(tmp3)
[1] "/Users/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests"
> prefix(tmp3)
[1] "BM"
> 
> ## testing if we can remove these objects
> rm(tmp, tmp2, tmp3)
> gc()
         used (Mb) gc trigger (Mb) limit (Mb) max used (Mb)
Ncells 480829 25.7    1056567 56.5         NA   634460 33.9
Vcells 891038  6.8    8388608 64.0      98304  2108474 16.1
> 
> 
> 
> 
> ##
> ## checking reads
> ##
> 
> tmp2 <- createBufferedMatrix(10,20)
> 
> test.sample <- rnorm(10*20)
> 
> tmp2[1:10,1:20] <- test.sample
> 
> test.matrix <- matrix(test.sample,10,20)
> 
> ## testing reads
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   which.col <- sample(1:20,1)
+   if (tmp2[which.row,which.col] != test.matrix[which.row,which.col]){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> date()
[1] "Wed Apr 16 20:02:35 2025"
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> date()
[1] "Wed Apr 16 20:02:35 2025"
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,which.col] == test.matrix[which.row,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> 
> 
> RowMode(tmp2)
<pointer: 0x60000179c0c0>
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   which.col <- sample(1:20,1)
+   if (tmp2[which.row,which.col] != test.matrix[which.row,which.col]){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,5,replace=TRUE)
+   if (!all(tmp2[,which.col] == test.matrix[,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   if (!all(tmp2[which.row,] == test.matrix[which.row,])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> 
> 
> date()
[1] "Wed Apr 16 20:02:40 2025"
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col <- sample(1:20,5,replace=TRUE)
+   if (!all(tmp2[which.row,which.col] == test.matrix[which.row,which.col])){
+     cat("incorrect agreement")
+     break;
+   }
+ }
> date()
[1] "Wed Apr 16 20:02:42 2025"
> 
> ColMode(tmp2)
<pointer: 0x60000179c0c0>
> 
> 
> 
> ### Now testing assignments
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,1)
+ 
+   new.data <- rnorm(20)
+   tmp2[which.row,] <- new.data
+   test.matrix[which.row,] <- new.data
+   if (rep > 1){
+     if (!all(tmp2[prev.row,] == test.matrix[prev.row,])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+   
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,1)
+   new.data <- rnorm(10)
+   tmp2[,which.col] <- new.data
+   test.matrix[,which.col]<- new.data
+ 
+   if (rep > 1){
+     if (!all(tmp2[,prev.col] == test.matrix[,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.col <- which.col
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.col <- sample(1:20,5,replace=TRUE)
+   new.data <- matrix(rnorm(50),5,10)
+   tmp2[,which.col] <- new.data
+   test.matrix[,which.col]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[,prev.col] == test.matrix[,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.col <- which.col
+ }
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   new.data <- matrix(rnorm(50),5,10)
+   tmp2[which.row,] <- new.data
+   test.matrix[which.row,]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[prev.row,] == test.matrix[prev.row,])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+ }
> 
> 
> 
> 
> 
> for (rep in 1:nreps){
+   which.row <- sample(1:10,5,replace=TRUE)
+   which.col  <- sample(1:20,5,replace=TRUE)
+   new.data <- matrix(rnorm(25),5,5)
+   tmp2[which.row,which.col] <- new.data
+   test.matrix[which.row,which.col]<- new.data
+   
+   if (rep > 1){
+     if (!all(tmp2[prev.row,prev.col] == test.matrix[prev.row,prev.col])){
+       cat("incorrect agreement")
+       break;
+     }
+   }
+   prev.row <- which.row
+   prev.col <- which.col
+ }
> 
> 
> 
> 
> ###
> ###
> ### testing some more functions
> ###
> 
> 
> 
> ## duplication function
> tmp5 <- duplicate(tmp2)
> 
> # making sure really did copy everything.
> tmp5[1,1] <- tmp5[1,1] +100.00
> 
> if (tmp5[1,1] == tmp2[1,1]){
+   stop("Problem with duplication")
+ }
> 
> 
> 
> 
> ### testing elementwise applying of functions
> 
> tmp5[1:4,1:4]
            [,1]       [,2]       [,3]        [,4]
[1,] 100.4874223 -0.4894769  0.9882772 -1.34066602
[2,]  -0.5347806 -0.9874901 -0.4411741  0.04017049
[3,]   1.0633363 -1.4033784 -0.1020095 -1.65869702
[4,]   2.0822398  0.4964700  1.5262659 -0.98772409
> ewApply(tmp5,abs)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
            [,1]      [,2]      [,3]       [,4]
[1,] 100.4874223 0.4894769 0.9882772 1.34066602
[2,]   0.5347806 0.9874901 0.4411741 0.04017049
[3,]   1.0633363 1.4033784 0.1020095 1.65869702
[4,]   2.0822398 0.4964700 1.5262659 0.98772409
> ewApply(tmp5,sqrt)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
          [,1]      [,2]      [,3]      [,4]
[1,] 10.024341 0.6996262 0.9941213 1.1578713
[2,]  0.731287 0.9937253 0.6642094 0.2004258
[3,]  1.031182 1.1846428 0.3193893 1.2879041
[4,]  1.442997 0.7046063 1.2354214 0.9938431
> 
> my.function <- function(x,power){
+   (x+5)^power
+ }
> 
> ewApply(tmp5,my.function,power=2)
BufferedMatrix object
Matrix size:  10 20 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  1.6  Kilobytes.
> tmp5[1:4,1:4]
          [,1]     [,2]     [,3]     [,4]
[1,] 225.73084 32.48574 35.92949 37.91938
[2,]  32.84765 35.92474 32.08327 27.04443
[3,]  36.37516 38.24981 28.29590 39.53774
[4,]  41.51221 32.54253 38.88048 35.92615
> 
> 
> 
> ## testing functions that elementwise transform the matrix
> sqrt(tmp5)
<pointer: 0x6000017e4000>
> exp(tmp5)
<pointer: 0x6000017e4000>
> log(tmp5,2)
<pointer: 0x6000017e4000>
> pow(tmp5,2)
> 
> 
> 
> 
> 
> ## testing functions that apply to entire matrix
> Max(tmp5)
[1] 469.8292
> Min(tmp5)
[1] 53.4687
> mean(tmp5)
[1] 72.91253
> Sum(tmp5)
[1] 14582.51
> Var(tmp5)
[1] 871.0029
> 
> 
> ## testing functions applied to rows or columns
> 
> rowMeans(tmp5)
 [1] 89.51691 73.13609 73.99425 72.51945 69.64381 71.35789 68.03370 70.58423
 [9] 72.59346 67.74552
> rowSums(tmp5)
 [1] 1790.338 1462.722 1479.885 1450.389 1392.876 1427.158 1360.674 1411.685
 [9] 1451.869 1354.910
> rowVars(tmp5)
 [1] 8070.89172   60.61426   93.01311   65.83012   78.38191   63.51369
 [7]  115.09729   63.85419   84.68324   62.30296
> rowSd(tmp5)
 [1] 89.838142  7.785516  9.644330  8.113576  8.853356  7.969548 10.728340
 [8]  7.990882  9.202350  7.893223
> rowMax(tmp5)
 [1] 469.82916  86.45043  91.85633  86.40222  81.24092  89.45515  88.71462
 [8]  84.72936  88.93161  82.06667
> rowMin(tmp5)
 [1] 55.66275 56.28943 58.89421 54.57571 53.99120 57.91264 53.46870 54.92097
 [9] 58.81615 55.57883
> 
> colMeans(tmp5)
 [1] 115.04127  72.16959  67.92641  69.25957  73.91558  70.48515  70.63517
 [8]  71.68900  70.71330  69.47900  75.77236  68.06439  70.98183  69.47390
[15]  70.61094  68.08262  67.16826  71.49257  77.36696  67.92274
> colSums(tmp5)
 [1] 1150.4127  721.6959  679.2641  692.5957  739.1558  704.8515  706.3517
 [8]  716.8900  707.1330  694.7900  757.7236  680.6439  709.8183  694.7390
[15]  706.1094  680.8262  671.6826  714.9257  773.6696  679.2274
> colVars(tmp5)
 [1] 15579.44955   112.87656    48.22145    91.72782    57.37314    92.31291
 [7]    45.81415    84.92769    47.19011   110.52779    86.52456   155.27356
[13]    76.34607    96.22985    49.83400    77.42180    68.25784    87.03355
[19]    22.16988    47.76348
> colSd(tmp5)
 [1] 124.817665  10.624338   6.944167   9.577464   7.574506   9.607961
 [7]   6.768615   9.215622   6.869506  10.513220   9.301858  12.460881
[13]   8.737624   9.809681   7.059320   8.798966   8.261831   9.329177
[19]   4.708491   6.911113
> colMax(tmp5)
 [1] 469.82916  89.45515  80.92462  82.29262  84.45797  86.45043  77.78201
 [8]  85.86973  81.16867  85.55698  91.85633  88.93161  88.71462  88.05141
[15]  81.16133  82.74783  81.53058  87.74437  85.56297  80.48441
> colMin(tmp5)
 [1] 65.03734 54.57368 58.60809 54.92097 58.16695 56.90488 55.66275 54.57571
 [9] 60.19694 55.38160 63.51318 53.99120 55.57883 53.46870 58.93883 57.91264
[17] 55.44071 57.26737 69.72137 58.81615
> 
> 
> ### setting a random element to NA and then testing with na.rm=TRUE or na.rm=FALSE (The default)
> 
> 
> which.row <- sample(1:10,1,replace=TRUE)
> which.col  <- sample(1:20,1,replace=TRUE)
> 
> tmp5[which.row,which.col] <- NA
> 
> Max(tmp5)
[1] NA
> Min(tmp5)
[1] NA
> mean(tmp5)
[1] NA
> Sum(tmp5)
[1] NA
> Var(tmp5)
[1] NA
> 
> rowMeans(tmp5)
 [1] 89.51691 73.13609 73.99425 72.51945 69.64381 71.35789 68.03370 70.58423
 [9] 72.59346       NA
> rowSums(tmp5)
 [1] 1790.338 1462.722 1479.885 1450.389 1392.876 1427.158 1360.674 1411.685
 [9] 1451.869       NA
> rowVars(tmp5)
 [1] 8070.89172   60.61426   93.01311   65.83012   78.38191   63.51369
 [7]  115.09729   63.85419   84.68324   57.10761
> rowSd(tmp5)
 [1] 89.838142  7.785516  9.644330  8.113576  8.853356  7.969548 10.728340
 [8]  7.990882  9.202350  7.556958
> rowMax(tmp5)
 [1] 469.82916  86.45043  91.85633  86.40222  81.24092  89.45515  88.71462
 [8]  84.72936  88.93161        NA
> rowMin(tmp5)
 [1] 55.66275 56.28943 58.89421 54.57571 53.99120 57.91264 53.46870 54.92097
 [9] 58.81615       NA
> 
> colMeans(tmp5)
 [1] 115.04127  72.16959  67.92641  69.25957  73.91558  70.48515  70.63517
 [8]  71.68900  70.71330  69.47900  75.77236  68.06439        NA  69.47390
[15]  70.61094  68.08262  67.16826  71.49257  77.36696  67.92274
> colSums(tmp5)
 [1] 1150.4127  721.6959  679.2641  692.5957  739.1558  704.8515  706.3517
 [8]  716.8900  707.1330  694.7900  757.7236  680.6439        NA  694.7390
[15]  706.1094  680.8262  671.6826  714.9257  773.6696  679.2274
> colVars(tmp5)
 [1] 15579.44955   112.87656    48.22145    91.72782    57.37314    92.31291
 [7]    45.81415    84.92769    47.19011   110.52779    86.52456   155.27356
[13]          NA    96.22985    49.83400    77.42180    68.25784    87.03355
[19]    22.16988    47.76348
> colSd(tmp5)
 [1] 124.817665  10.624338   6.944167   9.577464   7.574506   9.607961
 [7]   6.768615   9.215622   6.869506  10.513220   9.301858  12.460881
[13]         NA   9.809681   7.059320   8.798966   8.261831   9.329177
[19]   4.708491   6.911113
> colMax(tmp5)
 [1] 469.82916  89.45515  80.92462  82.29262  84.45797  86.45043  77.78201
 [8]  85.86973  81.16867  85.55698  91.85633  88.93161        NA  88.05141
[15]  81.16133  82.74783  81.53058  87.74437  85.56297  80.48441
> colMin(tmp5)
 [1] 65.03734 54.57368 58.60809 54.92097 58.16695 56.90488 55.66275 54.57571
 [9] 60.19694 55.38160 63.51318 53.99120       NA 53.46870 58.93883 57.91264
[17] 55.44071 57.26737 69.72137 58.81615
> 
> Max(tmp5,na.rm=TRUE)
[1] 469.8292
> Min(tmp5,na.rm=TRUE)
[1] 53.4687
> mean(tmp5,na.rm=TRUE)
[1] 72.99964
> Sum(tmp5,na.rm=TRUE)
[1] 14526.93
> Var(tmp5,na.rm=TRUE)
[1] 873.8768
> 
> rowMeans(tmp5,na.rm=TRUE)
 [1] 89.51691 73.13609 73.99425 72.51945 69.64381 71.35789 68.03370 70.58423
 [9] 72.59346 68.38588
> rowSums(tmp5,na.rm=TRUE)
 [1] 1790.338 1462.722 1479.885 1450.389 1392.876 1427.158 1360.674 1411.685
 [9] 1451.869 1299.332
> rowVars(tmp5,na.rm=TRUE)
 [1] 8070.89172   60.61426   93.01311   65.83012   78.38191   63.51369
 [7]  115.09729   63.85419   84.68324   57.10761
> rowSd(tmp5,na.rm=TRUE)
 [1] 89.838142  7.785516  9.644330  8.113576  8.853356  7.969548 10.728340
 [8]  7.990882  9.202350  7.556958
> rowMax(tmp5,na.rm=TRUE)
 [1] 469.82916  86.45043  91.85633  86.40222  81.24092  89.45515  88.71462
 [8]  84.72936  88.93161  82.06667
> rowMin(tmp5,na.rm=TRUE)
 [1] 55.66275 56.28943 58.89421 54.57571 53.99120 57.91264 53.46870 54.92097
 [9] 58.81615 56.90488
> 
> colMeans(tmp5,na.rm=TRUE)
 [1] 115.04127  72.16959  67.92641  69.25957  73.91558  70.48515  70.63517
 [8]  71.68900  70.71330  69.47900  75.77236  68.06439  72.69327  69.47390
[15]  70.61094  68.08262  67.16826  71.49257  77.36696  67.92274
> colSums(tmp5,na.rm=TRUE)
 [1] 1150.4127  721.6959  679.2641  692.5957  739.1558  704.8515  706.3517
 [8]  716.8900  707.1330  694.7900  757.7236  680.6439  654.2394  694.7390
[15]  706.1094  680.8262  671.6826  714.9257  773.6696  679.2274
> colVars(tmp5,na.rm=TRUE)
 [1] 15579.44955   112.87656    48.22145    91.72782    57.37314    92.31291
 [7]    45.81415    84.92769    47.19011   110.52779    86.52456   155.27356
[13]    52.93763    96.22985    49.83400    77.42180    68.25784    87.03355
[19]    22.16988    47.76348
> colSd(tmp5,na.rm=TRUE)
 [1] 124.817665  10.624338   6.944167   9.577464   7.574506   9.607961
 [7]   6.768615   9.215622   6.869506  10.513220   9.301858  12.460881
[13]   7.275825   9.809681   7.059320   8.798966   8.261831   9.329177
[19]   4.708491   6.911113
> colMax(tmp5,na.rm=TRUE)
 [1] 469.82916  89.45515  80.92462  82.29262  84.45797  86.45043  77.78201
 [8]  85.86973  81.16867  85.55698  91.85633  88.93161  88.71462  88.05141
[15]  81.16133  82.74783  81.53058  87.74437  85.56297  80.48441
> colMin(tmp5,na.rm=TRUE)
 [1] 65.03734 54.57368 58.60809 54.92097 58.16695 56.90488 55.66275 54.57571
 [9] 60.19694 55.38160 63.51318 53.99120 64.03380 53.46870 58.93883 57.91264
[17] 55.44071 57.26737 69.72137 58.81615
> 
> # now set an entire row to NA
> 
> tmp5[which.row,] <- NA
> rowMeans(tmp5,na.rm=TRUE)
 [1] 89.51691 73.13609 73.99425 72.51945 69.64381 71.35789 68.03370 70.58423
 [9] 72.59346      NaN
> rowSums(tmp5,na.rm=TRUE)
 [1] 1790.338 1462.722 1479.885 1450.389 1392.876 1427.158 1360.674 1411.685
 [9] 1451.869    0.000
> rowVars(tmp5,na.rm=TRUE)
 [1] 8070.89172   60.61426   93.01311   65.83012   78.38191   63.51369
 [7]  115.09729   63.85419   84.68324         NA
> rowSd(tmp5,na.rm=TRUE)
 [1] 89.838142  7.785516  9.644330  8.113576  8.853356  7.969548 10.728340
 [8]  7.990882  9.202350        NA
> rowMax(tmp5,na.rm=TRUE)
 [1] 469.82916  86.45043  91.85633  86.40222  81.24092  89.45515  88.71462
 [8]  84.72936  88.93161        NA
> rowMin(tmp5,na.rm=TRUE)
 [1] 55.66275 56.28943 58.89421 54.57571 53.99120 57.91264 53.46870 54.92097
 [9] 58.81615       NA
> 
> 
> # now set an entire col to NA
> 
> 
> tmp5[,which.col] <- NA
> colMeans(tmp5,na.rm=TRUE)
 [1] 119.87212  73.40916  68.09123  69.11251  73.87835  71.99406  71.35008
 [8]  71.56224  70.18014  68.19210  75.07300  69.27734       NaN  70.10847
[15]  71.90785  68.37548  67.06823  71.81585  77.35323  68.41815
> colSums(tmp5,na.rm=TRUE)
 [1] 1078.8491  660.6825  612.8211  622.0126  664.9051  647.9466  642.1507
 [8]  644.0601  631.6213  613.7289  675.6570  623.4961    0.0000  630.9762
[15]  647.1706  615.3794  603.6141  646.3426  696.1791  615.7633
> colVars(tmp5,na.rm=TRUE)
 [1] 17264.33828   109.70005    53.94353   102.95047    64.52919    78.23765
 [7]    45.79112    95.36289    49.89101   105.71260    91.83760   158.13106
[13]          NA   103.72845    37.14126    86.13464    76.67750    96.73701
[19]    24.93900    50.97290
> colSd(tmp5,na.rm=TRUE)
 [1] 131.393829  10.473779   7.344626  10.146451   8.033006   8.845205
 [7]   6.766913   9.765392   7.063357  10.281663   9.583194  12.575017
[13]         NA  10.184717   6.094363   9.280875   8.756569   9.835497
[19]   4.993896   7.139531
> colMax(tmp5,na.rm=TRUE)
 [1] 469.82916  89.45515  80.92462  82.29262  84.45797  86.45043  77.78201
 [8]  85.86973  81.16867  85.55698  91.85633  88.93161      -Inf  88.05141
[15]  81.16133  82.74783  81.53058  87.74437  85.56297  80.48441
> colMin(tmp5,na.rm=TRUE)
 [1] 65.03734 54.57368 58.60809 54.92097 58.16695 60.53176 55.66275 54.57571
 [9] 60.19694 55.38160 63.51318 53.99120      Inf 53.46870 63.60809 57.91264
[17] 55.44071 57.26737 69.72137 58.81615
> 
> 
> 
> 
> copymatrix <- matrix(rnorm(200,150,15),10,20)
> 
> tmp5[1:10,1:20] <- copymatrix
> which.row <- 3
> which.col  <- 1
> cat(which.row," ",which.col,"\n")
3   1 
> tmp5[which.row,which.col] <- NA
> copymatrix[which.row,which.col] <- NA
> 
> rowVars(tmp5,na.rm=TRUE)
 [1] 273.1129 199.5935 224.3047 144.1712 159.4646 236.2578 267.4935 147.9843
 [9] 178.4909 216.0982
> apply(copymatrix,1,var,na.rm=TRUE)
 [1] 273.1129 199.5935 224.3047 144.1712 159.4646 236.2578 267.4935 147.9843
 [9] 178.4909 216.0982
> 
> 
> 
> copymatrix <- matrix(rnorm(200,150,15),10,20)
> 
> tmp5[1:10,1:20] <- copymatrix
> which.row <- 1
> which.col  <- 3
> cat(which.row," ",which.col,"\n")
1   3 
> tmp5[which.row,which.col] <- NA
> copymatrix[which.row,which.col] <- NA
> 
> colVars(tmp5,na.rm=TRUE)-apply(copymatrix,2,var,na.rm=TRUE)
 [1]  0.000000e+00  2.842171e-14  5.684342e-14  0.000000e+00 -1.136868e-13
 [6]  0.000000e+00 -5.684342e-14  0.000000e+00 -5.684342e-14 -2.842171e-14
[11]  0.000000e+00  1.705303e-13  2.842171e-14  2.273737e-13  5.684342e-14
[16] -5.684342e-14 -2.842171e-14  0.000000e+00 -1.705303e-13  1.989520e-13
> 
> 
> 
> 
> 
> 
> 
> 
> 
> 
> ## making sure these things agree
> ##
> ## first when there is no NA
> 
> 
> 
> agree.checks <- function(buff.matrix,r.matrix,err.tol=1e-10){
+ 
+   if (Max(buff.matrix,na.rm=TRUE) != max(r.matrix,na.rm=TRUE)){
+     stop("No agreement in Max")
+   }
+   
+ 
+   if (Min(buff.matrix,na.rm=TRUE) != min(r.matrix,na.rm=TRUE)){
+     stop("No agreement in Min")
+   }
+ 
+ 
+   if (abs(Sum(buff.matrix,na.rm=TRUE)- sum(r.matrix,na.rm=TRUE)) > err.tol){
+ 
+     cat(Sum(buff.matrix,na.rm=TRUE),"\n")
+     cat(sum(r.matrix,na.rm=TRUE),"\n")
+     cat(Sum(buff.matrix,na.rm=TRUE) - sum(r.matrix,na.rm=TRUE),"\n")
+     
+     stop("No agreement in Sum")
+   }
+   
+   if (abs(mean(buff.matrix,na.rm=TRUE) - mean(r.matrix,na.rm=TRUE)) > err.tol){
+     stop("No agreement in mean")
+   }
+   
+   
+   if(abs(Var(buff.matrix,na.rm=TRUE) - var(as.vector(r.matrix),na.rm=TRUE)) > err.tol){
+     stop("No agreement in Var")
+   }
+   
+   
+ 
+   if(any(abs(rowMeans(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,mean,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowMeans")
+   }
+   
+   
+   if(any(abs(colMeans(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,mean,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in colMeans")
+   }
+   
+   
+   if(any(abs(rowSums(buff.matrix,na.rm=TRUE)  -  apply(r.matrix,1,sum,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in rowSums")
+   }
+   
+   
+   if(any(abs(colSums(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,sum,na.rm=TRUE))> err.tol,na.rm=TRUE)){
+     stop("No agreement in colSums")
+   }
+   
+   ### this is to get around the fact that R doesn't like to compute NA on an entire vector of NA when 
+   ### computing variance
+   my.Var <- function(x,na.rm=FALSE){
+    if (all(is.na(x))){
+      return(NA)
+    } else {
+      var(x,na.rm=na.rm)
+    }
+ 
+   }
+   
+   if(any(abs(rowVars(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,my.Var,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowVars")
+   }
+   
+   
+   if(any(abs(colVars(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,my.Var,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in rowVars")
+   }
+ 
+ 
+   if(any(abs(rowMax(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,max,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMax")
+   }
+   
+ 
+   if(any(abs(colMax(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,max,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMax")
+   }
+   
+   
+   
+   if(any(abs(rowMin(buff.matrix,na.rm=TRUE) - apply(r.matrix,1,min,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMin")
+   }
+   
+ 
+   if(any(abs(colMin(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,min,na.rm=TRUE))  > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMin")
+   }
+ 
+   if(any(abs(colMedians(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,median,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in colMedian")
+   }
+ 
+   if(any(abs(colRanges(buff.matrix,na.rm=TRUE) - apply(r.matrix,2,range,na.rm=TRUE)) > err.tol,na.rm=TRUE)){
+     stop("No agreement in colRanges")
+   }
+ 
+ 
+   
+ }
> 
> 
> 
> 
> 
> 
> 
> 
> 
> for (rep in 1:20){
+   copymatrix <- matrix(rnorm(200,150,15),10,20)
+   
+   tmp5[1:10,1:20] <- copymatrix
+ 
+ 
+   agree.checks(tmp5,copymatrix)
+   
+   ## now lets assign some NA values and check agreement
+ 
+   which.row <- sample(1:10,1,replace=TRUE)
+   which.col  <- sample(1:20,1,replace=TRUE)
+   
+   cat(which.row," ",which.col,"\n")
+   
+   tmp5[which.row,which.col] <- NA
+   copymatrix[which.row,which.col] <- NA
+   
+   agree.checks(tmp5,copymatrix)
+ 
+   ## make an entire row NA
+   tmp5[which.row,] <- NA
+   copymatrix[which.row,] <- NA
+ 
+ 
+   agree.checks(tmp5,copymatrix)
+   
+   ### also make an entire col NA
+   tmp5[,which.col] <- NA
+   copymatrix[,which.col] <- NA
+ 
+   agree.checks(tmp5,copymatrix)
+ 
+   ### now make 1 element non NA with NA in the rest of row and column
+ 
+   tmp5[which.row,which.col] <- rnorm(1,150,15)
+   copymatrix[which.row,which.col] <- tmp5[which.row,which.col]
+ 
+   agree.checks(tmp5,copymatrix)
+ }
8   14 
9   13 
5   4 
8   8 
2   14 
10   1 
8   9 
2   19 
10   8 
1   7 
8   15 
4   12 
3   13 
4   4 
4   3 
6   2 
8   4 
3   1 
7   18 
3   20 
There were 50 or more warnings (use warnings() to see the first 50)
> 
> 
> ### now test 1 by n and n by 1 matrix
> 
> 
> err.tol <- 1e-12
> 
> rm(tmp5)
> 
> dataset1 <- rnorm(100)
> dataset2 <- rnorm(100)
> 
> tmp <- createBufferedMatrix(1,100)
> tmp[1,] <- dataset1
> 
> tmp2 <- createBufferedMatrix(100,1)
> tmp2[,1] <- dataset2
> 
> 
> 
> 
> 
> Max(tmp)
[1] 3.265485
> Min(tmp)
[1] -3.118541
> mean(tmp)
[1] 0.004922526
> Sum(tmp)
[1] 0.4922526
> Var(tmp)
[1] 1.334807
> 
> rowMeans(tmp)
[1] 0.004922526
> rowSums(tmp)
[1] 0.4922526
> rowVars(tmp)
[1] 1.334807
> rowSd(tmp)
[1] 1.155338
> rowMax(tmp)
[1] 3.265485
> rowMin(tmp)
[1] -3.118541
> 
> colMeans(tmp)
  [1]  0.900000646 -0.814543943 -1.025635487  0.330371881  0.645621939
  [6] -0.891102907  0.559618293  1.343324602  2.369427591  0.455736513
 [11] -0.803740467  0.173650823 -2.178759842 -1.542609233  0.636051455
 [16]  0.896994526  0.005640722  0.585781269 -3.047828705 -0.100926157
 [21] -2.197817279  0.549250216 -0.539209153 -0.155524247  1.686119411
 [26]  0.349510173 -2.134854735 -0.607884442  1.704378595 -0.083649962
 [31] -1.517484085  0.706154223  1.445554524  1.039977891  0.897074785
 [36] -1.531792301  0.194203617  0.059257288  1.943936190 -2.163005580
 [41]  0.106762249  0.107874172 -0.331562845  1.529872320 -0.174361828
 [46] -1.939880362 -0.539774287 -0.152126366  0.644194902  0.315464480
 [51]  0.992954242 -0.259536882 -0.158418363  1.303183283  0.772778493
 [56]  1.326827323  0.449192504  0.660006597 -1.580238076 -0.583138283
 [61]  0.378489171 -0.880411514 -1.665219879  0.176103375 -1.245784015
 [66] -0.820454601  2.100034420  0.256097846  0.627643008 -1.387125222
 [71]  0.937953701 -0.616563344 -0.057496594 -0.573722875  1.293772942
 [76]  0.700405224  0.507765371  1.019281163  0.167196207 -1.074655835
 [81]  0.827533722  0.668025128 -1.822231847  1.406838965 -0.389729005
 [86] -0.653167864  1.103932104 -3.118540841  0.408560142  3.265484643
 [91]  0.454792219 -0.421383488 -0.771661921 -0.251687165 -0.897941770
 [96]  0.450010335  0.383036857 -1.213068307 -0.218072349  0.806872549
> colSums(tmp)
  [1]  0.900000646 -0.814543943 -1.025635487  0.330371881  0.645621939
  [6] -0.891102907  0.559618293  1.343324602  2.369427591  0.455736513
 [11] -0.803740467  0.173650823 -2.178759842 -1.542609233  0.636051455
 [16]  0.896994526  0.005640722  0.585781269 -3.047828705 -0.100926157
 [21] -2.197817279  0.549250216 -0.539209153 -0.155524247  1.686119411
 [26]  0.349510173 -2.134854735 -0.607884442  1.704378595 -0.083649962
 [31] -1.517484085  0.706154223  1.445554524  1.039977891  0.897074785
 [36] -1.531792301  0.194203617  0.059257288  1.943936190 -2.163005580
 [41]  0.106762249  0.107874172 -0.331562845  1.529872320 -0.174361828
 [46] -1.939880362 -0.539774287 -0.152126366  0.644194902  0.315464480
 [51]  0.992954242 -0.259536882 -0.158418363  1.303183283  0.772778493
 [56]  1.326827323  0.449192504  0.660006597 -1.580238076 -0.583138283
 [61]  0.378489171 -0.880411514 -1.665219879  0.176103375 -1.245784015
 [66] -0.820454601  2.100034420  0.256097846  0.627643008 -1.387125222
 [71]  0.937953701 -0.616563344 -0.057496594 -0.573722875  1.293772942
 [76]  0.700405224  0.507765371  1.019281163  0.167196207 -1.074655835
 [81]  0.827533722  0.668025128 -1.822231847  1.406838965 -0.389729005
 [86] -0.653167864  1.103932104 -3.118540841  0.408560142  3.265484643
 [91]  0.454792219 -0.421383488 -0.771661921 -0.251687165 -0.897941770
 [96]  0.450010335  0.383036857 -1.213068307 -0.218072349  0.806872549
> colVars(tmp)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> colSd(tmp)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> colMax(tmp)
  [1]  0.900000646 -0.814543943 -1.025635487  0.330371881  0.645621939
  [6] -0.891102907  0.559618293  1.343324602  2.369427591  0.455736513
 [11] -0.803740467  0.173650823 -2.178759842 -1.542609233  0.636051455
 [16]  0.896994526  0.005640722  0.585781269 -3.047828705 -0.100926157
 [21] -2.197817279  0.549250216 -0.539209153 -0.155524247  1.686119411
 [26]  0.349510173 -2.134854735 -0.607884442  1.704378595 -0.083649962
 [31] -1.517484085  0.706154223  1.445554524  1.039977891  0.897074785
 [36] -1.531792301  0.194203617  0.059257288  1.943936190 -2.163005580
 [41]  0.106762249  0.107874172 -0.331562845  1.529872320 -0.174361828
 [46] -1.939880362 -0.539774287 -0.152126366  0.644194902  0.315464480
 [51]  0.992954242 -0.259536882 -0.158418363  1.303183283  0.772778493
 [56]  1.326827323  0.449192504  0.660006597 -1.580238076 -0.583138283
 [61]  0.378489171 -0.880411514 -1.665219879  0.176103375 -1.245784015
 [66] -0.820454601  2.100034420  0.256097846  0.627643008 -1.387125222
 [71]  0.937953701 -0.616563344 -0.057496594 -0.573722875  1.293772942
 [76]  0.700405224  0.507765371  1.019281163  0.167196207 -1.074655835
 [81]  0.827533722  0.668025128 -1.822231847  1.406838965 -0.389729005
 [86] -0.653167864  1.103932104 -3.118540841  0.408560142  3.265484643
 [91]  0.454792219 -0.421383488 -0.771661921 -0.251687165 -0.897941770
 [96]  0.450010335  0.383036857 -1.213068307 -0.218072349  0.806872549
> colMin(tmp)
  [1]  0.900000646 -0.814543943 -1.025635487  0.330371881  0.645621939
  [6] -0.891102907  0.559618293  1.343324602  2.369427591  0.455736513
 [11] -0.803740467  0.173650823 -2.178759842 -1.542609233  0.636051455
 [16]  0.896994526  0.005640722  0.585781269 -3.047828705 -0.100926157
 [21] -2.197817279  0.549250216 -0.539209153 -0.155524247  1.686119411
 [26]  0.349510173 -2.134854735 -0.607884442  1.704378595 -0.083649962
 [31] -1.517484085  0.706154223  1.445554524  1.039977891  0.897074785
 [36] -1.531792301  0.194203617  0.059257288  1.943936190 -2.163005580
 [41]  0.106762249  0.107874172 -0.331562845  1.529872320 -0.174361828
 [46] -1.939880362 -0.539774287 -0.152126366  0.644194902  0.315464480
 [51]  0.992954242 -0.259536882 -0.158418363  1.303183283  0.772778493
 [56]  1.326827323  0.449192504  0.660006597 -1.580238076 -0.583138283
 [61]  0.378489171 -0.880411514 -1.665219879  0.176103375 -1.245784015
 [66] -0.820454601  2.100034420  0.256097846  0.627643008 -1.387125222
 [71]  0.937953701 -0.616563344 -0.057496594 -0.573722875  1.293772942
 [76]  0.700405224  0.507765371  1.019281163  0.167196207 -1.074655835
 [81]  0.827533722  0.668025128 -1.822231847  1.406838965 -0.389729005
 [86] -0.653167864  1.103932104 -3.118540841  0.408560142  3.265484643
 [91]  0.454792219 -0.421383488 -0.771661921 -0.251687165 -0.897941770
 [96]  0.450010335  0.383036857 -1.213068307 -0.218072349  0.806872549
> colMedians(tmp)
  [1]  0.900000646 -0.814543943 -1.025635487  0.330371881  0.645621939
  [6] -0.891102907  0.559618293  1.343324602  2.369427591  0.455736513
 [11] -0.803740467  0.173650823 -2.178759842 -1.542609233  0.636051455
 [16]  0.896994526  0.005640722  0.585781269 -3.047828705 -0.100926157
 [21] -2.197817279  0.549250216 -0.539209153 -0.155524247  1.686119411
 [26]  0.349510173 -2.134854735 -0.607884442  1.704378595 -0.083649962
 [31] -1.517484085  0.706154223  1.445554524  1.039977891  0.897074785
 [36] -1.531792301  0.194203617  0.059257288  1.943936190 -2.163005580
 [41]  0.106762249  0.107874172 -0.331562845  1.529872320 -0.174361828
 [46] -1.939880362 -0.539774287 -0.152126366  0.644194902  0.315464480
 [51]  0.992954242 -0.259536882 -0.158418363  1.303183283  0.772778493
 [56]  1.326827323  0.449192504  0.660006597 -1.580238076 -0.583138283
 [61]  0.378489171 -0.880411514 -1.665219879  0.176103375 -1.245784015
 [66] -0.820454601  2.100034420  0.256097846  0.627643008 -1.387125222
 [71]  0.937953701 -0.616563344 -0.057496594 -0.573722875  1.293772942
 [76]  0.700405224  0.507765371  1.019281163  0.167196207 -1.074655835
 [81]  0.827533722  0.668025128 -1.822231847  1.406838965 -0.389729005
 [86] -0.653167864  1.103932104 -3.118540841  0.408560142  3.265484643
 [91]  0.454792219 -0.421383488 -0.771661921 -0.251687165 -0.897941770
 [96]  0.450010335  0.383036857 -1.213068307 -0.218072349  0.806872549
> colRanges(tmp)
          [,1]       [,2]      [,3]      [,4]      [,5]       [,6]      [,7]
[1,] 0.9000006 -0.8145439 -1.025635 0.3303719 0.6456219 -0.8911029 0.5596183
[2,] 0.9000006 -0.8145439 -1.025635 0.3303719 0.6456219 -0.8911029 0.5596183
         [,8]     [,9]     [,10]      [,11]     [,12]    [,13]     [,14]
[1,] 1.343325 2.369428 0.4557365 -0.8037405 0.1736508 -2.17876 -1.542609
[2,] 1.343325 2.369428 0.4557365 -0.8037405 0.1736508 -2.17876 -1.542609
         [,15]     [,16]       [,17]     [,18]     [,19]      [,20]     [,21]
[1,] 0.6360515 0.8969945 0.005640722 0.5857813 -3.047829 -0.1009262 -2.197817
[2,] 0.6360515 0.8969945 0.005640722 0.5857813 -3.047829 -0.1009262 -2.197817
         [,22]      [,23]      [,24]    [,25]     [,26]     [,27]      [,28]
[1,] 0.5492502 -0.5392092 -0.1555242 1.686119 0.3495102 -2.134855 -0.6078844
[2,] 0.5492502 -0.5392092 -0.1555242 1.686119 0.3495102 -2.134855 -0.6078844
        [,29]       [,30]     [,31]     [,32]    [,33]    [,34]     [,35]
[1,] 1.704379 -0.08364996 -1.517484 0.7061542 1.445555 1.039978 0.8970748
[2,] 1.704379 -0.08364996 -1.517484 0.7061542 1.445555 1.039978 0.8970748
         [,36]     [,37]      [,38]    [,39]     [,40]     [,41]     [,42]
[1,] -1.531792 0.1942036 0.05925729 1.943936 -2.163006 0.1067622 0.1078742
[2,] -1.531792 0.1942036 0.05925729 1.943936 -2.163006 0.1067622 0.1078742
          [,43]    [,44]      [,45]    [,46]      [,47]      [,48]     [,49]
[1,] -0.3315628 1.529872 -0.1743618 -1.93988 -0.5397743 -0.1521264 0.6441949
[2,] -0.3315628 1.529872 -0.1743618 -1.93988 -0.5397743 -0.1521264 0.6441949
         [,50]     [,51]      [,52]      [,53]    [,54]     [,55]    [,56]
[1,] 0.3154645 0.9929542 -0.2595369 -0.1584184 1.303183 0.7727785 1.326827
[2,] 0.3154645 0.9929542 -0.2595369 -0.1584184 1.303183 0.7727785 1.326827
         [,57]     [,58]     [,59]      [,60]     [,61]      [,62]    [,63]
[1,] 0.4491925 0.6600066 -1.580238 -0.5831383 0.3784892 -0.8804115 -1.66522
[2,] 0.4491925 0.6600066 -1.580238 -0.5831383 0.3784892 -0.8804115 -1.66522
         [,64]     [,65]      [,66]    [,67]     [,68]    [,69]     [,70]
[1,] 0.1761034 -1.245784 -0.8204546 2.100034 0.2560978 0.627643 -1.387125
[2,] 0.1761034 -1.245784 -0.8204546 2.100034 0.2560978 0.627643 -1.387125
         [,71]      [,72]       [,73]      [,74]    [,75]     [,76]     [,77]
[1,] 0.9379537 -0.6165633 -0.05749659 -0.5737229 1.293773 0.7004052 0.5077654
[2,] 0.9379537 -0.6165633 -0.05749659 -0.5737229 1.293773 0.7004052 0.5077654
        [,78]     [,79]     [,80]     [,81]     [,82]     [,83]    [,84]
[1,] 1.019281 0.1671962 -1.074656 0.8275337 0.6680251 -1.822232 1.406839
[2,] 1.019281 0.1671962 -1.074656 0.8275337 0.6680251 -1.822232 1.406839
         [,85]      [,86]    [,87]     [,88]     [,89]    [,90]     [,91]
[1,] -0.389729 -0.6531679 1.103932 -3.118541 0.4085601 3.265485 0.4547922
[2,] -0.389729 -0.6531679 1.103932 -3.118541 0.4085601 3.265485 0.4547922
          [,92]      [,93]      [,94]      [,95]     [,96]     [,97]     [,98]
[1,] -0.4213835 -0.7716619 -0.2516872 -0.8979418 0.4500103 0.3830369 -1.213068
[2,] -0.4213835 -0.7716619 -0.2516872 -0.8979418 0.4500103 0.3830369 -1.213068
          [,99]    [,100]
[1,] -0.2180723 0.8068725
[2,] -0.2180723 0.8068725
> 
> 
> Max(tmp2)
[1] 2.980951
> Min(tmp2)
[1] -2.440184
> mean(tmp2)
[1] 0.06614333
> Sum(tmp2)
[1] 6.614333
> Var(tmp2)
[1] 1.095156
> 
> rowMeans(tmp2)
  [1]  1.23623798  0.34825229  0.02585174 -1.21214494  0.69801538 -0.35978575
  [7] -0.49428550  0.76076207  0.31252729 -0.09403963 -0.35484580 -1.12830017
 [13] -0.97951848 -0.53587152  0.17099220 -0.35944960  0.93665708 -0.20924005
 [19] -0.28166061  0.13020751  0.59627581  1.05429086 -1.07900078  0.34807464
 [25] -0.97828768 -0.46333618 -1.06031386  2.41464354  1.38992535  1.78670874
 [31] -0.94370968 -1.70465625  0.09117013 -0.91580533  0.37059722  0.19437440
 [37] -0.16648985 -1.57666424 -1.59418260 -0.57420442 -1.80278671  0.35450891
 [43]  0.81644170 -0.32449722  0.88995866 -1.34314815 -1.82467128  1.60738805
 [49]  1.23674591  1.50749859 -0.94759555 -0.74493619 -0.25971186  2.98095143
 [55]  1.08735046  0.78892717  1.38587262  1.03637429 -0.99179857 -2.44018443
 [61]  1.21136721  0.94775438  0.18150614  0.67623796 -1.06428960  0.31847138
 [67]  0.45267734 -0.27413832 -1.33929970  0.92487869  1.44723155 -0.46676403
 [73] -1.20022938 -0.28453364  0.10270443  1.11666548  0.76291325  1.75165087
 [79]  1.53468522 -0.33073664 -0.86014424  1.49694750 -2.08757756  0.32099864
 [85]  2.08546548  0.54071487 -0.01392374  0.62315125 -0.63655339  0.21272410
 [91]  1.18096337 -0.91716402 -0.67066755  0.10170876  0.19049546  0.90690777
 [97] -0.06561103 -0.06739194 -0.09045586 -0.91746696
> rowSums(tmp2)
  [1]  1.23623798  0.34825229  0.02585174 -1.21214494  0.69801538 -0.35978575
  [7] -0.49428550  0.76076207  0.31252729 -0.09403963 -0.35484580 -1.12830017
 [13] -0.97951848 -0.53587152  0.17099220 -0.35944960  0.93665708 -0.20924005
 [19] -0.28166061  0.13020751  0.59627581  1.05429086 -1.07900078  0.34807464
 [25] -0.97828768 -0.46333618 -1.06031386  2.41464354  1.38992535  1.78670874
 [31] -0.94370968 -1.70465625  0.09117013 -0.91580533  0.37059722  0.19437440
 [37] -0.16648985 -1.57666424 -1.59418260 -0.57420442 -1.80278671  0.35450891
 [43]  0.81644170 -0.32449722  0.88995866 -1.34314815 -1.82467128  1.60738805
 [49]  1.23674591  1.50749859 -0.94759555 -0.74493619 -0.25971186  2.98095143
 [55]  1.08735046  0.78892717  1.38587262  1.03637429 -0.99179857 -2.44018443
 [61]  1.21136721  0.94775438  0.18150614  0.67623796 -1.06428960  0.31847138
 [67]  0.45267734 -0.27413832 -1.33929970  0.92487869  1.44723155 -0.46676403
 [73] -1.20022938 -0.28453364  0.10270443  1.11666548  0.76291325  1.75165087
 [79]  1.53468522 -0.33073664 -0.86014424  1.49694750 -2.08757756  0.32099864
 [85]  2.08546548  0.54071487 -0.01392374  0.62315125 -0.63655339  0.21272410
 [91]  1.18096337 -0.91716402 -0.67066755  0.10170876  0.19049546  0.90690777
 [97] -0.06561103 -0.06739194 -0.09045586 -0.91746696
> rowVars(tmp2)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> rowSd(tmp2)
  [1] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [26] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [51] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
 [76] NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
> rowMax(tmp2)
  [1]  1.23623798  0.34825229  0.02585174 -1.21214494  0.69801538 -0.35978575
  [7] -0.49428550  0.76076207  0.31252729 -0.09403963 -0.35484580 -1.12830017
 [13] -0.97951848 -0.53587152  0.17099220 -0.35944960  0.93665708 -0.20924005
 [19] -0.28166061  0.13020751  0.59627581  1.05429086 -1.07900078  0.34807464
 [25] -0.97828768 -0.46333618 -1.06031386  2.41464354  1.38992535  1.78670874
 [31] -0.94370968 -1.70465625  0.09117013 -0.91580533  0.37059722  0.19437440
 [37] -0.16648985 -1.57666424 -1.59418260 -0.57420442 -1.80278671  0.35450891
 [43]  0.81644170 -0.32449722  0.88995866 -1.34314815 -1.82467128  1.60738805
 [49]  1.23674591  1.50749859 -0.94759555 -0.74493619 -0.25971186  2.98095143
 [55]  1.08735046  0.78892717  1.38587262  1.03637429 -0.99179857 -2.44018443
 [61]  1.21136721  0.94775438  0.18150614  0.67623796 -1.06428960  0.31847138
 [67]  0.45267734 -0.27413832 -1.33929970  0.92487869  1.44723155 -0.46676403
 [73] -1.20022938 -0.28453364  0.10270443  1.11666548  0.76291325  1.75165087
 [79]  1.53468522 -0.33073664 -0.86014424  1.49694750 -2.08757756  0.32099864
 [85]  2.08546548  0.54071487 -0.01392374  0.62315125 -0.63655339  0.21272410
 [91]  1.18096337 -0.91716402 -0.67066755  0.10170876  0.19049546  0.90690777
 [97] -0.06561103 -0.06739194 -0.09045586 -0.91746696
> rowMin(tmp2)
  [1]  1.23623798  0.34825229  0.02585174 -1.21214494  0.69801538 -0.35978575
  [7] -0.49428550  0.76076207  0.31252729 -0.09403963 -0.35484580 -1.12830017
 [13] -0.97951848 -0.53587152  0.17099220 -0.35944960  0.93665708 -0.20924005
 [19] -0.28166061  0.13020751  0.59627581  1.05429086 -1.07900078  0.34807464
 [25] -0.97828768 -0.46333618 -1.06031386  2.41464354  1.38992535  1.78670874
 [31] -0.94370968 -1.70465625  0.09117013 -0.91580533  0.37059722  0.19437440
 [37] -0.16648985 -1.57666424 -1.59418260 -0.57420442 -1.80278671  0.35450891
 [43]  0.81644170 -0.32449722  0.88995866 -1.34314815 -1.82467128  1.60738805
 [49]  1.23674591  1.50749859 -0.94759555 -0.74493619 -0.25971186  2.98095143
 [55]  1.08735046  0.78892717  1.38587262  1.03637429 -0.99179857 -2.44018443
 [61]  1.21136721  0.94775438  0.18150614  0.67623796 -1.06428960  0.31847138
 [67]  0.45267734 -0.27413832 -1.33929970  0.92487869  1.44723155 -0.46676403
 [73] -1.20022938 -0.28453364  0.10270443  1.11666548  0.76291325  1.75165087
 [79]  1.53468522 -0.33073664 -0.86014424  1.49694750 -2.08757756  0.32099864
 [85]  2.08546548  0.54071487 -0.01392374  0.62315125 -0.63655339  0.21272410
 [91]  1.18096337 -0.91716402 -0.67066755  0.10170876  0.19049546  0.90690777
 [97] -0.06561103 -0.06739194 -0.09045586 -0.91746696
> 
> colMeans(tmp2)
[1] 0.06614333
> colSums(tmp2)
[1] 6.614333
> colVars(tmp2)
[1] 1.095156
> colSd(tmp2)
[1] 1.046497
> colMax(tmp2)
[1] 2.980951
> colMin(tmp2)
[1] -2.440184
> colMedians(tmp2)
[1] 0.09643944
> colRanges(tmp2)
          [,1]
[1,] -2.440184
[2,]  2.980951
> 
> dataset1 <- matrix(dataset1,1,100)
> 
> agree.checks(tmp,dataset1)
> 
> dataset2 <- matrix(dataset2,100,1)
> agree.checks(tmp2,dataset2)
>   
> 
> tmp <- createBufferedMatrix(10,10)
> 
> tmp[1:10,1:10] <- rnorm(100)
> colApply(tmp,sum)
 [1]  2.8707753  2.3542942 -0.0156536  3.8940996 -2.9030508 -2.8839184
 [7]  3.5825793  2.5435138 -3.3596376 -7.8670045
> colApply(tmp,quantile)[,1]
           [,1]
[1,] -1.3639511
[2,] -0.1246011
[3,]  0.2534275
[4,]  0.7684877
[5,]  1.5980999
> 
> rowApply(tmp,sum)
 [1] -0.8206037  2.5864622 -5.5141506 -2.9541872  0.2318675  4.8672333
 [7] -2.1434768  0.9883776  3.4429316 -2.4684566
> rowApply(tmp,rank)[1:10,]
      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
 [1,]   10    6    6    5    8    9    8    7    5     2
 [2,]    1   10    9    8    6    7    6    2    9     6
 [3,]    6    5   10    9    1    6    5    4    4     5
 [4,]    7    7    2    6    4    8   10    3    3    10
 [5,]    9    1    3    4    3    5    7    1   10     4
 [6,]    3    2    4    1    9    4    9    6    8     7
 [7,]    8    3    8   10    7    1    3   10    7     9
 [8,]    5    4    7    7   10   10    2    9    6     8
 [9,]    4    8    5    3    5    2    4    5    2     1
[10,]    2    9    1    2    2    3    1    8    1     3
> 
> tmp <- createBufferedMatrix(5,20)
> 
> tmp[1:5,1:20] <- rnorm(100)
> colApply(tmp,sum)
 [1] -0.7102844  1.6390250 -0.9767425 -4.0948395  1.2020904 -0.1335463
 [7]  2.9307199  0.8568458 -1.6596842  4.8506108  0.1286201  0.6748614
[13]  3.1776273 -0.7078690 -0.9725032  3.2300192  2.8999195 -0.5549498
[19] -1.1086943  1.5801020
> colApply(tmp,quantile)[,1]
           [,1]
[1,] -0.8210599
[2,] -0.4581670
[3,] -0.1304419
[4,]  0.1200241
[5,]  0.5793603
> 
> rowApply(tmp,sum)
[1]  4.9688885  6.7911988  2.1186302 -1.9659993  0.3386099
> rowApply(tmp,rank)[1:5,]
     [,1] [,2] [,3] [,4] [,5]
[1,]    9    5    5   16   10
[2,]   10   18   12   10    8
[3,]    3    7   11    3   16
[4,]    6    9    1    4    2
[5,]   13   11   17    2   17
> 
> 
> as.matrix(tmp)
           [,1]        [,2]        [,3]        [,4]       [,5]       [,6]
[1,] -0.1304419  0.25826404 -0.91482578 -0.30953366  0.3108101 -0.2736096
[2,] -0.4581670  1.43827266 -0.07002611  0.04813486  0.2059666  0.3195404
[3,] -0.8210599  0.26233214  0.20773630 -1.49329765  0.8926443 -0.8467546
[4,]  0.5793603 -0.28833293 -1.09723399 -0.97393904 -1.1151046  0.3907646
[5,]  0.1200241 -0.03151095  0.89760707 -1.36620405  0.9077740  0.2765130
           [,7]       [,8]        [,9]     [,10]      [,11]      [,12]
[1,]  1.2176440  0.8585927 -0.58719463 1.2438715  0.2983748 -0.9374857
[2,] -0.5618407 -0.9516414  0.99400919 1.3928956 -0.8129172  2.0919891
[3,]  1.0735615 -0.3953573 -0.49528873 1.5505135  0.8497666 -1.3321565
[4,] -0.3089695  1.3242657 -1.49248754 0.4512172 -0.9486418 -0.2402780
[5,]  1.5103246  0.0209861 -0.07872244 0.2121130  0.7420377  1.0927925
          [,13]       [,14]       [,15]      [,16]      [,17]      [,18]
[1,]  1.1380859 -0.30410222 -1.09773844  0.2788131  1.3601130  0.6901498
[2,]  0.7778959 -0.41281372  0.19449032  1.6656331  0.5606856 -0.5753068
[3,]  0.5035094  0.06754358 -0.31123570  1.7440517  0.6637429  0.7788245
[4,] -0.3688105  0.98512507  0.05619811  0.4879726  0.7535296 -0.4219425
[5,]  1.1269466 -1.04362168  0.18578249 -0.9464514 -0.4381516 -1.0266746
           [,19]      [,20]
[1,]  2.55889757 -0.6897960
[2,] -0.05590265  1.0003012
[3,] -0.98114655  0.2007007
[4,] -0.42041069  0.6817185
[5,] -2.21013200  0.3871775
> 
> 
> is.BufferedMatrix(tmp)
[1] TRUE
> 
> as.BufferedMatrix(as.matrix(tmp))
BufferedMatrix object
Matrix size:  5 20 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  800  bytes.
> 
> 
> 
> subBufferedMatrix(tmp,1:5,1:5)
BufferedMatrix object
Matrix size:  5 5 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  648  bytes.
Disk usage :  200  bytes.
> subBufferedMatrix(tmp,,5:8)
BufferedMatrix object
Matrix size:  5 4 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  562  bytes.
Disk usage :  160  bytes.
> subBufferedMatrix(tmp,1:3,)
BufferedMatrix object
Matrix size:  3 20 
Buffer size:  1 1 
Directory:    /Users/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests 
Prefix:       BM 
Mode: Col mode
Read Only: FALSE
Memory usage :  1.9  Kilobytes.
Disk usage :  480  bytes.
> 
> 
> rm(tmp)
> 
> 
> ###
> ### Testing colnames and rownames
> ###
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> 
> 
> colnames(tmp)
NULL
> rownames(tmp)
NULL
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> colnames(tmp)
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"
> rownames(tmp)
[1] "row1" "row2" "row3" "row4" "row5"
> 
> 
> tmp["row1",]
          col1        col2       col3       col4       col5       col6
row1 0.1857232 -0.03999773 -0.3137791 -0.1331084 -0.1766545 -0.8269361
          col7      col8       col9     col10     col11     col12      col13
row1 0.6663283 0.2058653 -0.5793023 -2.070444 -1.263679 0.5727048 -0.7589621
         col14     col15     col16      col17     col18     col19     col20
row1 -1.182125 0.4426878 0.2925755 0.07456334 -1.469865 -1.326541 0.6850307
> tmp[,"col10"]
          col10
row1 -2.0704436
row2  1.2122611
row3  0.3945629
row4  0.2928387
row5 -1.2480689
> tmp[c("row1","row5"),]
          col1        col2       col3       col4        col5       col6
row1 0.1857232 -0.03999773 -0.3137791 -0.1331084 -0.17665453 -0.8269361
row5 0.3345049 -1.34147186  0.4081422  0.9132034 -0.03282936  0.9232146
          col7       col8       col9     col10      col11      col12
row1 0.6663283  0.2058653 -0.5793023 -2.070444 -1.2636794  0.5727048
row5 0.2936218 -0.3455936 -1.0978143 -1.248069 -0.6315657 -0.2971025
           col13      col14      col15     col16      col17     col18     col19
row1 -0.75896212 -1.1821255  0.4426878 0.2925755 0.07456334 -1.469865 -1.326541
row5 -0.02936014 -0.4148039 -0.5949676 0.3401645 0.42089807 -1.816000 -1.430626
         col20
row1 0.6850307
row5 1.8962687
> tmp[,c("col6","col20")]
           col6      col20
row1 -0.8269361  0.6850307
row2 -1.1141362  0.5743916
row3 -1.8895567 -0.7466547
row4 -0.9081551 -1.2461406
row5  0.9232146  1.8962687
> tmp[c("row1","row5"),c("col6","col20")]
           col6     col20
row1 -0.8269361 0.6850307
row5  0.9232146 1.8962687
> 
> 
> 
> 
> tmp["row1",] <- rnorm(20,mean=10)
> tmp[,"col10"] <- rnorm(5,mean=30)
> tmp[c("row1","row5"),] <- rnorm(40,mean=50)
> tmp[,c("col6","col20")] <- rnorm(10,mean=75)
> tmp[c("row1","row5"),c("col6","col20")]  <- rnorm(4,mean=105)
> 
> tmp["row1",]
         col1     col2     col3     col4     col5     col6     col7     col8
row1 48.66883 49.51977 49.09331 50.77504 50.16384 103.8572 50.32731 49.96706
         col9    col10    col11    col12    col13    col14    col15    col16
row1 49.41958 50.13443 49.22278 51.09217 49.06354 50.54482 50.82847 50.67176
        col17   col18    col19    col20
row1 49.71919 50.1985 49.50364 105.7919
> tmp[,"col10"]
        col10
row1 50.13443
row2 28.98289
row3 29.11476
row4 29.65377
row5 51.26069
> tmp[c("row1","row5"),]
         col1     col2     col3     col4     col5     col6     col7     col8
row1 48.66883 49.51977 49.09331 50.77504 50.16384 103.8572 50.32731 49.96706
row5 51.62666 49.71454 50.12100 51.19129 51.37481 105.3346 51.24760 49.88817
         col9    col10    col11    col12    col13    col14    col15    col16
row1 49.41958 50.13443 49.22278 51.09217 49.06354 50.54482 50.82847 50.67176
row5 50.41252 51.26069 49.88600 51.17358 50.12581 49.08680 48.53695 49.82029
        col17    col18    col19    col20
row1 49.71919 50.19850 49.50364 105.7919
row5 49.28224 49.16863 49.13540 104.2239
> tmp[,c("col6","col20")]
          col6     col20
row1 103.85720 105.79188
row2  74.33038  75.39031
row3  74.99860  73.83641
row4  74.46555  74.61900
row5 105.33461 104.22387
> tmp[c("row1","row5"),c("col6","col20")]
         col6    col20
row1 103.8572 105.7919
row5 105.3346 104.2239
> 
> 
> subBufferedMatrix(tmp,c("row1","row5"),c("col6","col20"))[1:2,1:2]
         col6    col20
row1 103.8572 105.7919
row5 105.3346 104.2239
> 
> 
> 
> 
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> 
> tmp[,"col13"]
           col13
[1,] -0.32368491
[2,]  1.22748510
[3,] -0.08227227
[4,] -1.22266406
[5,]  0.63745946
> tmp[,c("col17","col7")]
           col17       col7
[1,] -1.06352499 -1.0958550
[2,] -1.24205231  1.9720638
[3,] -0.05319353  0.2041408
[4,]  0.81149858 -1.9097101
[5,]  0.12973026 -1.6565631
> 
> subBufferedMatrix(tmp,,c("col6","col20"))[,1:2]
           col6      col20
[1,]  1.2089044  0.4210351
[2,] -1.2575527 -1.0717583
[3,] -0.2490654  1.6523521
[4,]  1.7665821  0.8224219
[5,] -1.6877307 -0.8051725
> subBufferedMatrix(tmp,1,c("col6"))[,1]
         col1
[1,] 1.208904
> subBufferedMatrix(tmp,1:2,c("col6"))[,1]
          col6
[1,]  1.208904
[2,] -1.257553
> 
> 
> 
> tmp <- createBufferedMatrix(5,20)
> tmp[1:5,1:20] <- rnorm(100)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> 
> 
> 
> subBufferedMatrix(tmp,c("row3","row1"),)[,1:20]
           [,1]       [,2]      [,3]       [,4]       [,5]      [,6]     [,7]
row3 -0.4310801  0.0673019 0.5523573 -0.1413315 -0.7357485 -1.248905 1.116187
row1 -1.4638590 -0.4959349 0.2278072 -1.4575195  0.1074450 -1.519353 1.904903
          [,8]       [,9]       [,10]     [,11]     [,12]     [,13]
row3  1.309928  1.8288552  0.03083514 0.4682147 0.5306254  1.423141
row1 -1.004762 -0.3188941 -0.46912460 0.7562671 0.9142215 -1.237635
            [,14]     [,15]      [,16]      [,17]      [,18]       [,19]
row3 -0.995335079 0.8085754 -0.6017277 -0.3669150 -0.1657047 -0.80913431
row1  0.006582287 0.7225398 -1.6111488  0.9662225 -0.3829019  0.08039309
          [,20]
row3 -1.2817545
row1  0.9329337
> subBufferedMatrix(tmp,c("row2"),1:10)[,1:10]
          [,1]     [,2]      [,3]        [,4]       [,5]      [,6]     [,7]
row2 0.5695276 1.737502 0.5798756 -0.02158758 -0.4810668 0.7283682 0.889388
            [,8]       [,9]     [,10]
row2 -0.09105731 -0.5848374 -1.610938
> subBufferedMatrix(tmp,c("row5"),1:20)[,1:20]
           [,1]       [,2]      [,3]       [,4]      [,5]       [,6]      [,7]
row5 -0.1778027 0.08178937 -0.775288 -0.1566731 0.1053743 -0.4968531 0.3646987
          [,8]       [,9]     [,10]     [,11]      [,12]    [,13]      [,14]
row5 0.1120398 -0.6858043 0.8114833 -1.276407 -0.6526057 2.092882 -0.6505631
         [,15]      [,16]     [,17]     [,18]      [,19]      [,20]
row5 0.5222454 -0.4126948 -1.068601 0.5723779 0.08621407 -0.4419494
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> colnames(tmp)
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"
> rownames(tmp)
[1] "row1" "row2" "row3" "row4" "row5"
> 
> 
> colnames(tmp) <- NULL
> rownames(tmp) <- NULL
> 
> colnames(tmp)
NULL
> rownames(tmp)
NULL
> 
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> 
> dimnames(tmp)
[[1]]
[1] "row1" "row2" "row3" "row4" "row5"

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> dimnames(tmp) <- NULL
> 
> colnames(tmp) <- colnames(tmp,do.NULL=FALSE)
> dimnames(tmp)
[[1]]
NULL

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> 
> dimnames(tmp) <- NULL
> rownames(tmp) <- rownames(tmp,do.NULL=FALSE)
> dimnames(tmp)
[[1]]
[1] "row1" "row2" "row3" "row4" "row5"

[[2]]
NULL

> 
> dimnames(tmp) <- list(NULL,c(colnames(tmp,do.NULL=FALSE)))
> dimnames(tmp)
[[1]]
NULL

[[2]]
 [1] "col1"  "col2"  "col3"  "col4"  "col5"  "col6"  "col7"  "col8"  "col9" 
[10] "col10" "col11" "col12" "col13" "col14" "col15" "col16" "col17" "col18"
[19] "col19" "col20"

> 
> 
> 
> ###
> ### Testing logical indexing
> ###
> ###
> 
> tmp <- createBufferedMatrix(230,15)
> tmp[1:230,1:15] <- rnorm(230*15)
> x <-tmp[1:230,1:15]  
> 
> for (rep in 1:10){
+   which.cols <- sample(c(TRUE,FALSE),15,replace=T)
+   which.rows <- sample(c(TRUE,FALSE),230,replace=T)
+   
+   if (!all(tmp[which.rows,which.cols] == x[which.rows,which.cols])){
+     stop("No agreement when logical indexing\n")
+   }
+   
+   if (!all(subBufferedMatrix(tmp,,which.cols)[,1:sum(which.cols)] ==  x[,which.cols])){
+     stop("No agreement when logical indexing in subBufferedMatrix cols\n")
+   }
+   if (!all(subBufferedMatrix(tmp,which.rows,)[1:sum(which.rows),] ==  x[which.rows,])){
+     stop("No agreement when logical indexing in subBufferedMatrix rows\n")
+   }
+   
+   
+   if (!all(subBufferedMatrix(tmp,which.rows,which.cols)[1:sum(which.rows),1:sum(which.cols)]==  x[which.rows,which.cols])){
+     stop("No agreement when logical indexing in subBufferedMatrix rows and columns\n")
+   }
+ }
> 
> 
> ##
> ## Test the ReadOnlyMode
> ##
> 
> ReadOnlyMode(tmp)
<pointer: 0x6000017dc060>
> is.ReadOnlyMode(tmp)
[1] TRUE
> 
> filenames(tmp)
 [1] "/Users/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests/BMb89f11487a4e"
 [2] "/Users/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests/BMb89f2d559fbf"
 [3] "/Users/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests/BMb89f506acbd9"
 [4] "/Users/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests/BMb89f136d3cce"
 [5] "/Users/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests/BMb89f68b30258"
 [6] "/Users/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests/BMb89f405f151b"
 [7] "/Users/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests/BMb89f2262c0a1"
 [8] "/Users/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests/BMb89f1549baa" 
 [9] "/Users/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests/BMb89f59b7b694"
[10] "/Users/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests/BMb89f2c33dc90"
[11] "/Users/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests/BMb89fd5889c"  
[12] "/Users/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests/BMb89f42fbba31"
[13] "/Users/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests/BMb89f1c7d0952"
[14] "/Users/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests/BMb89f54eef51a"
[15] "/Users/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests/BMb89f141da986"
> 
> 
> ### testing coercion functions
> ###
> 
> tmp <- as(tmp,"matrix")
> tmp <- as(tmp,"BufferedMatrix")
> 
> 
> 
> ### testing whether can move storage from one location to another
> 
> MoveStorageDirectory(tmp,"NewDirectory",full.path=FALSE)
<pointer: 0x6000017180c0>
> MoveStorageDirectory(tmp,getwd(),full.path=TRUE)
<pointer: 0x6000017180c0>
Warning message:
In dir.create(new.directory) :
  '/Users/biocbuild/bbs-3.21-bioc/meat/BufferedMatrix.Rcheck/tests' already exists
> 
> 
> RowMode(tmp)
<pointer: 0x6000017180c0>
> rowMedians(tmp)
  [1]  0.162922778 -0.087364735 -0.468905250 -0.195390225  0.439234884
  [6] -0.150978465  0.399526737  0.113580082  0.457677304 -0.316546554
 [11]  0.121128466 -0.319130458  0.200030418 -0.044592486  0.119990698
 [16] -0.014221313  0.001024800 -0.195628068 -0.072477490 -0.619998784
 [21] -0.114054663  0.240553501  0.561064704 -0.566642312  0.483290647
 [26]  0.081987190  0.296821977 -0.022101251 -0.276597869  0.132915025
 [31] -0.106041417  0.429768526 -0.037602120 -0.161684093 -0.003219661
 [36] -0.362215065  0.386385735 -0.574699152  0.314145360  0.336747897
 [41] -0.326315057 -0.037674996 -0.147164097 -0.042629611 -0.057790326
 [46] -0.253418568 -0.029825443 -0.243665913  0.240145923  0.100780407
 [51] -0.417721737  0.308447422  0.166258016  0.137254254  0.081687096
 [56]  0.003165056  0.398283329 -0.242551216  0.260994658 -0.282501484
 [61] -0.137392783  0.095067602 -0.587934284 -0.535452577  0.179681745
 [66] -0.016594919 -0.042105913 -0.198403071  0.420575158 -0.544854171
 [71]  0.356231495  0.589357228  0.449589328 -0.004468308  0.235337648
 [76]  0.400480020  0.255299953 -0.436797679  0.714765377 -0.082731238
 [81]  0.138823174  0.129271523 -0.318810929  0.128808924  0.603859601
 [86] -0.130699503  0.013017466 -0.067040107 -0.281866275  0.129742853
 [91]  0.051553388  0.182380884  0.597936856  0.114611857 -0.358197161
 [96] -0.021360170 -0.080082950  0.225248202 -0.028934377  0.029737042
[101]  0.042319066 -0.002010346 -0.211039923  0.221421139 -0.104904091
[106]  0.727395389 -0.441479304  0.381459455  0.369950748 -0.297888324
[111]  0.027523735  0.407494763 -0.052975506  0.729846503 -0.215061874
[116]  0.188809359 -0.280262281  0.139466128 -0.162721441  0.023151226
[121]  0.459011009 -0.285525092 -0.507763928  0.379979953  0.036095966
[126] -0.019282208  0.201861682  0.748792810  0.227426250  0.018391410
[131] -0.016062142  0.365289501 -0.241883955  0.092690049 -0.045351044
[136]  0.543128980  0.631938270 -0.326917165  0.446294330 -0.125983589
[141]  0.124554536  0.151937613  0.307379445  0.534266490  0.083588668
[146]  0.477376043 -0.081257135 -0.272181474 -0.161694781  0.147290197
[151] -0.048174001  0.001786158 -0.339954749  0.241399164 -0.371326275
[156]  0.188361488  0.259321010  0.357431764 -0.061411728 -0.126097795
[161]  0.143981581 -0.171690555  0.030477079  0.033360418  0.262812250
[166] -0.299095302  0.132770073 -0.470607332  0.155408250 -0.291608645
[171] -0.373518395  0.403880887  0.124624431 -0.314272037  0.356038611
[176] -0.017359489 -0.671564303 -0.017304933  0.179669577 -0.314953102
[181]  0.280072513  0.731311128  0.531078649  0.547232086 -0.495798421
[186]  0.466011512  0.257092554 -0.448527592 -0.476254714  0.009803555
[191]  0.269042562 -0.112021128  0.026630901 -0.095868471  0.180760806
[196]  0.046600944  0.234222071  0.006635628 -0.338189361  0.287634154
[201] -0.004309991 -0.436848862 -0.441069049  0.154986373 -0.451046531
[206] -0.033982118  0.411229610  0.130335898  0.468906700 -0.568884293
[211]  0.442138741  0.049289674  0.142050947  0.364645624  0.206104740
[216] -0.411504032  0.052514792  0.297602524  0.075748851 -0.252349224
[221]  0.444190977 -0.115317323  0.536924066  0.259367006  0.029018584
[226]  0.283438905  0.143652921  0.037918500  0.269835911  0.481591748
> 
> proc.time()
   user  system elapsed 
  2.673  16.097  19.565 

BufferedMatrix.Rcheck/tests/rawCalltesting.Rout


R version 4.5.0 RC (2025-04-04 r88126) -- "How About a Twenty-Six"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin20

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> prefix <- "dbmtest"
> directory <- getwd()
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x600002bf4000>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x600002bf4000>
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 10
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x600002bf4000>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 10
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

<pointer: 0x600002bf4000>
> rm(P)
> 
> #P <- .Call("R_bm_Destroy",P)
> #.Call("R_bm_Destroy",P)
> #.Call("R_bm_Test_C",P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,5)
[1] TRUE
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 0
Buffer Rows: 1
Buffer Cols: 1

Printing Values






<pointer: 0x600002b94000>
> .Call("R_bm_AddColumn",P)
<pointer: 0x600002b94000>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 1
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 

<pointer: 0x600002b94000>
> .Call("R_bm_AddColumn",P)
<pointer: 0x600002b94000>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x600002b94000>
> rm(P)
> 
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,5)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x600002bfc060>
> .Call("R_bm_AddColumn",P)
<pointer: 0x600002bfc060>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x600002bfc060>
> 
> .Call("R_bm_ResizeBuffer",P,5,5)
<pointer: 0x600002bfc060>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x600002bfc060>
> 
> .Call("R_bm_RowMode",P)
<pointer: 0x600002bfc060>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x600002bfc060>
> 
> .Call("R_bm_ColMode",P)
<pointer: 0x600002bfc060>
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 2
Buffer Rows: 5
Buffer Cols: 5

Printing Values
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 
0.000000 0.000000 

<pointer: 0x600002bfc060>
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x600002b90000>
> .Call("R_bm_SetPrefix",P,"BufferedMatrixFile")
<pointer: 0x600002b90000>
> .Call("R_bm_AddColumn",P)
<pointer: 0x600002b90000>
> .Call("R_bm_AddColumn",P)
<pointer: 0x600002b90000>
> dir(pattern="BufferedMatrixFile")
[1] "BufferedMatrixFilebff63c9d285f" "BufferedMatrixFilebff66aa22aa2"
> rm(P)
> dir(pattern="BufferedMatrixFile")
[1] "BufferedMatrixFilebff63c9d285f" "BufferedMatrixFilebff66aa22aa2"
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x600002bec0c0>
> .Call("R_bm_AddColumn",P)
<pointer: 0x600002bec0c0>
> .Call("R_bm_ReadOnlyModeToggle",P)
<pointer: 0x600002bec0c0>
> .Call("R_bm_isReadOnlyMode",P)
[1] TRUE
> .Call("R_bm_ReadOnlyModeToggle",P)
<pointer: 0x600002bec0c0>
> .Call("R_bm_isReadOnlyMode",P)
[1] FALSE
> .Call("R_bm_isRowMode",P)
[1] FALSE
> .Call("R_bm_RowMode",P)
<pointer: 0x600002bec0c0>
> .Call("R_bm_isRowMode",P)
[1] TRUE
> .Call("R_bm_ColMode",P)
<pointer: 0x600002bec0c0>
> .Call("R_bm_isRowMode",P)
[1] FALSE
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_setRows",P,10)
[1] TRUE
> .Call("R_bm_AddColumn",P)
<pointer: 0x600002bec240>
> .Call("R_bm_AddColumn",P)
<pointer: 0x600002bec240>
> 
> .Call("R_bm_getSize",P)
[1] 10  2
> .Call("R_bm_getBufferSize",P)
[1] 1 1
> .Call("R_bm_ResizeBuffer",P,5,5)
<pointer: 0x600002bec240>
> 
> .Call("R_bm_getBufferSize",P)
[1] 5 5
> .Call("R_bm_ResizeBuffer",P,-1,5)
<pointer: 0x600002bec240>
> rm(P)
> 
> 
> P <- .Call("R_bm_Create",prefix,directory,1,1)
> .Call("R_bm_Test_C",P)
RBufferedMatrix
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Assigning Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 6.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x600002bec420>
> .Call("R_bm_getValue",P,3,3)
[1] 6
> 
> .Call("R_bm_getValue",P,100000,10000)
[1] NA
> .Call("R_bm_setValue",P,3,3,12345.0)
[1] TRUE
> .Call("R_bm_Test_C2",P)
Checking dimensions
Rows: 5
Cols: 5
Buffer Rows: 1
Buffer Cols: 1

Printing Values
0.000000 1.000000 2.000000 3.000000 4.000000 
1.000000 2.000000 3.000000 4.000000 5.000000 
2.000000 3.000000 4.000000 5.000000 6.000000 
3.000000 4.000000 5.000000 12345.000000 7.000000 
4.000000 5.000000 6.000000 7.000000 8.000000 

<pointer: 0x600002bec420>
> rm(P)
> 
> proc.time()
   user  system elapsed 
  0.326   0.157   0.474 

BufferedMatrix.Rcheck/tests/Rcodetesting.Rout


R version 4.5.0 RC (2025-04-04 r88126) -- "How About a Twenty-Six"
Copyright (C) 2025 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin20

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(BufferedMatrix);library.dynam("BufferedMatrix","BufferedMatrix", .libPaths());

Attaching package: 'BufferedMatrix'

The following objects are masked from 'package:base':

    colMeans, colSums, rowMeans, rowSums

> 
> Temp <- createBufferedMatrix(100)
> dim(Temp)
[1] 100   0
> buffer.dim(Temp)
[1] 1 1
> 
> 
> proc.time()
   user  system elapsed 
  0.329   0.098   0.410 

Example timings