Back to Multiple platform build/check report for BioC 3.20: simplified long |
|
This page was generated on 2025-04-02 19:35 -0400 (Wed, 02 Apr 2025).
Hostname | OS | Arch (*) | R version | Installed pkgs |
---|---|---|---|---|
nebbiolo2 | Linux (Ubuntu 24.04.1 LTS) | x86_64 | 4.4.3 (2025-02-28) -- "Trophy Case" | 4764 |
palomino8 | Windows Server 2022 Datacenter | x64 | 4.4.3 (2025-02-28 ucrt) -- "Trophy Case" | 4495 |
merida1 | macOS 12.7.5 Monterey | x86_64 | 4.4.3 (2025-02-28) -- "Trophy Case" | 4522 |
kjohnson1 | macOS 13.6.6 Ventura | arm64 | 4.4.3 (2025-02-28) -- "Trophy Case" | 4449 |
taishan | Linux (openEuler 24.03 LTS) | aarch64 | 4.4.3 (2025-02-28) -- "Trophy Case" | 4426 |
Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X |
Package 979/2289 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
HPiP 1.12.0 (landing page) Matineh Rahmatbakhsh
| nebbiolo2 | Linux (Ubuntu 24.04.1 LTS) / x86_64 | OK | OK | OK | ![]() | ||||||||
palomino8 | Windows Server 2022 Datacenter / x64 | OK | OK | OK | OK | ![]() | ||||||||
merida1 | macOS 12.7.5 Monterey / x86_64 | OK | OK | OK | OK | ![]() | ||||||||
kjohnson1 | macOS 13.6.6 Ventura / arm64 | OK | OK | OK | OK | ![]() | ||||||||
taishan | Linux (openEuler 24.03 LTS) / aarch64 | OK | OK | OK | ||||||||||
To the developers/maintainers of the HPiP package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. - If 'R CMD check' started to fail recently on the Linux builder(s) over a missing dependency, add the missing dependency to 'Suggests:' in your DESCRIPTION file. See Renviron.bioc for more information. - See Martin Grigorov's blog post for how to debug Linux ARM64 related issues on a x86_64 host. |
Package: HPiP |
Version: 1.12.0 |
Command: /home/biocbuild/R/R/bin/R CMD check --install=check:HPiP.install-out.txt --library=/home/biocbuild/R/R/site-library --no-vignettes --timings HPiP_1.12.0.tar.gz |
StartedAt: 2025-04-01 07:24:24 -0000 (Tue, 01 Apr 2025) |
EndedAt: 2025-04-01 07:32:04 -0000 (Tue, 01 Apr 2025) |
EllapsedTime: 460.4 seconds |
RetCode: 0 |
Status: OK |
CheckDir: HPiP.Rcheck |
Warnings: 0 |
############################################################################## ############################################################################## ### ### Running command: ### ### /home/biocbuild/R/R/bin/R CMD check --install=check:HPiP.install-out.txt --library=/home/biocbuild/R/R/site-library --no-vignettes --timings HPiP_1.12.0.tar.gz ### ############################################################################## ############################################################################## * using log directory ‘/home/biocbuild/bbs-3.20-bioc/meat/HPiP.Rcheck’ * using R version 4.4.3 (2025-02-28) * using platform: aarch64-unknown-linux-gnu * R was compiled by aarch64-unknown-linux-gnu-gcc (GCC) 14.2.0 GNU Fortran (GCC) 14.2.0 * running under: openEuler 24.03 (LTS) * using session charset: UTF-8 * using option ‘--no-vignettes’ * checking for file ‘HPiP/DESCRIPTION’ ... OK * checking extension type ... Package * this is package ‘HPiP’ version ‘1.12.0’ * package encoding: UTF-8 * checking package namespace information ... OK * checking package dependencies ... OK * checking if this is a source package ... OK * checking if there is a namespace ... OK * checking for hidden files and directories ... OK * checking for portable file names ... OK * checking for sufficient/correct file permissions ... OK * checking whether package ‘HPiP’ can be installed ... OK * checking installed package size ... OK * checking package directory ... OK * checking ‘build’ directory ... OK * checking DESCRIPTION meta-information ... NOTE License stub is invalid DCF. * checking top-level files ... OK * checking for left-over files ... OK * checking index information ... OK * checking package subdirectories ... OK * checking code files for non-ASCII characters ... OK * checking R files for syntax errors ... OK * checking whether the package can be loaded ... OK * checking whether the package can be loaded with stated dependencies ... OK * checking whether the package can be unloaded cleanly ... OK * checking whether the namespace can be loaded with stated dependencies ... OK * checking whether the namespace can be unloaded cleanly ... OK * checking loading without being on the library search path ... OK * checking dependencies in R code ... OK * checking S3 generic/method consistency ... OK * checking replacement functions ... OK * checking foreign function calls ... OK * checking R code for possible problems ... OK * checking Rd files ... NOTE checkRd: (-1) getHPI.Rd:29: Lost braces 29 | then the Kronecker product is the code{(pm × qn)} block matrix | ^ * checking Rd metadata ... OK * checking Rd cross-references ... NOTE Package unavailable to check Rd xrefs: ‘ftrCOOL’ * checking for missing documentation entries ... OK * checking for code/documentation mismatches ... OK * checking Rd \usage sections ... OK * checking Rd contents ... OK * checking for unstated dependencies in examples ... OK * checking contents of ‘data’ directory ... OK * checking data for non-ASCII characters ... OK * checking data for ASCII and uncompressed saves ... OK * checking R/sysdata.rda ... OK * checking files in ‘vignettes’ ... OK * checking examples ... OK Examples with CPU (user + system) or elapsed time > 5s user system elapsed var_imp 34.302 0.420 34.770 corr_plot 33.933 0.235 34.227 FSmethod 33.668 0.351 34.085 pred_ensembel 17.478 0.633 16.902 enrichfindP 0.466 0.048 20.251 getFASTA 0.130 0.004 5.829 * checking for unstated dependencies in ‘tests’ ... OK * checking tests ... Running ‘runTests.R’ OK * checking for unstated dependencies in vignettes ... OK * checking package vignettes ... OK * checking running R code from vignettes ... SKIPPED * checking re-building of vignette outputs ... SKIPPED * checking PDF version of manual ... OK * DONE Status: 3 NOTEs See ‘/home/biocbuild/bbs-3.20-bioc/meat/HPiP.Rcheck/00check.log’ for details.
HPiP.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /home/biocbuild/R/R/bin/R CMD INSTALL HPiP ### ############################################################################## ############################################################################## * installing to library ‘/home/biocbuild/R/R-4.4.3/site-library’ * installing *source* package ‘HPiP’ ... ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (HPiP)
HPiP.Rcheck/tests/runTests.Rout
R version 4.4.3 (2025-02-28) -- "Trophy Case" Copyright (C) 2025 The R Foundation for Statistical Computing Platform: aarch64-unknown-linux-gnu R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > BiocGenerics:::testPackage('HPiP') No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE No results to show Please make sure that the organism is correct or set significant = FALSE avNNet Loading required package: ggplot2 Loading required package: lattice Fitting Repeat 1 # weights: 103 initial value 94.658152 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 97.900503 final value 94.466823 converged Fitting Repeat 3 # weights: 103 initial value 101.964828 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 106.724659 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 104.557261 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 120.795888 iter 10 value 93.216798 final value 93.216667 converged Fitting Repeat 2 # weights: 305 initial value 103.396639 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 98.105474 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 110.800163 final value 94.466823 converged Fitting Repeat 5 # weights: 305 initial value 96.559368 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 108.999708 iter 10 value 94.478287 iter 10 value 94.478287 iter 10 value 94.478287 final value 94.478287 converged Fitting Repeat 2 # weights: 507 initial value 115.891845 final value 94.476191 converged Fitting Repeat 3 # weights: 507 initial value 112.633583 final value 94.484211 converged Fitting Repeat 4 # weights: 507 initial value 96.514774 final value 94.409363 converged Fitting Repeat 5 # weights: 507 initial value 106.626449 final value 94.484211 converged Fitting Repeat 1 # weights: 103 initial value 104.015973 iter 10 value 94.481863 iter 20 value 94.385333 iter 30 value 94.379535 iter 40 value 90.971830 iter 50 value 90.865141 iter 60 value 90.152736 iter 70 value 90.074660 iter 80 value 86.539127 iter 90 value 86.167476 iter 100 value 86.050263 final value 86.050263 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 96.898522 iter 10 value 93.586302 iter 20 value 88.116501 iter 30 value 87.909212 iter 40 value 86.899281 iter 50 value 86.601415 iter 60 value 86.568892 final value 86.560299 converged Fitting Repeat 3 # weights: 103 initial value 112.414701 iter 10 value 94.331660 iter 20 value 87.870672 iter 30 value 86.558883 iter 40 value 85.991829 iter 50 value 85.773285 iter 60 value 85.612620 iter 70 value 85.570332 final value 85.558613 converged Fitting Repeat 4 # weights: 103 initial value 100.044707 iter 10 value 94.486769 iter 20 value 92.959461 iter 30 value 91.563102 iter 40 value 91.171160 iter 50 value 91.160050 final value 91.160046 converged Fitting Repeat 5 # weights: 103 initial value 105.543970 iter 10 value 94.488529 iter 20 value 94.430441 iter 30 value 94.397421 iter 40 value 89.155588 iter 50 value 86.913758 iter 60 value 85.622368 iter 70 value 85.338837 iter 80 value 85.175221 iter 90 value 85.098662 iter 100 value 85.071500 final value 85.071500 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 115.564836 iter 10 value 94.496587 iter 20 value 94.476282 iter 30 value 93.172594 iter 40 value 88.905850 iter 50 value 88.094722 iter 60 value 87.632651 iter 70 value 85.588679 iter 80 value 83.555455 iter 90 value 83.340779 iter 100 value 83.241633 final value 83.241633 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 121.393076 iter 10 value 94.480094 iter 20 value 93.391147 iter 30 value 91.109155 iter 40 value 89.243189 iter 50 value 87.680710 iter 60 value 87.045677 iter 70 value 86.524065 iter 80 value 84.452317 iter 90 value 83.013864 iter 100 value 82.835422 final value 82.835422 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 100.322664 iter 10 value 94.295576 iter 20 value 88.782104 iter 30 value 88.133335 iter 40 value 88.013859 iter 50 value 87.885873 iter 60 value 86.969612 iter 70 value 85.452244 iter 80 value 84.549955 iter 90 value 84.175791 iter 100 value 83.730442 final value 83.730442 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 106.780176 iter 10 value 96.631439 iter 20 value 90.339163 iter 30 value 88.964829 iter 40 value 88.181854 iter 50 value 86.512795 iter 60 value 84.085669 iter 70 value 83.878421 iter 80 value 83.636269 iter 90 value 83.599122 iter 100 value 83.474100 final value 83.474100 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 102.533631 iter 10 value 94.535653 iter 20 value 90.676662 iter 30 value 88.240535 iter 40 value 87.913344 iter 50 value 87.802322 iter 60 value 86.771819 iter 70 value 85.473990 iter 80 value 84.558170 iter 90 value 83.153668 iter 100 value 82.614368 final value 82.614368 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 127.685195 iter 10 value 94.915704 iter 20 value 94.602911 iter 30 value 92.714091 iter 40 value 89.479962 iter 50 value 86.834647 iter 60 value 85.607474 iter 70 value 84.888814 iter 80 value 84.355936 iter 90 value 84.226810 iter 100 value 83.871784 final value 83.871784 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 122.132583 iter 10 value 94.385720 iter 20 value 91.866531 iter 30 value 91.059604 iter 40 value 90.011621 iter 50 value 89.635006 iter 60 value 85.559815 iter 70 value 84.986423 iter 80 value 84.719775 iter 90 value 84.242266 iter 100 value 83.973160 final value 83.973160 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 107.280855 iter 10 value 94.095110 iter 20 value 88.925371 iter 30 value 85.202450 iter 40 value 83.849412 iter 50 value 83.296175 iter 60 value 82.943276 iter 70 value 82.721129 iter 80 value 82.525680 iter 90 value 82.253484 iter 100 value 82.115748 final value 82.115748 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 111.133163 iter 10 value 94.524833 iter 20 value 93.822579 iter 30 value 86.294770 iter 40 value 84.852585 iter 50 value 83.822187 iter 60 value 82.472047 iter 70 value 82.297864 iter 80 value 82.258491 iter 90 value 82.119934 iter 100 value 81.957703 final value 81.957703 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 114.955525 iter 10 value 95.239918 iter 20 value 85.948321 iter 30 value 85.242602 iter 40 value 84.736383 iter 50 value 84.133556 iter 60 value 83.027336 iter 70 value 82.623948 iter 80 value 82.458000 iter 90 value 82.213718 iter 100 value 82.063734 final value 82.063734 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 103.760289 final value 94.485782 converged Fitting Repeat 2 # weights: 103 initial value 94.494319 final value 94.485978 converged Fitting Repeat 3 # weights: 103 initial value 96.992724 final value 94.485794 converged Fitting Repeat 4 # weights: 103 initial value 97.312641 final value 94.468340 converged Fitting Repeat 5 # weights: 103 initial value 94.664779 final value 94.485741 converged Fitting Repeat 1 # weights: 305 initial value 95.426571 iter 10 value 94.487428 iter 20 value 94.459986 iter 30 value 91.857166 iter 40 value 91.570942 iter 50 value 91.569574 final value 91.569572 converged Fitting Repeat 2 # weights: 305 initial value 97.205665 iter 10 value 94.488855 iter 20 value 94.484232 final value 94.484215 converged Fitting Repeat 3 # weights: 305 initial value 97.709699 iter 10 value 94.471734 iter 20 value 94.467693 final value 94.467003 converged Fitting Repeat 4 # weights: 305 initial value 96.232845 iter 10 value 94.098454 iter 20 value 93.440724 iter 30 value 93.439996 iter 40 value 93.439737 final value 93.439606 converged Fitting Repeat 5 # weights: 305 initial value 94.735397 iter 10 value 93.127588 iter 20 value 93.039395 iter 30 value 93.026888 iter 40 value 92.163744 iter 50 value 90.225772 final value 90.217431 converged Fitting Repeat 1 # weights: 507 initial value 110.915988 iter 10 value 93.224337 iter 20 value 93.108920 iter 30 value 90.304379 final value 90.302197 converged Fitting Repeat 2 # weights: 507 initial value 94.841024 iter 10 value 93.267266 iter 20 value 88.780840 iter 30 value 87.646297 iter 40 value 87.277744 iter 50 value 85.059533 iter 60 value 84.094774 iter 70 value 84.012737 final value 84.012234 converged Fitting Repeat 3 # weights: 507 initial value 96.288905 iter 10 value 94.475059 iter 20 value 94.389707 iter 30 value 90.700474 iter 40 value 88.131655 iter 50 value 87.878993 iter 60 value 87.878364 final value 87.878271 converged Fitting Repeat 4 # weights: 507 initial value 104.663554 iter 10 value 94.492495 iter 20 value 94.484280 iter 30 value 94.355308 iter 40 value 87.510987 iter 50 value 87.395250 final value 87.395133 converged Fitting Repeat 5 # weights: 507 initial value 113.893340 iter 10 value 94.475051 iter 20 value 90.566286 iter 30 value 84.599794 iter 40 value 84.596686 iter 50 value 84.338427 iter 60 value 82.547749 iter 70 value 82.518224 iter 80 value 82.516132 iter 90 value 82.508788 iter 100 value 82.499374 final value 82.499374 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 94.610729 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 96.132089 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 96.220644 final value 94.052910 converged Fitting Repeat 4 # weights: 103 initial value 96.684031 final value 94.052910 converged Fitting Repeat 5 # weights: 103 initial value 102.292200 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 107.336132 iter 10 value 94.034464 final value 94.032967 converged Fitting Repeat 2 # weights: 305 initial value 117.521085 final value 94.032967 converged Fitting Repeat 3 # weights: 305 initial value 94.486401 iter 10 value 93.332537 final value 93.332520 converged Fitting Repeat 4 # weights: 305 initial value 105.627740 final value 94.052910 converged Fitting Repeat 5 # weights: 305 initial value 95.271294 final value 94.052910 converged Fitting Repeat 1 # weights: 507 initial value 97.716567 final value 94.042012 converged Fitting Repeat 2 # weights: 507 initial value 102.397919 iter 10 value 88.072077 iter 20 value 87.986630 iter 30 value 87.978544 final value 87.976152 converged Fitting Repeat 3 # weights: 507 initial value 97.388397 final value 94.052910 converged Fitting Repeat 4 # weights: 507 initial value 97.436932 iter 10 value 93.273022 iter 20 value 92.843022 iter 30 value 92.478943 iter 40 value 92.474744 final value 92.474741 converged Fitting Repeat 5 # weights: 507 initial value 95.097131 iter 10 value 94.081537 iter 20 value 87.385808 iter 30 value 86.910900 iter 40 value 86.886765 iter 50 value 86.875054 final value 86.874985 converged Fitting Repeat 1 # weights: 103 initial value 105.464241 iter 10 value 93.896934 iter 20 value 93.737346 iter 30 value 93.574667 iter 40 value 93.512688 iter 50 value 93.265125 iter 60 value 85.304672 iter 70 value 84.465771 iter 80 value 82.233133 iter 90 value 81.605007 iter 100 value 81.528135 final value 81.528135 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 102.527054 iter 10 value 93.577339 iter 20 value 85.873017 iter 30 value 85.538034 iter 40 value 83.833863 iter 50 value 83.429805 iter 60 value 83.271898 final value 83.267263 converged Fitting Repeat 3 # weights: 103 initial value 97.677645 iter 10 value 94.124575 iter 20 value 94.055766 iter 30 value 93.884831 iter 40 value 93.665085 iter 50 value 89.888975 iter 60 value 86.958857 iter 70 value 84.966162 iter 80 value 84.176821 iter 90 value 83.412234 iter 100 value 83.131784 final value 83.131784 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 96.581241 iter 10 value 94.056651 iter 20 value 84.902096 iter 30 value 84.594810 iter 40 value 84.203379 iter 50 value 83.939174 iter 60 value 83.789951 iter 70 value 83.731255 final value 83.726948 converged Fitting Repeat 5 # weights: 103 initial value 97.711595 iter 10 value 94.056727 iter 20 value 89.274371 iter 30 value 85.276895 iter 40 value 83.889860 iter 50 value 83.629801 iter 60 value 83.462586 iter 70 value 83.141947 iter 80 value 83.028724 iter 80 value 83.028724 iter 80 value 83.028724 final value 83.028724 converged Fitting Repeat 1 # weights: 305 initial value 143.313684 iter 10 value 93.983536 iter 20 value 88.139983 iter 30 value 84.743147 iter 40 value 83.966198 iter 50 value 81.205226 iter 60 value 80.755611 iter 70 value 80.511917 iter 80 value 80.359879 iter 90 value 79.951232 iter 100 value 79.703525 final value 79.703525 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 113.240111 iter 10 value 94.237678 iter 20 value 92.747339 iter 30 value 91.081757 iter 40 value 86.946475 iter 50 value 85.896517 iter 60 value 83.598115 iter 70 value 81.525178 iter 80 value 81.039819 iter 90 value 80.426054 iter 100 value 80.281980 final value 80.281980 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 99.185921 iter 10 value 93.552718 iter 20 value 86.991374 iter 30 value 85.282806 iter 40 value 83.014412 iter 50 value 82.030668 iter 60 value 81.977640 iter 70 value 81.136582 iter 80 value 80.183675 iter 90 value 79.752908 iter 100 value 79.574636 final value 79.574636 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 130.236794 iter 10 value 94.055289 iter 20 value 89.329873 iter 30 value 84.521880 iter 40 value 83.017553 iter 50 value 81.770140 iter 60 value 81.442253 iter 70 value 80.929421 iter 80 value 80.480580 iter 90 value 80.321153 iter 100 value 80.118521 final value 80.118521 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 106.097834 iter 10 value 94.080324 iter 20 value 93.935357 iter 30 value 93.553428 iter 40 value 93.437581 iter 50 value 90.816760 iter 60 value 83.473511 iter 70 value 82.544622 iter 80 value 80.373821 iter 90 value 80.242209 iter 100 value 80.192820 final value 80.192820 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 118.587605 iter 10 value 94.188779 iter 20 value 93.483775 iter 30 value 88.043131 iter 40 value 86.288803 iter 50 value 85.721258 iter 60 value 85.317989 iter 70 value 84.037137 iter 80 value 82.498330 iter 90 value 81.129432 iter 100 value 80.610746 final value 80.610746 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 104.863679 iter 10 value 86.814598 iter 20 value 84.070473 iter 30 value 83.647434 iter 40 value 82.438254 iter 50 value 82.111036 iter 60 value 81.730962 iter 70 value 81.580958 iter 80 value 81.559960 iter 90 value 81.468508 iter 100 value 81.274390 final value 81.274390 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 108.077555 iter 10 value 93.976608 iter 20 value 93.225738 iter 30 value 86.434257 iter 40 value 84.942721 iter 50 value 83.436949 iter 60 value 81.598550 iter 70 value 80.100188 iter 80 value 79.664876 iter 90 value 79.332318 iter 100 value 79.146149 final value 79.146149 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 114.632009 iter 10 value 93.914972 iter 20 value 90.418308 iter 30 value 85.011895 iter 40 value 83.264864 iter 50 value 81.551299 iter 60 value 79.945047 iter 70 value 79.412307 iter 80 value 79.357895 iter 90 value 79.184122 iter 100 value 79.055406 final value 79.055406 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 105.139273 iter 10 value 93.871044 iter 20 value 90.659516 iter 30 value 84.663117 iter 40 value 83.743650 iter 50 value 82.279487 iter 60 value 81.987406 iter 70 value 81.579572 iter 80 value 81.361985 iter 90 value 81.318807 iter 100 value 81.290165 final value 81.290165 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 100.375599 iter 10 value 94.054746 iter 20 value 94.051747 iter 30 value 93.749987 final value 93.747063 converged Fitting Repeat 2 # weights: 103 initial value 99.048805 final value 94.054256 converged Fitting Repeat 3 # weights: 103 initial value 103.467264 final value 94.054513 converged Fitting Repeat 4 # weights: 103 initial value 99.376905 iter 10 value 92.334091 iter 20 value 92.333505 iter 30 value 92.332990 iter 40 value 92.332767 iter 50 value 92.212498 final value 92.208027 converged Fitting Repeat 5 # weights: 103 initial value 95.430194 final value 94.054565 converged Fitting Repeat 1 # weights: 305 initial value 95.477248 iter 10 value 94.054348 iter 20 value 93.295902 iter 30 value 90.073948 iter 40 value 84.368910 iter 50 value 83.462182 iter 60 value 83.241410 iter 70 value 83.240989 iter 80 value 83.150489 iter 90 value 80.650298 iter 100 value 80.648790 final value 80.648790 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 100.252761 iter 10 value 92.472407 iter 20 value 92.393806 iter 30 value 92.393511 iter 40 value 91.868584 iter 50 value 91.783067 iter 60 value 91.782602 iter 70 value 91.782006 iter 80 value 90.384832 iter 90 value 85.121742 iter 100 value 80.632985 final value 80.632985 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 101.979003 iter 10 value 89.799170 iter 20 value 82.061247 iter 30 value 81.834649 iter 40 value 81.834310 iter 50 value 81.335776 iter 60 value 81.292744 iter 70 value 81.211621 iter 80 value 81.122808 iter 90 value 81.071309 iter 100 value 81.037403 final value 81.037403 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 97.348212 iter 10 value 93.584720 iter 20 value 91.340462 iter 30 value 85.170016 iter 40 value 83.885810 iter 50 value 83.723739 iter 60 value 83.694582 iter 70 value 83.693750 iter 80 value 83.693682 iter 90 value 83.673511 iter 100 value 83.604142 final value 83.604142 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 100.739288 iter 10 value 94.058118 iter 20 value 85.361620 iter 30 value 85.323311 iter 40 value 85.285713 iter 50 value 85.121442 iter 60 value 81.260450 iter 70 value 80.619294 iter 80 value 79.961666 iter 90 value 79.960401 iter 100 value 79.960036 final value 79.960036 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 99.922194 iter 10 value 93.553800 iter 20 value 93.456683 iter 30 value 93.338108 iter 40 value 92.642719 iter 50 value 91.580924 iter 60 value 91.536557 iter 70 value 91.530437 iter 80 value 91.529120 final value 91.528797 converged Fitting Repeat 2 # weights: 507 initial value 100.515116 iter 10 value 94.061013 iter 20 value 93.470155 iter 30 value 92.845407 final value 92.844011 converged Fitting Repeat 3 # weights: 507 initial value 129.930866 iter 10 value 94.042320 iter 20 value 93.831780 iter 30 value 90.741272 iter 40 value 87.620772 iter 50 value 87.617319 iter 60 value 87.615655 iter 70 value 87.604374 iter 80 value 86.918625 iter 90 value 83.071724 iter 100 value 82.312651 final value 82.312651 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 94.061690 iter 10 value 85.352533 iter 20 value 85.232891 iter 30 value 85.227474 iter 40 value 84.085595 iter 50 value 83.967097 iter 60 value 83.838550 iter 70 value 83.463409 iter 80 value 83.046551 iter 90 value 83.044776 iter 100 value 83.043307 final value 83.043307 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 110.544610 iter 10 value 94.041609 iter 20 value 94.012184 iter 30 value 89.767812 iter 40 value 88.417046 iter 50 value 88.392948 iter 60 value 86.848505 iter 70 value 81.798036 iter 80 value 80.689170 iter 90 value 79.039622 iter 100 value 78.639308 final value 78.639308 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 101.171661 final value 94.052910 converged Fitting Repeat 2 # weights: 103 initial value 103.932448 final value 94.052910 converged Fitting Repeat 3 # weights: 103 initial value 94.580876 iter 10 value 92.211113 final value 92.211111 converged Fitting Repeat 4 # weights: 103 initial value 95.117488 final value 93.915746 converged Fitting Repeat 5 # weights: 103 initial value 99.113340 final value 94.052910 converged Fitting Repeat 1 # weights: 305 initial value 98.296775 iter 10 value 93.919667 final value 93.915746 converged Fitting Repeat 2 # weights: 305 initial value 112.252064 final value 93.915746 converged Fitting Repeat 3 # weights: 305 initial value 116.444600 final value 94.052910 converged Fitting Repeat 4 # weights: 305 initial value 91.144059 iter 10 value 86.163970 final value 86.163858 converged Fitting Repeat 5 # weights: 305 initial value 97.329906 final value 94.052910 converged Fitting Repeat 1 # weights: 507 initial value 101.386592 final value 94.052910 converged Fitting Repeat 2 # weights: 507 initial value 105.380583 iter 10 value 93.360911 iter 20 value 93.328540 final value 93.328497 converged Fitting Repeat 3 # weights: 507 initial value 97.106535 iter 10 value 93.937327 final value 93.937249 converged Fitting Repeat 4 # weights: 507 initial value 110.236631 final value 93.915746 converged Fitting Repeat 5 # weights: 507 initial value 99.572897 iter 10 value 93.963056 iter 20 value 93.943842 iter 20 value 93.943841 iter 20 value 93.943841 final value 93.943841 converged Fitting Repeat 1 # weights: 103 initial value 101.442950 iter 10 value 94.013787 iter 20 value 88.491039 iter 30 value 85.276654 iter 40 value 84.762770 iter 50 value 83.877417 iter 60 value 83.749791 iter 70 value 83.748808 final value 83.748766 converged Fitting Repeat 2 # weights: 103 initial value 100.841974 iter 10 value 94.075491 iter 20 value 87.069380 iter 30 value 86.386272 iter 40 value 85.135180 iter 50 value 83.779001 iter 60 value 83.753436 iter 70 value 83.749126 iter 80 value 83.748766 iter 80 value 83.748766 iter 80 value 83.748766 final value 83.748766 converged Fitting Repeat 3 # weights: 103 initial value 104.147828 iter 10 value 94.217231 iter 20 value 94.056503 iter 30 value 93.824879 iter 40 value 91.634406 iter 50 value 90.710334 iter 60 value 85.676917 iter 70 value 84.967986 iter 80 value 83.656483 iter 90 value 83.106210 iter 100 value 82.747717 final value 82.747717 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 103.218572 iter 10 value 94.054936 iter 20 value 93.885942 iter 30 value 85.268133 iter 40 value 83.688953 iter 50 value 83.580143 iter 60 value 83.509075 iter 70 value 83.092633 iter 80 value 82.866232 iter 90 value 82.745230 final value 82.745216 converged Fitting Repeat 5 # weights: 103 initial value 98.835132 iter 10 value 93.962606 iter 20 value 93.801693 iter 30 value 87.266113 iter 40 value 84.951202 iter 50 value 84.933632 iter 60 value 84.925753 iter 70 value 84.147909 iter 80 value 83.911115 iter 90 value 83.767315 iter 100 value 83.757003 final value 83.757003 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 118.890476 iter 10 value 93.314854 iter 20 value 84.023990 iter 30 value 82.848667 iter 40 value 82.021424 iter 50 value 81.788146 iter 60 value 81.743216 iter 70 value 81.700405 iter 80 value 81.678976 iter 90 value 81.568453 iter 100 value 81.516645 final value 81.516645 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 100.298345 iter 10 value 93.299232 iter 20 value 85.972805 iter 30 value 84.794002 iter 40 value 82.859892 iter 50 value 82.682609 iter 60 value 81.987882 iter 70 value 81.789202 iter 80 value 81.745585 iter 90 value 81.737017 iter 100 value 81.727189 final value 81.727189 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 103.985258 iter 10 value 94.019678 iter 20 value 84.465737 iter 30 value 84.167998 iter 40 value 83.639323 iter 50 value 83.520244 iter 60 value 83.512521 iter 60 value 83.512520 final value 83.512520 converged Fitting Repeat 4 # weights: 305 initial value 105.092943 iter 10 value 94.127706 iter 20 value 92.904179 iter 30 value 89.283268 iter 40 value 83.593429 iter 50 value 83.469041 iter 60 value 83.385901 iter 70 value 83.293075 iter 80 value 83.080672 iter 90 value 82.629360 iter 100 value 81.927744 final value 81.927744 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 120.858444 iter 10 value 93.923934 iter 20 value 87.912890 iter 30 value 84.010935 iter 40 value 83.348744 iter 50 value 82.585626 iter 60 value 81.867713 iter 70 value 81.758005 iter 80 value 81.721327 iter 90 value 81.713234 iter 100 value 81.709660 final value 81.709660 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 110.803564 iter 10 value 94.056207 iter 20 value 90.251625 iter 30 value 87.008897 iter 40 value 85.258648 iter 50 value 83.908539 iter 60 value 83.739803 iter 70 value 83.045208 iter 80 value 82.121123 iter 90 value 81.634293 iter 100 value 81.270137 final value 81.270137 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 103.895400 iter 10 value 94.153339 iter 20 value 93.164925 iter 30 value 90.370624 iter 40 value 89.750150 iter 50 value 84.567533 iter 60 value 84.160642 iter 70 value 83.665198 iter 80 value 83.540539 iter 90 value 82.501975 iter 100 value 81.981044 final value 81.981044 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 112.664294 iter 10 value 94.098313 iter 20 value 91.114861 iter 30 value 85.043565 iter 40 value 84.575612 iter 50 value 83.028940 iter 60 value 82.643205 iter 70 value 81.872337 iter 80 value 81.571262 iter 90 value 81.406478 iter 100 value 81.150574 final value 81.150574 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 120.626972 iter 10 value 94.161961 iter 20 value 88.357551 iter 30 value 85.012802 iter 40 value 83.919071 iter 50 value 83.754070 iter 60 value 83.117808 iter 70 value 82.047886 iter 80 value 81.655983 iter 90 value 81.327804 iter 100 value 81.199481 final value 81.199481 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 129.395266 iter 10 value 94.219585 iter 20 value 85.652520 iter 30 value 83.999387 iter 40 value 83.771066 iter 50 value 83.639245 iter 60 value 82.333005 iter 70 value 81.929752 iter 80 value 81.718397 iter 90 value 81.350429 iter 100 value 81.161158 final value 81.161158 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 112.482144 final value 94.054435 converged Fitting Repeat 2 # weights: 103 initial value 96.490975 final value 94.054481 converged Fitting Repeat 3 # weights: 103 initial value 97.088152 iter 10 value 93.917406 iter 20 value 93.915882 iter 20 value 93.915881 iter 20 value 93.915881 final value 93.915881 converged Fitting Repeat 4 # weights: 103 initial value 109.494774 iter 10 value 94.054510 iter 20 value 93.873451 iter 30 value 89.775705 iter 40 value 89.772724 final value 89.772717 converged Fitting Repeat 5 # weights: 103 initial value 96.548287 iter 10 value 94.054468 iter 20 value 94.052912 iter 30 value 93.546602 iter 40 value 92.217776 iter 50 value 92.214900 final value 92.213682 converged Fitting Repeat 1 # weights: 305 initial value 107.234457 iter 10 value 94.057854 iter 20 value 94.053150 iter 30 value 92.621727 iter 40 value 83.748061 iter 50 value 83.673426 iter 60 value 83.672855 iter 70 value 83.672635 iter 80 value 83.672029 iter 90 value 83.671002 iter 100 value 83.183725 final value 83.183725 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 107.263002 iter 10 value 94.058120 iter 20 value 93.923741 iter 30 value 90.235855 final value 89.496184 converged Fitting Repeat 3 # weights: 305 initial value 94.454012 iter 10 value 94.056044 iter 20 value 94.031761 final value 93.869879 converged Fitting Repeat 4 # weights: 305 initial value 102.439390 iter 10 value 93.920644 iter 20 value 93.890926 iter 30 value 93.570113 iter 40 value 88.686278 iter 50 value 88.613847 iter 60 value 88.599738 iter 70 value 88.583970 iter 80 value 88.519688 iter 90 value 88.329452 iter 100 value 88.326837 final value 88.326837 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 103.196430 iter 10 value 94.058018 iter 20 value 92.784600 iter 30 value 91.865063 iter 40 value 85.487264 iter 50 value 84.017834 iter 60 value 83.672299 iter 70 value 83.477807 final value 83.474574 converged Fitting Repeat 1 # weights: 507 initial value 102.092813 iter 10 value 93.923911 iter 20 value 93.910262 iter 30 value 85.623190 iter 40 value 85.483616 iter 50 value 85.433871 iter 60 value 85.432416 iter 70 value 85.425594 iter 80 value 83.829311 iter 90 value 82.619044 iter 100 value 82.558241 final value 82.558241 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 99.310551 iter 10 value 94.061160 iter 20 value 93.978040 iter 30 value 87.514157 iter 40 value 86.991155 iter 50 value 84.221663 iter 60 value 83.479743 iter 70 value 83.477721 iter 80 value 83.475551 iter 90 value 83.110997 iter 100 value 82.443183 final value 82.443183 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 97.195728 iter 10 value 94.061485 final value 94.053546 converged Fitting Repeat 4 # weights: 507 initial value 111.220291 iter 10 value 93.924082 iter 20 value 93.915977 final value 93.915852 converged Fitting Repeat 5 # weights: 507 initial value 132.856139 iter 10 value 94.060605 iter 20 value 91.462227 iter 30 value 83.511703 iter 40 value 83.477842 final value 83.477751 converged Fitting Repeat 1 # weights: 103 initial value 104.299056 iter 10 value 94.279665 final value 94.275362 converged Fitting Repeat 2 # weights: 103 initial value 99.884921 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 122.973569 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 102.251565 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 116.514092 final value 94.052434 converged Fitting Repeat 1 # weights: 305 initial value 104.368421 final value 94.484210 converged Fitting Repeat 2 # weights: 305 initial value 108.857579 iter 10 value 93.851665 iter 20 value 93.814237 final value 93.813954 converged Fitting Repeat 3 # weights: 305 initial value 105.282798 final value 94.484211 converged Fitting Repeat 4 # weights: 305 initial value 94.781567 final value 94.275362 converged Fitting Repeat 5 # weights: 305 initial value 96.110409 iter 10 value 93.179400 iter 20 value 93.170780 final value 93.170767 converged Fitting Repeat 1 # weights: 507 initial value 109.741234 final value 94.484211 converged Fitting Repeat 2 # weights: 507 initial value 109.118772 final value 94.484211 converged Fitting Repeat 3 # weights: 507 initial value 99.440086 final value 94.484211 converged Fitting Repeat 4 # weights: 507 initial value 107.381679 final value 94.275362 converged Fitting Repeat 5 # weights: 507 initial value 105.343885 iter 10 value 94.275392 final value 94.275365 converged Fitting Repeat 1 # weights: 103 initial value 109.945580 iter 10 value 93.884848 iter 20 value 93.820962 iter 30 value 90.846495 iter 40 value 87.148758 iter 50 value 87.000223 iter 60 value 86.381879 iter 70 value 85.816444 iter 80 value 85.706608 iter 90 value 85.659583 iter 100 value 85.404366 final value 85.404366 stopped after 100 iterations Fitting Repeat 2 # weights: 103 initial value 106.185999 iter 10 value 94.487234 iter 20 value 94.464721 iter 30 value 93.884115 iter 40 value 93.829781 iter 50 value 93.823118 iter 60 value 93.822978 final value 93.822924 converged Fitting Repeat 3 # weights: 103 initial value 97.150245 iter 10 value 94.488091 iter 20 value 93.966465 iter 30 value 93.845023 iter 40 value 93.822557 iter 50 value 88.313253 iter 60 value 87.078835 iter 70 value 86.862301 iter 80 value 86.779770 iter 90 value 85.420923 iter 100 value 84.764246 final value 84.764246 stopped after 100 iterations Fitting Repeat 4 # weights: 103 initial value 99.224774 iter 10 value 94.346249 iter 20 value 86.924978 iter 30 value 85.756183 iter 40 value 85.257876 iter 50 value 84.881754 iter 60 value 84.698265 final value 84.697962 converged Fitting Repeat 5 # weights: 103 initial value 104.897445 iter 10 value 94.486308 iter 20 value 93.853288 iter 30 value 93.824529 iter 40 value 89.325416 iter 50 value 86.904678 iter 60 value 86.902338 iter 70 value 86.868825 iter 80 value 86.189013 iter 90 value 85.178427 iter 100 value 84.728051 final value 84.728051 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 110.910185 iter 10 value 94.663413 iter 20 value 92.147019 iter 30 value 86.872504 iter 40 value 86.094050 iter 50 value 83.029422 iter 60 value 82.268362 iter 70 value 81.024417 iter 80 value 80.582406 iter 90 value 80.142403 iter 100 value 79.943275 final value 79.943275 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 106.091256 iter 10 value 88.675841 iter 20 value 86.451713 iter 30 value 86.073048 iter 40 value 85.140130 iter 50 value 84.194170 iter 60 value 81.820817 iter 70 value 81.177021 iter 80 value 80.994329 iter 90 value 80.884527 iter 100 value 80.794647 final value 80.794647 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 100.146543 iter 10 value 94.121939 iter 20 value 93.867329 iter 30 value 89.393184 iter 40 value 86.854203 iter 50 value 86.763524 iter 60 value 85.688735 iter 70 value 84.830990 iter 80 value 83.846986 iter 90 value 83.513996 iter 100 value 81.807008 final value 81.807008 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 101.494772 iter 10 value 94.393599 iter 20 value 92.735600 iter 30 value 92.206825 iter 40 value 90.786215 iter 50 value 89.246037 iter 60 value 88.435403 iter 70 value 85.601997 iter 80 value 83.313533 iter 90 value 81.408600 iter 100 value 81.119401 final value 81.119401 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 101.259655 iter 10 value 94.509786 iter 20 value 88.156006 iter 30 value 86.542328 iter 40 value 85.531567 iter 50 value 84.980538 iter 60 value 84.801217 iter 70 value 84.699845 iter 80 value 84.642148 iter 90 value 84.585150 iter 100 value 83.714776 final value 83.714776 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 116.985350 iter 10 value 93.933704 iter 20 value 91.123050 iter 30 value 85.949345 iter 40 value 84.098554 iter 50 value 83.410360 iter 60 value 82.986074 iter 70 value 81.577453 iter 80 value 81.241355 iter 90 value 80.892177 iter 100 value 80.156253 final value 80.156253 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 110.049748 iter 10 value 94.247253 iter 20 value 87.284372 iter 30 value 83.151693 iter 40 value 81.925608 iter 50 value 80.729451 iter 60 value 80.117342 iter 70 value 79.898891 iter 80 value 79.689897 iter 90 value 79.548848 iter 100 value 79.498961 final value 79.498961 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 106.518375 iter 10 value 95.062023 iter 20 value 94.497715 iter 30 value 94.235638 iter 40 value 86.015209 iter 50 value 84.813197 iter 60 value 84.510032 iter 70 value 83.998287 iter 80 value 83.061904 iter 90 value 82.013427 iter 100 value 80.873793 final value 80.873793 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 113.136803 iter 10 value 94.512101 iter 20 value 87.432058 iter 30 value 86.021275 iter 40 value 85.279443 iter 50 value 84.441390 iter 60 value 84.356270 iter 70 value 84.334410 iter 80 value 83.999927 iter 90 value 82.654574 iter 100 value 81.846935 final value 81.846935 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 103.500455 iter 10 value 92.729491 iter 20 value 87.299817 iter 30 value 83.051706 iter 40 value 81.674765 iter 50 value 80.745279 iter 60 value 80.693333 iter 70 value 80.413407 iter 80 value 80.288641 iter 90 value 80.267498 iter 100 value 80.261317 final value 80.261317 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 101.484966 final value 94.485813 converged Fitting Repeat 2 # weights: 103 initial value 100.291990 final value 94.485850 converged Fitting Repeat 3 # weights: 103 initial value 96.455778 final value 94.485984 converged Fitting Repeat 4 # weights: 103 initial value 96.265148 iter 10 value 94.485965 iter 20 value 94.484257 final value 94.484219 converged Fitting Repeat 5 # weights: 103 initial value 100.445367 iter 10 value 94.485892 iter 20 value 94.436737 final value 93.814258 converged Fitting Repeat 1 # weights: 305 initial value 97.939077 iter 10 value 94.489575 iter 20 value 94.484228 iter 30 value 93.867409 iter 40 value 93.003293 iter 50 value 92.999842 iter 60 value 92.999776 final value 92.999761 converged Fitting Repeat 2 # weights: 305 initial value 96.068646 iter 10 value 94.280578 iter 20 value 93.985137 iter 30 value 84.921811 iter 40 value 84.760771 iter 50 value 84.752302 iter 60 value 84.644193 iter 70 value 84.359577 iter 80 value 84.358594 iter 90 value 84.334191 iter 100 value 84.240171 final value 84.240171 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 99.608640 iter 10 value 94.489009 iter 20 value 94.484400 final value 94.484383 converged Fitting Repeat 4 # weights: 305 initial value 96.816407 iter 10 value 94.488988 iter 20 value 94.416097 iter 30 value 93.753433 final value 93.753414 converged Fitting Repeat 5 # weights: 305 initial value 96.455862 iter 10 value 94.488561 iter 20 value 94.473382 iter 30 value 87.935240 iter 40 value 86.751806 iter 50 value 86.623867 iter 60 value 86.550565 final value 86.549752 converged Fitting Repeat 1 # weights: 507 initial value 108.846316 iter 10 value 93.822441 iter 20 value 93.815639 iter 30 value 93.814546 iter 40 value 93.798520 iter 50 value 93.754840 iter 60 value 93.753904 final value 93.753809 converged Fitting Repeat 2 # weights: 507 initial value 110.922412 iter 10 value 94.491774 iter 20 value 94.427582 iter 30 value 90.692439 iter 40 value 88.655114 iter 50 value 85.498104 iter 60 value 83.728028 iter 70 value 83.504983 iter 80 value 83.361484 iter 90 value 82.545408 iter 100 value 82.454231 final value 82.454231 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 96.658460 iter 10 value 94.492193 iter 20 value 94.464646 iter 30 value 93.814612 iter 30 value 93.814611 iter 30 value 93.814611 final value 93.814611 converged Fitting Repeat 4 # weights: 507 initial value 101.987543 iter 10 value 94.283830 iter 20 value 94.141846 iter 30 value 93.785028 final value 93.784859 converged Fitting Repeat 5 # weights: 507 initial value 95.012580 iter 10 value 90.850705 iter 20 value 89.342076 iter 30 value 86.958665 iter 40 value 86.944852 iter 50 value 86.941957 iter 60 value 86.393445 iter 70 value 85.870194 iter 80 value 85.248691 iter 90 value 84.766121 iter 100 value 84.495452 final value 84.495452 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 107.069069 final value 94.484211 converged Fitting Repeat 2 # weights: 103 initial value 97.493563 final value 94.484211 converged Fitting Repeat 3 # weights: 103 initial value 97.365383 final value 94.484211 converged Fitting Repeat 4 # weights: 103 initial value 97.550902 final value 94.484211 converged Fitting Repeat 5 # weights: 103 initial value 95.911655 final value 94.484211 converged Fitting Repeat 1 # weights: 305 initial value 99.445399 final value 94.484211 converged Fitting Repeat 2 # weights: 305 initial value 106.785454 final value 94.484211 converged Fitting Repeat 3 # weights: 305 initial value 99.057478 iter 10 value 92.062290 final value 92.059162 converged Fitting Repeat 4 # weights: 305 initial value 111.993072 iter 10 value 92.078703 iter 20 value 84.480077 iter 30 value 84.320789 iter 40 value 84.319769 iter 50 value 83.639086 iter 60 value 83.611887 final value 83.611639 converged Fitting Repeat 5 # weights: 305 initial value 95.125373 final value 94.484211 converged Fitting Repeat 1 # weights: 507 initial value 99.923476 iter 10 value 92.550480 iter 20 value 91.929300 final value 91.929293 converged Fitting Repeat 2 # weights: 507 initial value 98.763844 iter 10 value 93.657047 iter 20 value 92.823244 iter 30 value 92.822869 iter 40 value 92.820801 final value 92.820789 converged Fitting Repeat 3 # weights: 507 initial value 107.782340 iter 10 value 94.112911 final value 94.112903 converged Fitting Repeat 4 # weights: 507 initial value 106.666595 final value 94.484211 converged Fitting Repeat 5 # weights: 507 initial value 95.913598 final value 93.634731 converged Fitting Repeat 1 # weights: 103 initial value 96.279869 iter 10 value 94.488404 iter 20 value 94.417536 iter 30 value 93.783183 iter 40 value 92.734993 iter 50 value 90.542552 iter 60 value 90.444938 iter 70 value 90.439587 final value 90.439577 converged Fitting Repeat 2 # weights: 103 initial value 113.419260 iter 10 value 94.194910 iter 20 value 85.238556 iter 30 value 81.660687 iter 40 value 80.258529 iter 50 value 78.579456 iter 60 value 78.009857 iter 70 value 77.967945 iter 80 value 77.965595 final value 77.963392 converged Fitting Repeat 3 # weights: 103 initial value 107.893430 iter 10 value 94.363157 iter 20 value 88.739037 iter 30 value 86.562222 iter 40 value 82.209617 iter 50 value 78.811426 iter 60 value 78.293504 iter 70 value 78.071855 iter 80 value 77.925582 iter 90 value 77.654713 final value 77.651588 converged Fitting Repeat 4 # weights: 103 initial value 97.275786 iter 10 value 93.132872 iter 20 value 84.928731 iter 30 value 84.374077 iter 40 value 83.070200 iter 50 value 82.887398 iter 60 value 82.356011 iter 70 value 81.935793 final value 81.927165 converged Fitting Repeat 5 # weights: 103 initial value 96.282195 iter 10 value 94.488843 iter 20 value 94.126546 iter 30 value 93.851641 iter 40 value 93.817530 iter 50 value 88.796501 iter 60 value 86.767048 iter 70 value 83.638735 iter 80 value 83.099394 iter 90 value 82.683555 iter 100 value 82.345079 final value 82.345079 stopped after 100 iterations Fitting Repeat 1 # weights: 305 initial value 117.636591 iter 10 value 94.203000 iter 20 value 85.613596 iter 30 value 83.393382 iter 40 value 82.406103 iter 50 value 81.949587 iter 60 value 81.750881 iter 70 value 80.298656 iter 80 value 78.295111 iter 90 value 77.545305 iter 100 value 77.182481 final value 77.182481 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 114.359490 iter 10 value 94.726469 iter 20 value 94.503853 iter 30 value 86.056172 iter 40 value 84.224138 iter 50 value 83.809227 iter 60 value 81.266107 iter 70 value 79.403086 iter 80 value 78.627618 iter 90 value 77.806922 iter 100 value 77.455078 final value 77.455078 stopped after 100 iterations Fitting Repeat 3 # weights: 305 initial value 101.778156 iter 10 value 94.380909 iter 20 value 87.842912 iter 30 value 82.161306 iter 40 value 80.208897 iter 50 value 78.922423 iter 60 value 78.221055 iter 70 value 77.579151 iter 80 value 77.028259 iter 90 value 76.964507 iter 100 value 76.920719 final value 76.920719 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 116.564648 iter 10 value 94.850786 iter 20 value 94.528690 iter 30 value 92.421217 iter 40 value 85.243370 iter 50 value 85.018306 iter 60 value 84.417300 iter 70 value 80.187597 iter 80 value 78.363805 iter 90 value 77.410140 iter 100 value 77.206306 final value 77.206306 stopped after 100 iterations Fitting Repeat 5 # weights: 305 initial value 129.810129 iter 10 value 94.077830 iter 20 value 92.574810 iter 30 value 84.491558 iter 40 value 83.364043 iter 50 value 79.288101 iter 60 value 77.803951 iter 70 value 76.984395 iter 80 value 76.586025 iter 90 value 76.303067 iter 100 value 76.151632 final value 76.151632 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 123.935633 iter 10 value 94.525631 iter 20 value 90.753225 iter 30 value 87.625407 iter 40 value 84.871858 iter 50 value 84.099942 iter 60 value 80.996678 iter 70 value 77.843795 iter 80 value 77.204151 iter 90 value 76.619858 iter 100 value 76.438612 final value 76.438612 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 109.794654 iter 10 value 94.490907 iter 20 value 86.951850 iter 30 value 82.130969 iter 40 value 80.437206 iter 50 value 77.998881 iter 60 value 76.981465 iter 70 value 76.375768 iter 80 value 76.150810 iter 90 value 76.060224 iter 100 value 75.935721 final value 75.935721 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 105.687381 iter 10 value 95.236094 iter 20 value 94.602943 iter 30 value 86.317296 iter 40 value 84.992996 iter 50 value 82.275026 iter 60 value 80.249294 iter 70 value 79.670263 iter 80 value 77.880661 iter 90 value 77.247634 iter 100 value 77.074152 final value 77.074152 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 105.284226 iter 10 value 96.403238 iter 20 value 89.748582 iter 30 value 86.955252 iter 40 value 84.097478 iter 50 value 83.108726 iter 60 value 82.594430 iter 70 value 79.155515 iter 80 value 78.119581 iter 90 value 77.398594 iter 100 value 77.355208 final value 77.355208 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 107.206821 iter 10 value 94.457370 iter 20 value 94.135659 iter 30 value 89.079446 iter 40 value 83.229228 iter 50 value 82.169881 iter 60 value 80.272695 iter 70 value 79.827524 iter 80 value 78.755390 iter 90 value 78.464791 iter 100 value 78.209037 final value 78.209037 stopped after 100 iterations Fitting Repeat 1 # weights: 103 initial value 99.536979 iter 10 value 94.485829 final value 94.484216 converged Fitting Repeat 2 # weights: 103 initial value 111.338366 final value 94.485828 converged Fitting Repeat 3 # weights: 103 initial value 94.763386 final value 94.485828 converged Fitting Repeat 4 # weights: 103 initial value 98.935526 final value 94.486134 converged Fitting Repeat 5 # weights: 103 initial value 103.279651 final value 94.486045 converged Fitting Repeat 1 # weights: 305 initial value 125.505927 iter 10 value 94.489261 iter 20 value 94.484303 iter 30 value 93.944589 iter 40 value 88.375324 iter 50 value 87.762926 iter 60 value 87.542130 iter 70 value 86.825281 iter 80 value 86.800729 iter 90 value 86.800494 iter 100 value 85.252273 final value 85.252273 stopped after 100 iterations Fitting Repeat 2 # weights: 305 initial value 99.754580 iter 10 value 94.487217 iter 20 value 94.116814 iter 30 value 94.113175 final value 94.113167 converged Fitting Repeat 3 # weights: 305 initial value 100.482229 iter 10 value 93.944268 iter 20 value 93.882088 iter 30 value 93.477489 iter 40 value 92.986029 iter 50 value 92.794040 iter 60 value 92.615748 iter 70 value 88.074490 iter 80 value 81.831535 iter 90 value 81.825313 iter 100 value 81.817648 final value 81.817648 stopped after 100 iterations Fitting Repeat 4 # weights: 305 initial value 96.629225 iter 10 value 94.118370 iter 20 value 94.114284 iter 30 value 93.501076 iter 40 value 83.913684 final value 83.787448 converged Fitting Repeat 5 # weights: 305 initial value 97.330383 iter 10 value 94.489063 iter 20 value 94.465349 iter 30 value 93.729566 iter 40 value 93.728691 iter 50 value 93.728077 iter 60 value 93.727143 final value 93.727137 converged Fitting Repeat 1 # weights: 507 initial value 97.776539 iter 10 value 94.492061 iter 20 value 94.469231 iter 30 value 93.725523 final value 93.725508 converged Fitting Repeat 2 # weights: 507 initial value 96.326917 iter 10 value 93.665617 iter 20 value 93.643054 iter 30 value 90.327264 iter 40 value 83.786107 iter 40 value 83.786107 iter 40 value 83.786107 final value 83.786107 converged Fitting Repeat 3 # weights: 507 initial value 100.612955 iter 10 value 93.191147 iter 20 value 92.033896 iter 30 value 91.919372 iter 40 value 91.215673 iter 50 value 91.008575 iter 60 value 90.978144 iter 70 value 90.962263 iter 80 value 90.958055 iter 90 value 90.956231 iter 100 value 90.951982 final value 90.951982 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 109.700697 iter 10 value 93.480951 iter 20 value 93.469611 iter 30 value 89.232323 iter 40 value 85.414449 iter 50 value 83.785778 iter 60 value 83.608356 final value 83.604413 converged Fitting Repeat 5 # weights: 507 initial value 97.175254 iter 10 value 93.466626 iter 20 value 81.132402 iter 30 value 81.094980 iter 40 value 80.671610 iter 50 value 80.540512 iter 60 value 80.537838 iter 70 value 78.717987 iter 80 value 77.459271 iter 90 value 76.227949 iter 100 value 76.173303 final value 76.173303 stopped after 100 iterations Fitting Repeat 1 # weights: 507 initial value 159.033109 iter 10 value 118.657184 iter 20 value 116.711297 iter 30 value 106.295955 iter 40 value 105.812798 iter 50 value 104.590660 iter 60 value 104.333207 iter 70 value 104.247850 iter 80 value 103.971436 iter 90 value 103.739875 iter 100 value 103.529215 final value 103.529215 stopped after 100 iterations Fitting Repeat 2 # weights: 507 initial value 138.214401 iter 10 value 118.342796 iter 20 value 117.726648 iter 30 value 115.283945 iter 40 value 108.822628 iter 50 value 104.353142 iter 60 value 103.511068 iter 70 value 102.370554 iter 80 value 102.251957 iter 90 value 101.782678 iter 100 value 101.221293 final value 101.221293 stopped after 100 iterations Fitting Repeat 3 # weights: 507 initial value 128.317796 iter 10 value 116.731123 iter 20 value 106.635894 iter 30 value 102.905569 iter 40 value 102.247422 iter 50 value 101.989341 iter 60 value 101.431685 iter 70 value 101.074333 iter 80 value 101.042765 iter 90 value 101.022235 iter 100 value 100.925748 final value 100.925748 stopped after 100 iterations Fitting Repeat 4 # weights: 507 initial value 138.657907 iter 10 value 121.470556 iter 20 value 117.839362 iter 30 value 115.105186 iter 40 value 107.669941 iter 50 value 105.772884 iter 60 value 105.697078 iter 70 value 104.912360 iter 80 value 103.087725 iter 90 value 102.934996 iter 100 value 102.404605 final value 102.404605 stopped after 100 iterations Fitting Repeat 5 # weights: 507 initial value 140.545015 iter 10 value 117.723808 iter 20 value 111.634025 iter 30 value 109.525062 iter 40 value 108.746369 iter 50 value 104.883831 iter 60 value 104.488306 iter 70 value 103.768208 iter 80 value 102.866169 iter 90 value 101.781479 iter 100 value 101.218748 final value 101.218748 stopped after 100 iterations svmRadial ranger Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls < cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases Setting levels: control = Positive, case = Negative Setting direction: controls > cases RUNIT TEST PROTOCOL -- Tue Apr 1 07:32:01 2025 *********************************************** Number of test functions: 7 Number of errors: 0 Number of failures: 0 1 Test Suite : HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures Number of test functions: 7 Number of errors: 0 Number of failures: 0 Warning messages: 1: `repeats` has no meaning for this resampling method. 2: executing %dopar% sequentially: no parallel backend registered > > > > > proc.time() user system elapsed 52.384 1.345 206.722
HPiP.Rcheck/HPiP-Ex.timings
name | user | system | elapsed | |
FSmethod | 33.668 | 0.351 | 34.085 | |
FreqInteractors | 0.281 | 0.008 | 0.289 | |
calculateAAC | 0.043 | 0.004 | 0.046 | |
calculateAutocor | 0.622 | 0.016 | 0.641 | |
calculateCTDC | 0.088 | 0.000 | 0.088 | |
calculateCTDD | 0.691 | 0.000 | 0.692 | |
calculateCTDT | 0.243 | 0.000 | 0.243 | |
calculateCTriad | 0.463 | 0.004 | 0.467 | |
calculateDC | 0.119 | 0.000 | 0.119 | |
calculateF | 0.389 | 0.004 | 0.393 | |
calculateKSAAP | 0.129 | 0.000 | 0.129 | |
calculateQD_Sm | 2.232 | 0.020 | 2.256 | |
calculateTC | 2.142 | 0.036 | 2.181 | |
calculateTC_Sm | 0.350 | 0.000 | 0.351 | |
corr_plot | 33.933 | 0.235 | 34.227 | |
enrichfindP | 0.466 | 0.048 | 20.251 | |
enrichfind_hp | 0.080 | 0.000 | 1.436 | |
enrichplot | 0.465 | 0.015 | 0.485 | |
filter_missing_values | 0.001 | 0.000 | 0.001 | |
getFASTA | 0.130 | 0.004 | 5.829 | |
getHPI | 0.001 | 0.000 | 0.000 | |
get_negativePPI | 0.002 | 0.000 | 0.001 | |
get_positivePPI | 0 | 0 | 0 | |
impute_missing_data | 0.000 | 0.001 | 0.001 | |
plotPPI | 0.081 | 0.001 | 0.082 | |
pred_ensembel | 17.478 | 0.633 | 16.902 | |
var_imp | 34.302 | 0.420 | 34.770 | |