opencv-devel-4.9.0-150600.3.6.1<>,gRp9|/R{zUk47e>S.Ko.=Ý`e-hD /'y*Qnz  = -4zĩEü)xtZL bۜ<1X)ֹ.vF'u[%UgE!Oiz>A?d " Q 5Vc y         @     4 k  Hs(8@9@:`@BFG( HT I XYZ[\ ]  ^FbGcdqevfyl{u֐ v޼w@ xl yzCopencv-devel4.9.0150600.3.6.1Development files for using the OpenCV libraryThis package contains the OpenCV C/C++ library and header files, as well as documentation. It should be installed if you want to develop programs that will use the OpenCV library.gRh02-armsrv3aSUSE Linux Enterprise 15SUSE LLC BSD-3-Clausehttps://www.suse.com/Development/Libraries/C and C++https://opencv.org/linuxaarch64h)#f AaT h! M >? `<)pj<0[-D!c 'M'~ ~.B'#$yp "54-  !JS]xP:787ZMZ .u<)hquF  y0 Bq%:[P-* ! a"HYT  > 8 e o  L5+^TW?i x. R05 y!/$l !vI o xwY'1 " ' P$B  \7 = = D'm z$LR3sD ?$|  g~*0OP 5=bH " s; A (9FUB4)J#k=<y( ]F D l!H 0^5t:S +tg8a 0 ^_`o#: x5 GRL X,xFB B J o #W. qYs#+voh@O A(_e C '-/^ BFi <"KX; *   C 7Uu2 ?  ?))9x) -F*\3( ~7]Z^V$z _"/7G*  J~M 53_ ?b2y AZ/N,+ r( 5(, @ A "5aXE [ Q "+ O@"i;.j90-,^,^m jAA큤A큤A큤A큤A큤A큤A큤A큤AA큤AA큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤A큤gR|gR|eDeDeDgR|eTeTeTgR|eTeTeTeTeTeTeTeTeTgR|eTeTeTeTeTeTeTgR|eTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTgR|eTeTeTeTeTeTeTeTgR|eTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTgR|eTeTeTgR|gR|eTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTgR|gR|eTeTeTeTeTeTeTeTeTeTeTeTeTeTgR|eTeTeTeTeTeTeTeTeTeTeTeTeTgKgR|eTeTeTeTeTeTeTeTgR|eTeTeTgR|eDeDeDeDeDeDeDeDeDeDgR|eTeTgR|eTgR|eTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTgR|eTeTgR|eTeTeTeTeTeTgR|eTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTeTgR|eTeTeTeTeTeTeTeTeTgR|eTeTeTeTeTeTeTeTeTgR|eTeTgR|eTeTeTeTeTeTgR|eTeTeTeTeTeTeTeTgR|eTeTeTgR|eTgR|eTeTeTeTgR|eTeTeTgR|eTeTeTgR|eTeTeTgR|eTeTeTeTeTeTeTeTeTgR|eTeTeTeTeTeTeTeTeTgR|eTeTeTgR|eTeTeTeTgR|eTeTgR|eTeTgR|eTgR|eTeTeTeTeTeTgR|eTeTeTgR|eTeTeTeTeTeTeTeTeTeTeTgKgR|eDeDeDeDeDgR|eTeTgR|eTeTeDgR|eDeDeDeDeDeDgR|eTgR|eTeTeTeTeTeTeTeTeTeTeTeTeTgR|eDeDgR|eDeDeDeDeDeDeDeDeDgR|eTeTgR|eTgR|eTeTeTgR|eTeTgR|eTeTeTeTgR|eDeDeDeDeDeDeDeDeDeDeDeDeDeDeDgR|eDeDeDeDeDeDeDeDeDeDeDeDeDeDeDeDeDeDeDeDeDeDeDeDeDeDeDgR|gKgKgKgKgR|gR|gR|gR|gR|gR|gR|gR|gR|gR|gR|gR|gR|gR|gR|gR|gR|gR|gR|gR|gR|gR|gR|gR|gR}gReTgKseTeT611cd1d9648000e31c4a09806ff30eb538d2d63e7af055feb6f6721a9424576c0480e30b3077af75563f645a778a521ee70be996d440b817f7b422815ac9d0b88012a042d86f9fe430dcb431db60af5003ae09c044fdbd6172178496de3a90fb0802032b19e2a63bace383e774a616904b2079b672bf9d87439eb1f5c02f9b3d84cafb3c18dbf7c5f6c34e9eff0c018185c12ca9c3cb00955d1452e42fcbf5e5c0208fdc32f171d444d25d7096ac9a6f1dbb903176dc3ddf366a974293028bd7ae5663b2a537b782e2b81643371fb33fa549f5a9af7fed5d33cd42e6ade2ed112bb08c58a49aff38d5bf35e99612fb0d24f0bb1991ddf33b70ffc923393a887006b3e977168204f5c329ae60c9c4d4af1e7fe82ed7da130a5fcf7bbc2f4ee42731560c66dfdc85c81438a226d3d8265e8501dc207b4a259d12bf5863e82b9bf1008452b3a3a28a3e7431face1301ad1f20823a1d2142e8c85b36e92bfaeef833fcb61a830d257ca50c45822d9918e5fb8719e4f5294ab5791ed8f9ebfa79e723a18a9ac24e21f5c27d47c52a89ea407f0de90d630239a6cf54e14061abb42d6b21a4ea4d80847984ef8eafe4746ecc18d5bcafd10564ce4c24e2416043d857987c5d2883897df0d8f86a322078c32132cf890a34f45fcdb9460f1bde84e97466cf40cdd785de588f59ea8af6393aa17a820c72618d677957a2b022e5360b0ccccaff4880ae6c88f63db928666202f1468c8b16e02843acc24e31bfb0c50091b8706494ee8db1c697ffa51541ada3ea6eace83f2c776c9fd24f755bb412bc2c6dec035bb5aba46f139fe841ce5b09f0f098d330378a29b39db9f2d38f19be19c20092ae7b45369b4eb86bc3b9c2cd64331c93d3ad9c338285e7f842adc3dd33316a55dd5069214420988d6696d4408822c55fff74bd3908849ce927e4a14b2bf37f9cc05e1ba9db626bb6cdf2833b3f56c0423efa9ae8bbfac7a31ae7d4550bc479d28f503115106ed34f914e73a184e7691292afa0f2bf1abce5a50e6fa9ff41ffb0bf1cf90603ed95ccfebc0e3c697289f3cd3f5cab012d7bae116fa3f96811015e470bdb82af562d1ddd7216a9ca3078f57654a1c54a815603e74d17216c8672650821b8fd19a4a3b2c18a9bad2878064f41bb82206a1297c2bdbd0193aa82cf9aa11a5c0e8a599e93ffd40d3ae45d62d1da19a4b38a00d64c14d8caae8f2ac6db61c660a173e05a32ba205a113b562316fdeefaf70dcf9c12bc1a22d31a9b6c98892ee9425c177d54d8b1f434396b87124250a575cd2bbcd410b53888c9aa675546d761bb50159c27b8c1afc0b7f97981bbb6a3fe80befff04e6d2ed02f827be49a92d1376c9be94721c15fd1a3b6005a4db6cf1bc5d6ea2476a9ee2a3bb005038a7802c6f01d755f8bbfd78efe5d09790c3fb1722a8f24a68d4048ff38a38932acace59199f392c2d8404d163261a89c5e2f6a72d573b4ef24078d4205bdccd8bb12cc19901476bb61f5b25d62974661481f9e1126ed3af3439a85c100fad4b7b899797d2d47bde358a8baa0237041edbacce6027f2c513d21e0a5bb328f63d7ce621e96bad38aa846b9bb001da72048f1dbcd49311606c35a238ae5b9262c3f207fdaca653a09e9167fa3c0dec7e46469c029be17942c5fff0fe564f4375501456d3853386bfe71e11a2ab86b3e1c3122ea644d64bd1a3355bbfef48bba4ba3c9a282bb1e0d4fd0f00aacca8b4e00261e4c63f2c3e7f9ed472ef320b2884d88a91029fa59f1c37a0efb021efe332450c71e9c0194840fb01157fd193f778c6ab8996d00802d47194035304744ea6e81c7eddb4c7a20fa4143cb647051daf48fdf00b959c67edc38cdd107464c2901adc03dbb6c5e964267813332238195b254df03f9a8e51270f4458c97946d28bb84caf9762b9d00b3956fbc490fd90b8d2df7d1b4b560809d409e5d9ba2e3c12a5d85098a8987c897e239ac9a8a3109f96ba84d3b06426b3676a1ad09e621107adaf40fc3fd388e7dcbd323cd1db55e9ba443e97474d2a97cb8b99eb6c22f76659ba2cb8d352dffbb1c9deb9b9443738efd947fc7abae68bc81841a1243d49022a5328807143d3b818d82043eeeb82ce23118e9761e8eda3b9223aaf5ef040f58751a67d641953f48f29be9e354b31e4ed96ad8b43a414f90bb229b64770ef53de060b3bb3cc3261a033ceb03823e04001df40f104ac1eeb75333a2681d45ed501c4592b678a92d5f66a43bf09accaf3dafd54f9adbdb9bd39b7ed81f4ea25eeb81117356e974fede4648ded4ad16a97a3c55394ae0e29b76a76f60124055fe5cc2fb6536971028d63ef8f6592537dc3021d6a142e970f139567e9fa3621d44919fd3f300b677dd58399e84fc266fee33223f6f38d88607f3da7f02683ff91aa07279240d34084e1a0fe7b19ab5ca28babed4fc9c3d804502aa053c5add427600600f080984985812d8cce716b35ffa0339391fc8b45a4969fd5de62a80ea6370de7dd9d06f0c4a6702eeaf37060e59a6c812132580f4eaca6f35f2f19b32d40b24ef9ab0b75b51291c551c6b4224d97f4b91bfa9dc36c9a0ca6a7957d8cab2dcf9702dd1b7d7956a6f5d85c5d51993ef2b12df417633e49c8a7341e9f82d70eff7ff84fd944fa098947254ee491ea847ea8b7e561c68ef848f99639070c7db1c753d24a6a1e86f61823a85680182e61b6b478123cd15b7f24f2f3399d5c9199f7af979d9b57f0b0265a02cd42794849bd5d66e4970d874d3e5bbea4999dc645b74b119ea6d6f529a1d6bdd945604dec998f4ba12dfa95ca8c53807d0e52e094960f1e3a73211967574ffb963589f6818d8096aea9826c4af7aaa8436db51f58e3fa497ca097a3c912d482576abf43dbd11814cfd2c331eaa93b42d80a0911a4916f6afa99907f332fe8f641098eb437fec7357769d542ec08c291f503522dec8e10c042069d06f41d2d88e4aaf45d305aab645dfba7a238b84489dc49cc9a725f20ccb8871b6180b8fb4c19734e2f3082b4ee5842b9cb22024960688fe78fe703a7ae253f0881783259ee7a48b5bafb38acfbeb485bd3d4e00a8c5ef8bf7f00f49db44791709d62b449e838277760fad93e16fdad234aab37ccc96bd37768f213c6ee2fedb3c6309e1057307f621f27c85b2b3adc69054b1c6f60b3098dfdc6f4eb5c0080a4f14b2db729f56993cac34365011a979f3adbaa8aacff507e73971ce35cc2ceffc9d65800fbb3bfb33f260bc1a64157bfaefc84ebe0ee807eebe2bf1d7a9a1b43905a1287551f65cc2a0e426b5f8480771f4f00004feb164784f57e79a50b5011485abe58e4e4eca9aad639c734a2c54f61bad57b618024d466782da32a6e54a7182ede5ce762cabdfe348b15682847c42274ab12a2a6c521dd8924d96ff063eee02bc7a8f335d11170b9ef43498562ea790ea70a47255da0c57f5bde60ab4baff25d85da223431a8cdd8cf2b121803d8a37675cb0648f1d9a550bfe51cb7564a8561ea065feff118fe297b0feab592a11a67db1eecd01a7e9737762fc3b86582fbd17da2364ce84b078a94e709abcd7759ad4ccb9bb79feaa64b98bfe3d1c33b2fb701b7cf711365b263f6a6dd88d356ecfe8411669d40687da3a7a90882ab089271fa14a2a89d93dd0a72121f63c820568eb10a3caf99466cb17f384a146337d53d6a8d3f85c969d909a8369d287ff500756fae5577f528c360f011e04e5a4a44f5af1d697b1d1442a6ee953e463cf2d5e0082ff578bf8bba8681d07882ed011877528c8ce34f30e045b33c4d217016636143e476ee3e59c267ae07cc67ed3a171e377db2fc5f53f86bf5842830c95304950487c93f9f8ec5ac29ad659a316fb2ea80407229ee2a6e0a7416b4d5fc41cd2df66f4fdb36a0a85374d79de3dc5d8fb38ce40be049ff7723dfbb7141c796631e36fb8b6f6c12e62161fbe39f6ea7f12a51c17172d7cdd75b1a8daf936c5b96ffb029cad7dcd3a3f7df798e02db6425eed7bc3e857c8d86e4a130e9c21fb97f76dc4d5a271f595fd2a98a2090b7e33ccfc74d6943b8f7695ac4f537960e50684671ca6a4b95c1eb6db5ba05e8d9f42f66b930ac8702ae7f9f9eaf56de5ce1f830af32a81b2b8ad243621c719c2e051c97390f3eba31137ec9744e968d9bdfea84cdee4aeae0c141e300cc90ce44329accdd535952c3c48dd9bdcabf71097dc339f80702269616dc5755f718843759941e79dfc25284c8e898a1c4d469a3e5f698c1cb69cd2b9f676a204cd3eaabe0098f09b55cbf1625bd873c8f9da9214399ecb88b7e478943ff311464db791abf5625b3b31be479c9da402380689f8e64c9343cf995bd05a24634215cb8c5ba0d1dc8ec5f447ee0ef8e2179a73296a8eaa588efbf2ab0b1a0d181a6ea506aecc50751611c1a97b285c3dfb5cbda14014100c23cbd29cd7f542ce6ce6389218532aa5e5db012bab985f513176bcb1c25904ff4795c0f70ab0fee92f7d4892cbd5250c9be4ed63612647b51b496c1015cb6ee9db7068bd3a6c6da80729d7ee815a15de93dbf9cee1da5d37bc9e212a5cf9019b75e2a47683c593a10390a1f7bddcb3ab796fb2fdb609c0523b76c057001979ee78c6208f13c8b684c4f0e4d5a7b4a7d597495b80e65b95ed3a68d279e239fa325d3abf0113061727251c04a4d629b2f85ce46426ef582e99b9e8a9b925a815d26bd1ce94741581f3568027d3b93993f0372a0cc84c650115ba119681e962a46083f2985fcb88c325a5277bf5b119e6a7b1508807ad0726628c3699033b34fe4502a0c891217a00322a4c8f21ff023fd820a6a0107707d95c85bb84fc5eaf8f110c3d31c42b691cdef2e9ba6a9a296a788c3e0892a934d7b72297538b39e076d21c167fb66facc41854293a82f5d34f245083c797cd9b0ffd56e3927d9adff9edd71c42fe675a962660527db1374901f08a8619a876bf9c6ae72f6ad28d18a825c8caff56eaca1642298aeb4af960b61ee1ef12e987c04719c7ee18c7bf334328e8faa00c6ed64af7458d9f9d1b081ac9d4d86d866df7b2060f04addaf6a9bc14a13d1e842a3b949c3b9a1e7da0468878d388a072993d418facfc26fa3409d2c7dc897fc816a6eab67554414a514a1a062de68a68cb351e80e4b13bc11c14d59f640ac59963bd02670ca352d533160d539b6e790052051530903d8ba56eae3158e816522c5a816e9e9811e41c62e812a34bbf1dbfde81132eaf6dd3c7162df172e8462b8c697f2fcddf2af1777f98a993ab3be8b33fb58b7e79c71d6191b0931cb1db9931ca4ecaa156cfec83bc6e4e71b8407722ed3d71946e67061742fa8f46abc2cff22f42b2be3325b22ad51c10beb6007dc6244da53a6f2e1ebe44bc17edd4359772260606708f5ab3d74e1bac61bab947c8270aa470c875f2ffefbe8a44f90109f0441669b52ed27ff35062eed54949a640e27051064ad0e5143af2998fd8f77e058918288ecde5466e26840d0ad7047ba12afc29b3ac81c6962c8b5679dfb63fe06487c27ae197946b66b1df90ad46e410a11a5a2043c01ea3c1b3f99352437dddaca1b9b862e9d9b734c7a901f63abad5b28e34122d9f170fdecb359c434387e6379fe5f16f9ffc77ef8dc4ba111ca517c3359023d42b16b07b48710d90aefd4a8dc1caa3e889bad5695b820a1ae09f68fb32426ea629ca41f674909959eb0e6207ac260d9c41f975560646a7f35984c134c2f442f3568b6a654eaa2af1dc2880f6f7916266159e864351ae8753adf43fe83916f407e6a2c4908d1b210239e98778d5a4d42820a71c1686189fbce1be74ae2ffa02260d7dff55a04646ae7f78bfe7af249fe2bbe368add0c934cad108703dbb56c1d5c95cc89c437bd27a862ff9d530e1d9e4e0cdb60030b3351474118ac5af2cd9584606928e15cdfa0846f97a4f1922860b6f193e0bc3e9f15bd58796edb10b862565900dff6e97772c2cb1434b8d136df85446e4596a708d73ae14f3cae9a8d8dcb6a1ae866d143f400f844a4761b52f64429342a7511d1f6402b87105511e9d03bc3fd53608846ee3ad1b1feeeb97ac68e9758f4ceb5827ecca87c58204304c4ead3a377c11c77bfe9832511b69ba41baac88dbe10989cbaff376ff47a6fc6f1ab5f6f986e02af6aec74d7881ce0676dd82b215c4a5b33087f7e8010a1808b53b3261c3900c2d1ab82496b6722979996cb899f3110492d7177651790b6f9aef0f0d8b3b0c68c871d026a95c549110e4438f8b349c42864ac7f49a9b5fe720663da1e78ac9e178d0ff6b2ef03e3cf912582139c1531142a338ba284b3906181bdf6998ab0f089ab041a50261bec0708fa763a68373ead7889f099ba59bdb9ef5277f51881e8aa3a3d178504522f7cb33222949de7d4a27ffcfbb4f701b8f27dd651f98f2db206e1e93fb101f62a323ef363ce5d1021a017d0b6dc3038ad09853f2012cb1f4980d641f9dcacba7694c5b129af5589391154e2b2f00477ac3130916d3b6bdcd230746b0d374d3da321192d079880a2024c18a737686513575649c98faa03a299e950f04d48cec6d7305176fa696014a773b8a0a3a29ab9f9a614e9ee1fb41032cb1cbe2a3b058f3cf710ad24f4927718adf81d5d495ad12e146fac979c478eb31f7d03898c536f03d89e439c1c242c44f41dcd6fa63d776e5249075e0aa313cb8dad528be7ae4e9daa8bd77690e299d38c91182c8913364f64b74e3db29dbf6e4928c4a0023ca402e9a43921cd899731f4d763841b235ff503c0b99eb0735179508700667527805d2f0dfcf3a0735abd005da461e4f35235c7935186db370f2d2090247b7f92119ccd0af87086e370b31213db7fd943a5ec340f30deb20d27d8dbe6ca41cbc6e49fd082d8a7f3108c181be905e480cc5fa2570471513043d7b766e282712f0936e5877e51e09696fbe30f5b5e4409381f807ad3a46cf9fa849676be217a77c81546b26ee46f51cf2dafe3e9d5603f1e549803369bcd03f638743f97d4f50f7fb6edf29be408b4eafcb5da34efb92548666a8b44c52d461ffddf74eadd2230fb056752950ed3831c24871f565cb3db29027d021bca0291ee4d75ed90cf0dcaf681c7e7c39e69d0ce2c2512226b37ce73e026ebd7ac5b8efae55da64e7448104a20f84a0c48156df988170fd2ccccde7c8c5faa3b84457c2c846037c73a1f52d91eb32f8689f1ff49b16dbe14da606539737a14e46343c73930b2c63b5a797b84f7e5910e7610f807906d9a006ff79d522319da034812187f68b5e1a7c6239149611a3dcb86b962d5c724e5978c6c3d5c06733d06503f86ab5f0637564f6e2d5435540fbc005d83343e26426ef89178dcf8395c768ed2fad0381d625bb2bdfd3a9cbc49f8668119ae7ccb4a2ea48a5780b1f2854130db0680e0df847224e8e175dd8aaa97c983fc72bf3485641edb442bdb33c1d797a8c4b882ff82ee8d8aa892dccb13e26a0a091a18eadf17c64951490ee3026894fe9c4fa48d06743b83af7f3b7cc4c66da1fa7d6c94a927381827e72454c77d3a92499056728a84fd1db1463945694472191e2dd222e321aeff0271ffad8fe532c131b00b1ed7ee05af4c53dddf1a00892d34f23f87538a6bfa8513527aea320ebab6d628cec97c170904986fda475e31a2a48040d8a492cf891afa68ca4872b3b15f77754d790637d2ee5efd5ead1de2671717b87ce8d9852b1d40529040e4ab362c9836599fd561f4e7aa3f31fb076997b832f96d3d31f6e6819b8b0f7dd3d0e173a3858d5b586da6d7a0906a44797753c39e06fd8699ce72115b3c84fa35549ed7d14da392b58d47d4a415acef4402205eb18303b2f3170d87004951720d231953087864c437d95320bf26efe97389e7fd62ee270774d677703b8cbb9795a99d183bcd295074d90b0050a999a8a85d99d4ea72e94bd29dfbf01aaebc66e83751a24356b16b9016e02a33639261184c4e0ec98dfbfc91cfacf7113c25c1cc66899d64e113f09ca72ad99724df818841b86917f6e57c7488013dd233fa05d19d6777a4b56eb6e146bfaea5c5b44a463fd3cabb4dea779ee1eee36b6f3dc145dd72289ed979f27e18d7fa1ddc0e045906f357d68019fb7a2aee4ce4e57560662799f4921c510ca43c628bcda417249cf351cdedb7ca44bc19776a9f81a43ee3f5636a84a20e779b97d3cedc37d3eca6f32c1d456c8e8a534e6f12a08510ee8bba178cc304f1fb3b8ffb714a782a7eb967ab12e1e42e28523f3ad55fe68cc2896adfdda97000266fef461eca40133cf3e639be97c6372d5fd68ddba17934b723ba9a17c9c658da96d7cde411c4be255028451add15384e4ffa51b2c14b12096b23fd061ce7ab4aba8c6c851a27266c5ed724236843720d702fad2b1b4b3e690d5d0f8d3b3eef53e2ea963c68523d295027bddc604b8cdae96c7af2d2986a5dbf5eac6d1789a62c8b7e43d4f05d57ef04751e153fd648a200717d970d811881cab51faef882cfd60c900c8bcff4eca93e7b978568fcfd2a708f0d4743c69c1c733c7eb336c6e6135b6bc5285a8e8a21fde2f9642fb6a61d9a5263d2c202124ed1725e54ee147da535321720a48f354af259293173cf7d6edf725dd7ac3a45349fa4ca69de52d128f68a370044c7283805713a592b1fb0eff0826d3714d8adbfc704dea2c95568e2cd83e207837ed2b71775a28700dd87bfc0f80ea20ac22cd9dd14a8cd605f32c4d17f80dadb3d318b906b50fceac7c383ef25444c9dc01eee48303781603df865272cb64fbc9d451e5e923f6662ba6638a975077f0b032905bb02db931b91d4f31c2dcf09f68b94536ff8f75b9ab8450582f69460ea0f341e3148cf03504dbd1044ef74199e7cea34321e621cc41d182109c91358a3013f5562ec05f352e60c2100695f2dbb95ca205d8f1330f7613609ba5dbc2d231192dd0e5887342e351ce25feaab2af7a339e24a3becf5c84f662a21d27e924d0be2867cc77cf8ba969509820a0cade411f86f52e5324861e199e75594f3ae58a33320044aa4c77b910328536f0bbf5137d48248163f8520dc708c1aa696d748de472326ccc3f85aa53984cc472ff364fc26b054f222f3824c0d890d85c90cb6ce0ca8778d0bb3432120e46aef110001bce58319325567b75e0e496eaca3b36d519daafa63521431be8f7b1f9064077be93e70f942c14565e6b002edf778219aad206cc1884449b8f11af02522a9737e21e8052b07f287bf9ff18e4ff66be18d424b4eba1ae27dfb21fee730bee122e5a129aad1fdaad1c6a3b7d00672dce6ba9c2083ad47817171ab0b56ac7eaa9733efe8d024349dc93f8c2c96481dd3e35eeb280b2f87bfd130885523cf22c884333c87dab4e0de1b0ac4effec1c364082b15e386f526dadd02db9512dd92b15d15343a302dd06a6454dc4abd8319c06540c3f2cbdc424d5b9605c6ab58e2826f9fb7b7502bd0772364bc4538b62a492379c445b2ba2bcfca61a262655ac0d83484e68498299169d7b8e4c84a39b869fadf51c597a44d8344b940bdf5fa67f86f3c5a7b2fd0126eb7ce896407bd0f2f5df4226237dbaa6eea260a4153cbb1f4455e15e11e9bb17ceb2e6d1521f6838b2dfdb7e93a80f5b3869cf46b0b59738f6faeec42f09265a5c7fb1f2606aff58bdbe128a67dd5c163966c76880f9d87248055cd27aa848fc03a968bf44f39503ebc1106d39ad4eea88f7c802dbdc8dc49fbddcbbf0f7dda8933ece50f8212755d8dd84ff732a2d74d847bac3cd1c9201f79eb28c6644d302a7956fb64b4300e010244fe933813b30f82884ac7e1a3f82a28f5c587aad2ad3580b62fc7567485c73e71d1cf029d20157f5a40b3c1b5a4f428b7c394f13f9dd5726f43e8fee581ded5166725d2747afcc27b2369193ad081491b488a432582b1cb614484b3b3a039470f174122d620ed31616ffbda251f4349b042deb91dad6112d1b7d1020734617cd6c06d62fbc7c6dd7181ce383b5cba9d21a786ef1bcc1e8a50007a22ab7913c13c26d0b86c756e4ac3c0d1b3903ef456b34b013efd8d721c447b855d9e894c3bcabe8aa05115aaa66b39cd806f821f93b8f502ba3828112cb20d260779059a0bd6df033920c41529d1ee2c868ee3ad578405a1e58a08772fd401b04177f29bb241c892b3af2a325cc8d3abbde5a8ca48d089cf5e8439fdd7c6b024843c71238b89c36034fb96d07df8f64bdccaf6fa911f26b8d75b8acf3a63f0f70d2d7ff8d8ff6f4bbb3da2fbcba04d537adb9cffe8addcd9801ff96bab67f67fd60d783ff264665a417df3096fa8e055272bbb54f40dd3ac551769e44cd4c2c333d0e7013159c4501eca279730c6f704007182fd95cc38cfcd7714595b2553e6733aaffba9e8ff75618a3c48a30da5790e6a1d6c631b8f66ea153d181fba011689d0d8ccb7ea066ec741409a5c40a8dcedd19b137d3bc09658874c5edf03d6cebab19b6139804d83fe61a7dcb7cc50bf9a5c1634ed887add936b21cdb1bd8c995a9f608d13de53aa3596fd23683d9b2bdca6f3b7f7f94303b3ffacb8263a11745bd4daf385d948b3c5dfa97dfa8b79d16330a42d30014587e063451d81075eda38a49fdbec653536562ab586878d48dd724a173296c80b8cf94445f7f058da47067f6e6f10d80e9d43f0ea6f8e3f8de0b369d7b59f77baf87cbaac0d97f91c8005846b81c2a32c3e1284ad4d08c81f40b5af2f4eefb11f35dec3315068d91cc2f706f757f8628a563f48343fc7a86921eb92d682e28a98e491be72bc7fea7affd99cae1dda59ba56a327cb37db1b4313624b3f3ef9435f2d45eb0c947e370c8245e9c8c44dcaecf5e6e16291082e5ed1d90e969bd4b587eb50a012305fa0f4d10a0d01814b248ca61e1aa86b9e6d85baab9d67a1ba25e55f61a5404c4a7515fd874d145e5284c1f854d365f1a248b029a9acfa746c4cedb9bd2f0debc959f1f444530250c1689356417f6e21c507b0965110eadc14edb9c73296f4656dd7a6183e3ca3cdde835ab0ecc814d4c127d0039dd4cb4949f7e8ac2ae7f396a9b1eefaf0cfacd5c4ada707d9b2b072f2df6fc4a65fae3379f7c4a2406b44afaec44535e3b3ad9eab558924ae4d1bf40ff48bd510b250856ee5f936862ad546931bc81871b7ee756d02ed22e241e25d285eb4e881235d30fd7120696d596a17a9cedb22636ea63fe75f75119187629ea78517c3a013ea22d71dac9aa7543e62d04f5616794afc26c5c5e4ef765c52a7ed9a92ac8663e2be8df57469b6ad44526be816baecbb233d0aa5405a6cd564b4f92586355664a4c8a36334269e6affb3926a6cba22d21504af408f14863ab0889fd7f4d969a181f6bad094a7d2597adb2c8d59af3cb130c965e0cda81254927f4ce2522e6812549e872a277c4f88a4ad872fe7a15f014bd2a2f435140a5193be744430dcac5b66c21630d1cfcd7c384af41e268a3ca771f421cc225594fb7cfba5b68823e7889ebd9da7365c85664747108e935d2bb7cb6d95f09eb3e28bb7cab2e88b666ceca812ee464c75e8bf3bed2a1ae302654275b5c6ad41a19aa2f4e4142e063e4cd0b4761dbbcff37253a640f9080b27bb2b2065f0f07619e9981362c30104b5aa432e9ec21331aa6cd35ae75cee42866f8cdf95546fa16a4fe48b4377a30659cdc8eb568a76a954a52ec999841332dfbbb08f1238724e0f16a6b8c8d3f75261760e0a22681114b85ea8720913792d6670bc2776247718a014fc4de568bd9c1eceaad6b129d70cb8093c6407e58a0cfca0562a1ff3b21b7871b875f970bbf5df87340af63a7a567a25e8d9958cfd2570b2715211365761f8b59fd777f4b27174468b0833a44b4a6f588ccd3fff893a9ede60f3a1681920cfccec70e8008a2e16101436fee0cedacad5fb0d90b79e0c2869c3484b5542420b036aa55ed6f57b99968297b3ab548341c804d88fdb5e6aa5478067a51f2a37566b88460d043bb71aa0ead98863b908a1918029577834cd161311b324b09b817c56f2acbc8388cc8802dd60dc0a69f8b5370d10f4f9db327f9e11effbd38c587526f3ab516fa32a9d8591a831d9c5afd4abcf055d80bea152ede1cf96bf5a57047d88cd8176c989f7d284b97288351db4d216ca0a39e5c53bdd3f0c3fc2a830736271c1886daa2e2079b59a34ec8d3ac67a61cf2ff649462c132d09f68d3fa465eed54e30173220be4e1da12422767adb3bbe36a4a10c74cf449e61c99489c9e6e159a00f629d9879512b2425598d55ed63755e1a3305398f76fa20d7511fce0b68ded424586843f1c4eea894e3d57da9e806cfb4853e06b7eb02da7565483cfaff0ab10ee737547daa40b832fdbb28f25cf6d5e148041ff13281184f3293781ea34cd87bdaf727fbae75dd3e1d56dc559bed44a96274b464ce38479d6af12296a9492d7f8aa69289ea64645d281365ea29c545c0b7ba5ec141d324a9f30feb203f237c1a73e17a0e303438fd9f9b6f917a0117a6e89ee2b8e9f349e30dc029ec87f5963563268393bacb4c2f7e5ff9d7fec9cbc171b9e23d8305e87b09316658ab08db192630a972db387a93c037d64672d6b5822a2d139871ebd9f07f9c8bbd4146c9249bfb2ba8efa24ffdb48bc9cbe1875219395d6f4258a350ad924ab80f72f455b80bda20d90be263635a849d3772df6886a933900be905f34c3ca11b960bb1673141dde1304ee30018eea0f979b85162f2912c62423d05b497eb64f98f60246cdcd71ac912d05921cf3a2d2a937cb2f7d17d470020a38c6d59679ba8cfe7660080d55818ff98389c0bd1b49f25d9e3a2f692b23d5d1c265115383fdeaa947519e24bc0c37164904f5718856ce27102b5af8f20964b08ead71a142d7c8871151ce02ead0bffb8bcd8ccf2c2847cfff8f860e395f51615aee07631445dfb2c320378e04bf74afc85dbb676b617ad66738f5e0309980943269472aec68899a0e51706cdf670a58b185756c74f96322e71ba66c041b1f3538a06a0e0366f15afcc2d5d190c19d259870861fa3c3e82d78330846940813c402390eb816e91387900a5f01bf496715bb29fcdc4bc515bf8e1a0ca9aec01dd202cfbfd04adbd3c3754eca52ffac986ec2e260c3c071775b64dd2495bc0fa36c381cf46d1283b1a144b817cf4366621ef6cb1bb25f9a54b4b3565e80a5d17349ccf5393195dec3fd3b71734a36d578acafec412a68f2d70ab321408e498d570ee1ca3d35f27745bf1e8b5ebb8abf5d37062c914638cc086a7d6ef325006aae1a2a37cb2d8f700b542aab4d8fa5c29c5121310a8360b29a337483024e5e8380c3c59e04ff587faf0654800d23e0af1d7ebc6f284466078fdf2faf7b7de870957cd3bab613c7fc579e74c2f0f153ade6e441a4bb8c390ac3480df56e1137eff0510b96380f2e996f3b1427a10dff975b534d06ce9818e4fee152b38b5e875a03c31d17292c9d2908735ffab2ca2eb937eb514a2fc75077aff01202b231a84103b32e352a9ca5bdb25eec472c9ba52aedadcdedc4c31b12504678f528038c7d16aa4b996f4901b3696259646e7bc2ec1c9a2e0809c49eea381c4e455c8a55937d4b128ad167a51c04c235b2e413e34a738fceebb7ff9d9742cd7011c6451fb992c6beeb01300b5914dca6722705134ada3002073de9d41704da25540f13248bbfc2325c3a597f117e63cf4296f2ecd38bc086d8fd5645154537af247074c6ea2c21e6b6b514c3d1f2c5e7d42d1857e6e29f07e2efe20a29ae30d2cc4cffcd6c09ccf618fac1abcb893a2d4a2d8c47550206d0b6e0c9eeb8a367cb79adcb2176a8f408b6612d90252a40c708cf95c0b78a6f2468638b85f213b097ab4dda05ac5d9ca4de34ee8e0a618846dcbf9ec7d5cf531e98d1d0169ca9e59374fc9fc1ad5479178baee2909ac4e3dbf1d61db5018d9af8cf14ad3cd7cde3627235255aa45ca33a542ff04b610870f39ee52ae69039bdf1d69cad8191de866d754c0695e97e5f163162c818010654d3a81c05fad727502dd5114bd1b2bcb8265ea5a6142c005c9cd2a0dcf020bf39d0699d17c5584e5b51a9a3c619a646eff5638edf4bf785383006880e03c804da667ae9e67386e93dd84a428af70e31313a0240a4df982f6c184d50180d9d6c2ea2f97e19cec3d89a3690d616e5d8d2ee084bf0b04f6d2260f33f42547c4a3cfb1a2ebbf7b7f59d1e38b74e29be55fa1d643150e1b5cb03033cf5bc3ee1cf8e450218f519aaf5d2676014d46f0f29719baaa98c14c84bcf2311c10325e210a4103e70753e4bdd64333629147771bcac5cd76d955621fd027d1e11cce5188ba994ed7ccf124e4547bb9fdbe3ce8a1ae6d45d74ffb1c65985a02177fa440f57689533f49b818a837f0fddc6dcfd6f61e3c0bbd77be62ec7e896166e153c83479273e2cc5098960727be18259d2bdde7c99595f7427bdc5a3e155948aaa5abe56ea3f3deecd859e8d7208cd22381444201be96654bd21f4701e0e51e3a803a9f6b3fed7309eec0d780367bf9f468872c7726713492b2768ff05aed53eec31176e2cf6920bd1ce310e85286c839eec8c99ccca169e180718806b2b2ab1eb89b61a00ca9d9d37bf4e6110146a974f0237766c99b88acd7294b069c3a3da9b1b37ce687a3e315a7f21f644af6283f143c6348b6562e1700ec7a1d5e1a757954c40ef4d6d381d9b42b77cb890b4b7ff8173486a781896b9eeb6896c93fd778678a490d9fe0db96b0357f0b642f2bece8240b37adc0a2d7a21200d29090aad34b9eafc26e54da9f1ab988603d8c854e08b4342e6c192bf45d34731816bf35fafd5eee605ada653da91f0817026b85bc8500d5a4030c83c5b510868cf1972b2dcff80a559c040b6dff6c2c78451fd11b9f79eb1dfaf53c702db13bfc731b8920ee6a1de48c9f3a7b51fd12c89be9743d9f597905c6ffe15f343604828e13e48c4ebb08f5f1dbb609989e76da51cb2f28b30dbd172e7f26cba9a79ec015ac32dfa4a3223419bba437df4ccc15f8a6ed06e2099910c63e486841ddbd5bc2d303405bc34f8fd44b66069a5582350a81887dac1e36eb3f527693441d4fa9ae93b4d502d9a30cf7580550f41e0be6043b6460061fcac23ea96377baaee6bc4335c565b5ed639e0aac80eb184510d8676411c7e45d68367ca93bcff60271f504684c254ea54a895e4f377177edd21d8760c859060966b7a41ae45211f10c22606ebe806ee82afe475794595fc93147154ba0838532d28a250f6eb36611bec2218bdad338f74734e88ade2cc5d6ce96ee04e68e807caaadd473455f9d69c4a82eaba6f4ed7339735f54db588bfe50552f6a742d8a26ad98e973c138a89d1cf79c11aa65866452d691d0657beef7fc22becd12688e853bb983773b11dd8cec6faca4220c78c08affadf9fadd01c6afe89743ebfd863d7b8c17b80c7fa5c9f676ea69e372836cc26f0c040318b6aed6db6c14d4295e89f7c9bb8931c44320d97195921fff3c16ea4174d67f9f92ce9db5adc36070cbdd43264c49622e1812f40d6f5eb59f0ef2bb87e8ffafd4c7286a626a7db3518f9b5c163f65713dc0e68b4e39b6a4623287c01de5f85f842fa1cd1876c66619fdd7b87c2856a0745baa5bf54c627fbebe6901b3e16a81fc08c02c864ff47619507d1d289e874a8f783bba7c1e86817d12c4b48e974cb50132dcd4c9879db8f721e1944b0158449173460f2692d6288bd135445fa33677f5b7dbcb2a3040bcff4a90a8e27eee700bff24621943a783a3c00ef7668ee64020420c9c3a28b3810ccc6e370e9de4a87cb2574495645647607a1347926b5f2322342ce36b87f8c700a3cb8137fc73d258e000718d70c30f191c0a8c83a0999d2c4107e72bf872061c41659e85914ff644778a0ecaac57f1252274aa54af8301ff361d24611c38f1963d1dd59c980f21cb514730baf1300ff5bfe23dde1805ebb1a5d84045121ddd6db63a2045679e58e21e83a5224214a71791420dd17b2c7951c3131797c248f8ce0e58b90c1c90fef92dac51bc1134a5b0017fda6e81ea4c05c403322055d58e4c193e7dec41ba22b1e778512ab99d074d0a21a5c38961cf2e34fe92b9a8cd37976e5623956f7bd137c55fe23e61f6f97e81b8760bb9c885d26dbfa8dbdfe9ccd0e970a2f64e32b6c5444e8941a6cf150c7d454587b6cda78e13a2225415e9e4a633b3d0ce539e038271aedaeb7242afc0dfb58e55aa67716dfdc25654c4363868f778e338f65ee8e530d6012567f722d5ea458b0d06725a75ad5d758c607f78151db4e9485791d8ef5dda0d5e2b9e2b11d9675b81e97559af1cf71ae2346f1903a8e70b6f101e72246a361dfe5d5a6411c74d62bacc66c040b095deb217b04ffe19971a12892d5f898a3a6e7eb0f25cfd93110d31e11fde373cc82bb85e8525a5ce4b0f72beb0a7c64f56386244f0b943a0c5ec331df13a6bdc0d3ed0c3e89810c6c57eb25319b6340a47344f5526c6baf5c001ccbcbdac9ffabc8c6efa08bc3ac0fe1e3da55c1c7a0ad415fab6c47beec641a1e922491a5362366c9e9f96f9ffca16fc1d796b0eac4d5975e465d12e7018fa4aaad7317094cf125b4951a7ba4ae962e216235870f78a721155e91b4b8ecb6e4ca13068cb275d3746b7f726a5d259844856f1baf66a5e239efa3c6e6dc2b82489f201bd8ab2217a579bcf9830ddc9ae0324de3c8f1c6b94d8f7c3ea4e2740c9d1e484f149d2f3127c8fe8885e234a89b51a0cf0120105ef23878efd3dbfd6793e759b6d1e2d24fd6e1b888adff08aedda96ddeb39a7173c1dacee1e08236f43ab9c62e12930a99427ab8402256b314863752ce84128f374e83aab8cf03f1e999dc412d4a2159032629ff20c33f6bf470763a5806a0ce850e90ae9cb5f4951fa146be14342ff74982243daaa1927bfa30b51e89f0f317671ab39d74e26ec0e044268bac58834bdb4e1fa6011fe88098d82cb79bfb4e4977b522de267e345108521650bb984d7e52545ca5f968b1e4711054b50e32af92557d3aca8876e806482443c104a1681f3eea460ec6c87e851435c0fedf38b4fe6a46f6982531cdac916e0782552465c523ca5b04e4bb98a1ef77c87ae0ca87b6a4f3142f28737ef50115abb326299083e57505ea6852ce55598d0c8ee14c6490cd54be810380643833f922dd542cd67e31defa256825bb977d4126d7b00f53c90cb49638b8a9e43ec121568167e36acd6e3865ec91b94bf5ac1c86d455598fb13f7444a6c70ceb186f69bff09baea965ec83361a2cec8841a5c8db8e77bc453491a2f4f1bc489175446e0885c14b14b6227ef7de980fefc3cf4635bccde62ad8f82bc45c95969f76d467d0532e9813c5d3892dc0d89753202ec1a81ce6f22232318daac3785bdd4f2b19391636c2ed38fe912bef4af8a587bf820e2316202c1253c60fca72a339a32f94e85ac2c8148ad598cb1609b34ed1f8663a3839b49a65c9ea5998803aa026a42e5dfdab112a2deede3ce3536b94314dc4aa7631cf5ec6075b1329e8a80b2236177f415b091eb6de0d78b5639bc740826fe69d0111fb2e5b7a4ae009c8246beacf1d038fc090046b83157984dc58b087d45daedc1955fb61a19eb6b73645c15ccc5a33be70f68e447cefb8e1cd736c65098acccbfa23c75c5768ce4120e7b445e86ae7765e7e2be29adbf92d779d238ef2cf64e450e2bec229c06ea11f644ff571e7e1aec96234cbcac0366c066813674a8cc3eec10848afb337ba2693fab5a796e2df891445aecb663b4a731bd6d7529e8aec698cbad19ea0b247c1fd2ef6d67ed6930517d7bf72dd243d5508f638c0c0b3bd9f4d0bc3aa70b226dd7f3cb88a608b63670c0ddcba5788d59ca724107b8feac5a7a042ebf61e2520f212592a249147119f808722b986a143f8c1fe44b44e4305f4285214142219aa8fdff9735e5540ccc2b4fc1ec5dcd1038f7ed3391663c1d87ff86d056a98775dbe01b1027ea7f6dcf79a3a1858d173bddfcf9da945849890b4ec35c0cbd84262fabccbcfe99346177602200608847b25889172025b0f4246a404fa686a6affc711734739580d131e39c17712875083e7d153025e792bf48be691d4869cb3cb04ac44aa660174dbb461c8388dd6ad6a750322ccf2dd65b43fa1d60006708085fcb92fa79007ddb5418274c443fbdcf145a81b48974b4ae3934aec1465909c7b008401e80359bc2066064c7298434f38dc179f2d52015c615b224396925f2f99790b918d3c0cb95a963512eb5c50f0c23a07df2fb89f614e30c9cbd3ede876ebd3485409417d5e11c37da0e00283ee1d30207f12dfc7c75b2b30c8d76745e2d03dc5ed446ab8962481b86a8ea3595554a67f381ebdb6c41590575ecb8f7c51e8d6ca8d4e06fb07fbccc2c093d883b46d500815ba7c9111526845a6e19721070aa160669101261a581904a19f124e40691edae101e08078669c0783ff84de022dc8a4457c357e4d71c32f26d7ce02b969ec1a3f4adca5d8124795b5da395cca4433ab39a781929cbaa06f288d8db4d5551215f94f0503b774f20c488c2f37b5164c8db16fe5a067221afea6d126eee3143567287c133c87fa901a3b31ec242e39d0a0d600fe5e7792b583fac2fcc71a01a13c14e125ee107fbc1ff34bd377b0292b79b438907bf4cfab31581059aef6fa96d9c72c1351ba02e72bf4522b2540874e20a8b12e7b4326ac426d2c042c2946abf978685fc155c6b84965ea52e75c7bc8df641cf7dba8fcd04796571401bf9c73bfa49b673cd1c55465f16c8b8b89afd9190ed1ff82dddd14fe76999a86fcdabba3c18637168438ada2e64c44cd4e0cc2f5ab6ee651ac38324b7bea8f79939c9e9bafda57206ec569ad7a86ec2c5ed31dd2d4de2917df9db4fdcaed46d82321b461f954f40b0dc3d2d1f557b03f3d151b6f8c64bd0ed74f7cc785539125fd07605fb92e0a66a808190275486cea2a9e793de62b4141eb9d20386fd98d7e2fd8e76b4d62b2e612a03516c7b09c7f18d732955aa99b5d1ac3cc6a72403b5a30429082c4d7a2c34c1194ea4fc96d016b6eec3d156f806d707a49070575ce725a0e560f70bfba00d8da534bef7f14652040e1a40e673241c9567d249f6f5c52c82f76069fdb025a88769faab6e6db96f8cb79a13c57ec375f40c13a4cece2c98297ae51360590191ec826f4f63ce654cacc017756dbd51aec183603b75e081f71f73e6c6a9c86e486bcfbb4d9ecdca0a51e3b885c097580ffbcd1a6e03efb3e3905cc39d79a438d8f4ecc8b33217e9482ed9abb66322a51a6300a7f0034d4b773245a020f9ba350a53629edd16ecfa923504ea7c82e5eae92b7186c0b17ed2cc0bc4e2a37cbcc2ebf38b458fedc07cd9d9040981d0e107dfafc3e00106266cc1b398fed4afb038da170800bf165f15efb5328f745ad159525dee9173f3427711daaa933c1090a9da2bd9da470273b8b4482c3259d5d3dfaa052eb4caf47e51346cbc0697ad4c253bd15c5ee21352326b42c722e4d4c18c097b467d5013d1c13e236d1260f32982595569920fb78a2a1c0acff116dcfed62accbb31329d6d1718517968013e7bcb51686da4f60558d319773665fc6bc9d8ae616a386f5ecfc7749b96f63bd31c3c42b5c471bf756814053e847c10f3eb003417bc523d30cfc7749b96f63bd31c3c42b5c471bf756814053e847c10f3eb003417bc523d307eb994785409820c858f2100dc162663312f582480ca25389e3c4a7d9be3468278d529f0b77dad513878eaa74e65b2d0cf2cf515a94cf1c7cccad0ac2aa75b28libopencv_aruco.so.409libopencv_calib3d.so.409libopencv_core.so.409libopencv_dnn.so.409libopencv_face.so.409libopencv_features2d.so.409libopencv_flann.so.409libopencv_gapi.so.409libopencv_highgui.so.409libopencv_imgcodecs.so.409libopencv_imgproc.so.409libopencv_ml.so.409libopencv_objdetect.so.409libopencv_optflow.so.409libopencv_photo.so.409libopencv_plot.so.409libopencv_shape.so.409libopencv_stitching.so.409libopencv_superres.so.409libopencv_tracking.so.409libopencv_video.so.409libopencv_videoio.so.409libopencv_videostab.so.409libopencv_ximgproc.so.409rootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootrootopencv-4.9.0-150600.3.6.1.src.rpmcmake(OpenCV)opencv-developencv-devel(aarch-64)opencv-qt5-develpkgconfig(opencv4)@    /usr/bin/pkg-configlibopencv409libopencv_aruco409libopencv_face409libopencv_gapi409libopencv_highgui409libopencv_imgcodecs409libopencv_objdetect409libopencv_optflow409libopencv_superres409libopencv_videoio409libopencv_videostab409libopencv_ximgproc409opencvpkgconfig(gl)pkgconfig(glu)pkgconfig(ice)pkgconfig(sm)pkgconfig(x11)pkgconfig(xext)rpmlib(CompressedFileNames)rpmlib(FileDigests)rpmlib(PayloadFilesHavePrefix)rpmlib(PayloadIsXz)4.9.04.9.04.9.04.9.04.9.04.9.04.9.04.9.04.9.04.9.04.9.04.9.04.9.03.0.4-14.6.0-14.0-15.2-14.14.3ed@e@e_@c@c@bbk@bQu@aaa)@a,@`B`%@_`@__]@_^ _>e^^n@^&^%@^O@]@]@]fl]e@]Z@]N]M`@]G@[@[ @[ @ZkZS]@Z[@Z @ZYYZ@YYdYjY5GY5GY*W@WV@WEV@V@V'@V@VяVVzV^@VBU(U@U@T,@axel.braun@gmx.decabelo@opensuse.orgstefan.bruens@rwth-aachen.destefan.bruens@rwth-aachen.dechristophe@krop.frstefan.bruens@rwth-aachen.destefan.bruens@rwth-aachen.destefan.bruens@rwth-aachen.dealarrosa@suse.comstefan.bruens@rwth-aachen.dedmueller@suse.comjengelh@inai.destefan.bruens@rwth-aachen.dealoisio@gmx.comstefan.bruens@rwth-aachen.destefan.bruens@rwth-aachen.destefan.bruens@rwth-aachen.dedmueller@suse.commliska@suse.czstefan.bruens@rwth-aachen.destefan.bruens@rwth-aachen.dedimstar@opensuse.orgstefan.bruens@rwth-aachen.destefan.bruens@rwth-aachen.destefan.bruens@rwth-aachen.destefan.bruens@rwth-aachen.demarius.kittler@suse.comjengelh@inai.dejbrielmaier@suse.dechristophe@krop.frchristophe@krop.frstefan.bruens@rwth-aachen.dechristophe@krop.frfabian@ritter-vogt.defvogt@suse.comschwab@suse.detchvatal@suse.comstefan.bruens@rwth-aachen.dempluskal@suse.comecsos@opensuse.orgecsos@opensuse.orgmpluskal@suse.commpluskal@suse.comkah0922@gmail.comstefan.bruens@rwth-aachen.detchvatal@suse.comtchvatal@suse.comstefan.bruens@rwth-aachen.deolaf@aepfle.dedimstar@opensuse.orgmartin.liska@suse.comtoddrme2178@gmail.comtoddrme2178@gmail.comtittiatcoke@gmail.comjoerg.lorenzen@ki.tng.dejoerg.lorenzen@ki.tng.deolaf@aepfle.dealarrosa@suse.comohering@suse.deolaf@aepfle.demlin@suse.comcoolo@suse.comcoolo@suse.comtittiatcoke@gmail.com- Add %{?sle15allpythons} and build python bindings for all configured versions (also for Tumbleweed)- update to 4.9.0, highlights below, for details check https://github.com/opencv/opencv/wiki/ChangeLog#version490 Highlights of this release: * Core Module: + Added cv::broadcast + Fixed several rounding issues on ARM platform + Added detection & dispatching of some modern NEON instructions (NEON_FP16, NEON_BF16) + Added optimization for LoongArch 128-bit vector, detection & dispatching of LoongArch * DNN module patches: + Experimental transformers support + ONNX Attention layer support + ONNX Einsum layer support + OpenVINO backend for INT8 models + ONNX Gather Elements layer + ONNX InstanceNorm layer + Better support of ONNX Expand layer with cv::broadcast + Improved DNN graph fusion with shared nodes and commutative operations + New fastGEMM implementation and several layers on top of it + Winograd fp16 optimizations on ARM + Tests and multiple fixes for Yolo family models support + New layers support and bug fixes in CUDA backend: GEMM, Gelu, Add + CANN backend: bug fix, support HardSwish, LayerNormalization and InstanceNormalization + LayerNormalization: support OpenVINO, OpenCL and CUDA backend. * G-API module: + Intel® OpenVINO™ DL inference backend: - Introduced "inferenence only" ("benchmark") mode in the OV2.0 backend. - Fixed model layout setting issue in the OV2.0 backend. - Fixed/relaxed various asserts in the OV2.0 backend. + Core and image processing functionality: - Fluid kernels were rewritten to new universal intrinsics. Thanks for this contribution! + Streaming and video functionality: - Introduced a QueueSource: an alternative way to manually push input frames to the G-API pipeline in the streaming mode. - Introduced VAS Object Tracker (OT) for the various video analytics scenarios. + Python bindings: - Exposed VAS OT in G-API Python bindings. + Other changes and fixes: - Updated ADE (the G-API's graph library) to the latest version. - Various code clean-ups and warning fixes. * Objdetect module: + Implemented own QR code decoder as replacement for QUIRC library + Bug fixes in QR code encoder version estimation + More accurate Aruco marker corner refinement with dynamic window + Fixed contour filtering in ArUco + QR code detection sample for Android + Multiple local bug fixes and documentation update for Aruco makers, Charuco boards and QR codes. * Video: + Google Summer of Code: added a new object tracking API TrackerVit for a vision transformer-based VitTrack. This work is done by LIU Pengyu. * VideoIO: + Videoio: Add raw encoded video stream encapsulation to cv::VideoWriter with CAP_FFMPEG + Fix GStreamer backend with manual pipelines. * Calibration module: + Multiple fixes and improvements chess board calibration rig detector. + calibrateCamera throws exception, if calibration system is underconstrained. + Fixed bug in findEssentialMat with USAC + Fixed out-of-image access in cv::cornerSubPix + Fixed crash in ap3p + Fixed stereoRectify image boundaries + Fixed "use after free" issue in essential_solver.cpp * Python Bindings: + Added type stub generation for missed types and manually wrapped types. + Added read-only flag handling for Numpy arrays. + Fixed exception handling and bindings for in module. + Improved error messages in Numpy array type handling. + Fixed constructors documentation in Python. * Platforms and hardware Support: + Experimental CUDA support as first class language in CMake + Added experimental support for Apple VisionOS platform + Add support Orbbec Gemini2 and Gemini2 XL camera + Fix fullscreen behavior on macOS * Other: + OpenCV Summer of Code: semi-automated refactoring across multiple pull requests by HAN Liutong made our CPU-optimized code compatible with SIMD with variable vector length (RISC-V RVV)- update to 4.8.1 * WebP security update for CVE-2023-4863 * Depthwise convolution 5x5 performance regression fix - update to 4.8.0, highlights below, for details check https://github.com/opencv/opencv/wiki/ChangeLog#version480 Highlights of this release: * DNN module patches: + TFLite models support, including int8 quantized models. + Enabled DNN module build without Protobuf dependency. + Improved layers => supported more models: - ONNX: Layer normalization, GELU and QLinearSoftmax. - Fixes in CANN backend: * support ONNX Split, Slice, Clip (Relu6) and Conv with auto_pad. * support ONNX Sub, PRelu, ConvTranspose. - Reduce Refactor for robustness and potential follow-up improvements. - Fixes for Segment Anything Model by Meta. - Fixes in nary element wise layer about broadcast: * Fixes in CPU. * and Fixes in CUDA backend. - Further increased DNN speed on ARM and X86 by improving convolution, covering 1D and 3D cases, supporting convolution+element-wise op fusion. - Added full FP16 computation branch on ARMv8 platform, 1.5x faster than FP32 (FP16 Winograd is still pending). - Vulkan backend refactor for better performance and robustness. It runs 4X faster than before. - Added API blobFromImageParam to build network inputs with pre-processings. - Modern OpenVINO support. * G-API module: + Intel® OpenVINO™ inference backend: - Streamlined preprocessing in OpenVINO Inference Engine (ie) API 1.0 backend. Note: this backend will be deprecated after OpenVINO removes the API 1.0 support in its subsequent releases. - Aligned OpenVINO IE API 1.0 backend with the latest OpenVINO 2023.0 (as some features were removed there). - Introduced a brand new OpenVINO API 2.0 backend. - Implemented the required inference operations for the OpenVINO API 2.0 backend. + Python bindings: - Exposed varions normalization options for ONNX RT backend in Python bindings. - Exposed Fluid kernels and kernel package manipulation functions (combine()) in Python. - Fixed issues in Stateful Python kernel state handling; also fixed various issues in Python tests. - Fixed issue with opaque kernel output information handling which broke Python custom kernels. + Samples: - Introduced a new Segmentation demo with desync() to enable slow-running networks in the real-time. - Updated stats calculation in the G-API-based pipeline modelling tool. + Other changes and fixes: - Fixed tolerance in Fluid resize tests to avoid issues on ARM. - Fluid backend: extended Merge3 kernel with more supported data types. - Fixed standalone mode compilation issues. * Objdetect module: + FaceDetectorYN upgrade for better performance, accuracy and facial landmarks support. + New QR code detection algorithm based on ArUco code. + Bar code detector and decoder moved from Contrib to main repository. + Introduced common API for all graphical codes like bar codes and QR codes. + Added flag for legacy pre-4.6.0 ChAruco boards support. + Multiple bug fixes and improvements in QR code detection and decoding pipelines. + Multiple bug fixes and improvements in ArUco based pipelines. * Calibration module: + USAC framework improvements. + Fixed stddev estimation in camera calibration pipelines. + Fixed incorrect pixel grid generation in icvGetRectangles that improves accuracy of getOptimalNewCameraMatrix, stereoRectify and some other calibration functions. Charuco board support in patterns generator, interactive calibration tool and calibration samples. * Image processing module: + Various fixes in line segments detector. + Fixed even input dimensions for INTER_NEAREST_EXACT in resize. + Optimise local cost computation in IntelligentScissorsMB::buildMap. + Keep inliers for linear remap with BORDER_TRANSPARENT + Fix distransform to work with large images. * Features2d module: + SIFT accuracy improvements. * Core module: + Added REDUCE_SUM2 option to cv::reduce. + Introduced cv::hasNonZero function. + Update IPP binaries update to version 20230330. + Improved RISC-V RVV vector extensions support. - Support RVV v0.11 intrinsics available in LLVM 16 and GCC 13 - Support build with T-Head RISC-V toolchain (RVV 0.7.1 and 1.0) + Several OpenCL vendor and version handling improvements. * Multimedia: + Added AVIF support through libavif. + Orbbec Femto Mega cameras support. + HEVC/H265 support in VideoWriter with MS Media Foundation backend. + Fixed FPS computation on some videos for FFmpeg backend. + Added support for VideoCapture CAP_PROP_AUTO_WB and CV_CAP_PROP_WHITE_BALANCE_BLUE_U for DShow backend. + Fixes OBS Virtual Camera capture. + CV_32S encoding support with tiff. * Python Bindings: + Python typing stubs. + Fix reference counting errors in registerNewType. + Fixed ChAruco and diamond boards detector bindings. + Added bindings to allow GpuMat and Stream objects to be initialized from memory initialized in other libraries + np.float16 support. + Python bindings for RotatedRect, CV_MAKETYPE, CV_8UC(n). * JavaScript bindings: + Added possibility for disabling inlining wasm in opencv.js + Extended JS bindings for Aruco, Charuco, QR codes and bar codes. * Other: + Several critical issue fixes in wechat_qrcode module (opencv_contrib)- update to 4.7.0, highlights below, for details check https://github.com/opencv/opencv/wiki/ChangeLog#version470 Highlights of this release: * DNN: + New ONNX layers: Scatter and ScatterND, Tile, ReduceL1, ReduceMin and more. + Signinficant performance optimization for convolutions. Winograd algoritm implementation. + Element-wise operation (add, sub, mul, div, ...): Broadcasting. + OpenVino 2022.1 support. + CANN backend support. * Algorithms: + ArUco markers and April tags support including ChAruco and diamond boards detection and calibration. + QR code detection and decoding quality imrovement. Alignment markers support. Benchmark for QR codes: link + Nanotrack v2 tracker based on neural networks. + Stackblur algoruthm implementation. * Multimedia: + FFmpeg 5.x support. + CUDA 12.0 support. Hardware accelerated video codecs support on NVIDIA platforms with modern Video Codec SDK (NVCUVID and NVENCODEAPI). + CV_16UC1 read/write video support with FFmpeg. + Orientation meta support on Mac with native media API. + New iterator-based API for multi-page image formats. + libSPNG support for PNG format. + SIMD acceleration for self-built libJPEG-Turbo + H264/H265 support on Android. Multiple fixes for video decoder, endcoder and camera memory layout. * G-API + Exposed all core APIs to Python, including stateful kernels. * Optimization: + New universal intrinsics backend for scalable vector instructions. The first scalable implementation for RISC-V RVV 1.0. + DNN module patches: - Improved layers / supported more models: * Scatter and ScatterND #22529, Tile #22809 * Fixes in Slice (support negative step #22898) * Support some reduce layers of ONNX #21601 - Added CANN backend support #22634. Link to the manual: https://github.com/opencv/opencv/wiki/Huawei-CANN-Backend. - Added bacthed NMS for multi-class object detection #22857 - Accelerating convolution, especially for ARM CPU. - Winograd's convolution optimization + And many other contributions: + Added n-dimensional flip to core #22898 + Add StackBlur for imgproc #20379 - Removed upstream opencv-ffmpeg5.patch- Add upstream change to fix include issue with FFmpeg 5: * opencv-ffmpeg5.patch- update to 4.6.0, highlights below, for details check https://github.com/opencv/opencv/wiki/ChangeLog#version460 * OpenCV project infrastructure migrating on GitHub Actions workflows for CI and release purposes * Added support for GCC 12, Clang 15 * Added support for FFmpeg 5.0 * DNN module patches: + Improved layers / activations / supported more models: - LSTM (+CUDA), resize (+ONNX13), Sign, Shrink, Reciprocal, depth2space, space2depth - fixes in Reduce, Slice, Expand + Disabled floating-point denormals processing #21521 + Changed layer names in ONNX importer to support "output" entities properly + Added TIM-VX NPU backend support: https://github.com/opencv/opencv/wiki/TIM-VX-Backend-For-Running-OpenCV-On-NPU + Added Softmax parameter to ClassificationModel + Added audio speech recognition sample (C++) #21458 + Intel® Inference Engine backend (OpenVINO): - added initial support for OpenVINO 2022.1 release - removed support of legacy API (dropped since 2020.3) * G-API module: + G-API framework: - Introduced a Grayscale image format support for cv::MediaFrame: #21511; - Enabeled .reshape() support in the CPU backend: #21669; - Fixed possible hang in streaming execution mode with constant inputs: #21567; - Introduced proper error/exception propagation in the asynchronous streaming execution mode: #21660; - Fixed new stream event handling: #21731. + Fluid backend: - Fixed horizontal pass in the Resize kernel, fixed Valgrind issues: #21144; - Extended Resize kernel with F32 version: #21678, added AVX: #21728. - Enabled dynamic dispatch for Split4 kernel: #21520; - Enabled dynamic dispatch for Merge3 kernel: #21529; - Added a SIMD version for DivC kernel: #21474; - Added a SIMD version for DivRC kernel: #21530; - Enabled dynamic dispatch for Add kernel: #21686; - Enabled dynamic dispatch for Sub kernel: #21746; - Added a SIMD version for ConvertTo kernel: #21777; - Fixed kernel matrix size for Sobel kernel: #21613. + Intel® OpenVINO™ inference backend: - Fixed NV12 format support for remote memory when OpenVINO remote context is used: #21424. - Implemented correct error handling in the backend: #21579. - Fixed ngraph warnings #21362. + OpenCV AI Kit backend: - Introduced a new backend to program OpenCV AI Kit boards via G-API. Currently the backend is in experimental state, but allows to build Camera+NN pipeline and supports heterogeneity (mixing with host-side code): #20785, #21504. + Media integration: - Enabled GPU inference with oneVPL and DirectX11 on Windows in Intel OpenVINO inference backend: #21232, #21618, #21658, #21687, [#21688]. Now GPU textures decoded by oneVPL decoder can be preprocessed and inferred on GPU with no extra host processing. - Enabled oneVPL support on Linux: #21883. - Extended GStreamer pipeline source with Grayscale image format support: #21560. + Python bindings: - Exposed GStreamer pipeline source in Python bindings: #20832. - Fixed Python bindings for CudaBufferPool, cudacodec and cudastereo modules in OpenCV Contrib. + Samples: - Introduced a pipeline modelling tool for cascaded model benchmarking: #21477, #21636, #21719. The tool supports a declarative YAML-based config to describe pipelines with simulated pre-/post-processing. The tool collects and reports latency and throughput information for the modelled pipeline. + Other changes and fixes: - Moved GKernelPackage into cv:: namespace by default, its cv::gapi:: alias remain for compatibility: #21318; - Moved Resize kernel from core to imgproc kernel packages for CPU, OpenCL, and Fluid backends: #21157. Also moved tests appropriately: #21475; - Avoided sporadic test failures in DivC: #21626; - Fixed 1D Mat handling in the framework: #21782; - Reduced the number of G-API generated accuracy tests: #21909. - Drop upstream patches: * 0001-highgui-Fix-unresolved-OpenGL-functions-for-Qt-backe.patch * videoio_initial_FFmpeg_5_0_support.patch * videoio_ffmpeg_avoid_memory_leaks.patch- Add upstream patches for FFmpeg 5.0 support, add * videoio_initial_FFmpeg_5_0_support.patch * videoio_ffmpeg_avoid_memory_leaks.patch- Restore memoryperjob constraint, avoid being scheduled on a 16 core system and use less than half of it. - Adjust %limit_build to 1800, to avoid recurrent build failures on aarch64. (People should not care for their pet architecture only, but also carefully check if they break others.) - Add missing libopencv_aruco dependency in devel package.- Remove the memoryperjob constraint which doesn't work as one would expect and breaks ppc64 builds. - Use %limit_memory -m 1700 to set the number of concurrent jobs to a sane value and fix OOM errors when building in workers with many cores. - Decrease the disk constraint to 9G which seems to be enough- update to 4.5.5, highlights below, for details check https://github.com/opencv/opencv/wiki/ChangeLog#version455 * Audio support as part of VideoCapture API: GStreamer #21264 * Updated SOVERSION handling rules: #21178 * DNN module patches: + Added tests to cover ONNX conformance test suite: #21088 + Improved layers / activations / supported more models + Upgraded builtin protobuf from 3.5.2 to 3.19.1 + More optimizations for RISC-V platform + Intel® Inference Engine backend ( OpenVINO™ ): added support for OpenVINO 2021.4.2 LTS release * G-API module: + G-API framework: - Fixed issue with accessing 1D data from cv::RMat: #21103 - Restricted passing the G-API types to graph inputs/outputs for execution: #21041 - Various fixes in G-API Doxygen reference: #20924 - Renamed various internal structures for consistency #20836 #21040 + Fluid backend: - Introduced a better vectorized version of Resize: #20664. - Added vectorized version of Multiply kernel: #21024 - Added vectorized version of Divide kernel: #20914 - Added vectorized version of AddC kernel: #21119 - Added vectorized version of SubC kernel: #21158 - Added vectorized version of MulC kernel: #21177 - Added vectorized version of SubRC kernel: #21231 - Enabled SIMD dispatching for AbsDiffC: #21204 + OpenCL backend: - Fixed sporadic test failures in Multiply kernel running on GPU: #21205 + Intel® OpenVINO™ inference backend: - Extended ie::Params to support static batch size as input to inference: #20856 - Enabled 2D input tensor support in IE backend: #20925 - Fixed various issues with imported (pre-compiled) networks: #20918 + Media integration: - Introduced a GStreamer-based pipeline source for G-API: #20709 - Completed the integration of Intel® oneVPL as a pipeline source for G-API #20773 with device selection #20738, asynchronous execution #20901, intial demux support #21022, and GPU-side memory allocation via DirectX 11 #21049. + Samples: - Replaced custom kernels with now-standard G-API operations in several samples #21106 - Moved API snippets from G-API samples to a dedicated place #20857 + Other changes and fixes: - Fixed various static analysis issues for OpenVINO 2021.4 release: #21083 and #21212 - Fixed various build warnings introduced after OpenVINO update: #20937 - Continued clean-up in the G-API test suite on GTest macros [#20922] and test data #20995 - Added custom accuracy comparison functions to Fluid performance tests: #21150. * And many other contributions: + Added QRcode encoder: #17889 + GSoC - OpenCV.js: Accelerate OpenCV.js DNN via WebNN: #20406 + Add conventional Bayer naming: #20970 + (opencv_contrib) Add Radon transform function to ximgproc: #3090 + (opencv_contrib) New superpixel algorithm (F-DBSCAN): #3093 + Created Stitching Tool: #21020 + Improve CCL with new algorithms and tests: #21275 + (opencv_contrib) Update ArUco tutorial: #3126 - Adjust memory constraints (mostly required for aarch64 on Leap) - Add 0001-highgui-Fix-unresolved-OpenGL-functions-for-Qt-backe.patch- update to 4.5.4: * 8-bit quantization in the dnn module * Improved Julia bindings * Speech recognition sample * dnn module optimizations for RISC-V * Tutorial about universal intrinsics and parallel_for usage * Improvements in the dnn module: - New layers and models support - Some existing layers have been fixed - Soft-NMS implementation - Supported OpenVINO 2021.4.1 LTS release- Remove dependency on IlmBase, opencv never uses this directly.- update to 4.5.2, highlights below, for details check https://github.com/opencv/opencv/wiki/ChangeLog#version452 * core: added support for parallel backends. * imgproc: added IntelligentScissors implementation (JS demo). * videoio: improved hardware-accelerated video de-/encoding tasks. * DNN module: + Improved debugging of TensorFlow parsing errors: #19220 + Improved layers / activations / supported more models: - optimized: NMS processing, DetectionOutput - fixed: Div with constant, MatMul, Reshape (TensorFlow behaviour) - added support: Mish ONNX subgraph, NormalizeL2 (ONNX), LeakyReLU (TensorFlow), TanH + SAM (Darknet), Exp + Intel® Inference Engine backend ( OpenVINO™ ): added support for OpenVINO 2021.3 release * G-API module: + Python support: - Introduced a new Python backend - now G-API can run custom kernels written in Python as part of the pipeline: #19351 - Extended Inference support in the G-API bindings: #19318 - Added more graph data types in the G-API bindings: #19319 + Inference support: - Introduced dynamic input / CNN reshape functionality in the OpenVINO inference backend #18240 - Introduced asynchronous execution support in the OpenVINO inference backend, now it can run in multiple parallel requests to increase stream density/throughput: #19487, #19425 - Extended supported data types with INT64/INT32 in ONNX inference backend and with INT32 in the OpenVINO inference backend #19792 - Introduced cv::GFrame / cv::MediaFrame and constant support in the ONNX backend: #19070 + Media support: - Introduced cv::GFrame / cv::MediaFrame support in the drawing/rendering interface: #19516 - Introduced multi-stream input support in Streaming mode and frame synchronization policies to support cases like Stereo: #19731 - Added Y and UV operations to access NV12 data of cv::GFrame at the graph level; conversions are done on-the-fly if the media format is different: #19325 + Operations and kernels: - Added performance tests for new operations (MorphologyEx, BoundingRect, FitLine, FindContours, KMeans, Kalman, BackgroundSubtractor) - Fixed RMat input support in the PlaidML backend: #19782 - Added ARM NEON optimizations for Fluid AbsDiffC, AddWeighted, and bitwise operations: #18466, #19233 - Other various static analysis and warning fixes + Documentation: - [GSoC] Added TF/PyTorch classification conversion: #17604 - [GSoC] Added TF/PyTorch segmentation conversion: #17801 - [GSoC] Added TF/PyTorch detection model conversion: #18237 - Updated documentation to address Wide Universal Intrinsics (WUI) SIMD API: #18952 + And many other great contributions from OpenCV community: - core: cuda::Stream constructor with stream flags: #19286 - highgui: pollKey() implementation for w32 backend: #19411 - imgcodecs: Added Exif parsing for PNG: #19439 - imgcodecs: OpenEXR compression options: #19540 - imgproc: connectedComponents optimizations: (Spaghetti Labeling): #19631 - videoio: Android NDK camera support #19597 - (contrib) WeChat QRCode module open source: #2821 - (contrib) Implemented cv::cuda::inRange(): #2803 - (contrib) Added algorithms from Edge Drawing Library: #2313 - (contrib) Added Python bindings for Viz module: #2882 - Add libva build dependency for HW accelerated videoio - Slight bump for memory constraints- Enable aruco module (recognize markers to detect camera pose)- update to 4.5.1, highlights below, for details check https://github.com/opencv/opencv/wiki/ChangeLog#version451 * Continued merging of GSoC 2020 results: + Develop OpenCV.js DNN modules for promising web use cases together with their tutorials + OpenCV.js: WASM SIMD optimization 2.0 + High Level API and Samples for Scene Text Detection and Recognition + SIFT: SIMD optimization of GaussianBlur 16U * DNN module: + Improved layers / activations / supported more models: - optimized: 1D convolution, 1D pool - fixed: Resize, ReduceMean, Gather with multiple outputs, importing of Faster RCNN ONNX model - added support: INT32 ONNX tensors + Intel® Inference Engine backend (OpenVINO): - added support for OpenVINO 2021.2 release - added preview support for HDDL + Fixes and optimizations in DNN CUDA backend (thanks to @YashasSamaga) * G-API Framework: + Introduced serialization for cv::RMat, including serialization for user-defined memory adapters + Introduced desync, a new Operation for in-graph asynchronous execution - to allow different parts of the graph run with a different latency + Introduced a notion of "in-graph metadata", now various media-related information can be accessed in graph directly (currently only limited to timestamps and frame IDs) + Introduced a new generic task-based executor, based on Threading Building Blocks (TBB) + Extended infer<>() API to accept a new cv::GFrame data structure to allow handling of various media formats without changes in the graph structure + Made copy() an intrinsic where real copy may not happen (optimized out) based on graph structure, extended it to support cv::GFrame + Various fixes, including addressig static analysis, documentation, and test issues * G-API Operations: + Introduced new operations morphologyEx, boundingRect, fitLine, kmeans, Background Subtractor, Kalman filter * G-API Intel® Inference Engine backend (OpenVINO): + Extended cv::gapi::ie::Params<> to import CNN networks (e.g. pre-compiled ones) instead of passing .XML and .BIN files; also enabled configuring Inference Engine plugins via this structure + Added a new overload to infer<>() to run inference over a single region of interest + Added support for cv::MediaFrame input data type (projected from cv::GFrame) and handling for NV12 input image format * G-API Python bindings: + Exposed G-API's Inference and Streaming APIs in the OpenCV Python bindings + Added initial Python support for cv::GArray data structure * Significant progress on RISC-V port. - Updated constraints, bump memory to 5 GB - Cleaned up spec file- Split library package, move all libraries with external dependencies (Qt5, ffmpeg, gstreamer) into separate packages - Move haar and LBP cascades into separate package, pull in from objdetect and face (detect) libraries.- update to 4.5.0, see https://github.com/opencv/opencv/wiki/ChangeLog#version450 for details, highlights: * OpenCV license has been changed to Apache 2 (OpenCV 3.x will keep using BSD) * GSoC is over, all projects were success and most of them have already been merged. Optimizations for RISC-V, bindings for Julia language, real-time single object tracking, improved SIFT and others * OpenJPEG is now used by default for JPEG2000 * Supported multiple OpenCL contexts * Improvements in dnn module: + Support latest OpenVINO 2021.1 release + Tengine lite support for inference on ARM + Many fixes and optimizations in CUDA backend * Added Python bindings for G-API module * Multiple fixes and improvements in flann module * Added Robot-World/Hand-Eye calibration function- update to 4.4.0: * SIFT (Scale-Invariant Feature Transform) algorithm has been moved to the main repository (patent on SIFT is expired) * DNN module: * State-of-art Yolo v4 Detector: #17148. * onnx: Add support for Resnet_backbone * EfficientDet models * add text recognition sample / demo * FlowNet2 optical flow * Intel Inference Engine backend * added support for OpenVINO 2020.3 LTS / 2020.4 releases * support of NN Builder API is planned for removal in the next release * Many fixes and optimizations in CUDA backend * Obj-C / Swift bindings: #17165 * Julia bindings as part of ongoing GSoC project * BIMEF: A Bio-Inspired Multi-Exposure Fusion Framework for Low-light Image Enhancement * Enable Otsu thresholding for CV_16UC1 images * Add Stroke Width Transform algorithm for Text Detection * Planned migration on Apache 2 license for next releases - remove opencv-includedir.patch (obsolete)- Use memoryperjob constraint instead of %limit_build macro.- Update to 4.3.0 * DNN module: + Improved layers / activations / supported more models: - ONNX: LSTM, Broadcasting, Algebra over constants, Slice with multiple inputs - DarkNet: grouped convolutions, sigmoid, swish, scale_channels - MobileNet-SSD v3: #16760 + New samples / demos: - Clothes parts segmentation and CP-VTON - DaSiamRPN tracker Intel® Inference Engine backend (OpenVINO™): - added support for custom layers through nGraph OpenVINO API: #16628 - nGraph OpenVINO API is used by default: #16746 + Many fixes and optimizations in CUDA backend (thanks to @YashasSamaga) + OPEN AI LAB team submitted the patch that accelerates OpenCV DNN on ARM using their Tengine library * G-API module: + Introduced a new graph-level data type GOpaque. This type can be used to pass arbitrary user data types between G-API nodes in the graph (supported for CPU/OpenCV backend only). + Introduced a way to declare G-API CPU (OpenCV) kernels in-place + Added a new sample "Privacy masking camera", combining Deep Learning with traditional Image Processing (link) + Added more operations in the default library: WarpAffine, WarpPerspective, NV12toGray. * Performance improvements: + IPP-ICV library with CPU optimizations has been updated to version 2020.0.0 Gold + SIMD intrinsics: integral, resize, (opencv_contrib) RLOF implementation #2476 * And many other great contributions from OpenCV community: + (opencv_contrib) Computer Vision based Alpha Matting (GSoC 2019) #2306 + calib3d: findChessboardCornersSB improvements: #16625 + calib3d: updated documentation for RT matrices: #16860 + core: improved getNumberOfCPUs(): #16268 + imgproc: new algorithm HOUGH_GRADIENT_ALT is added to HoughCircles() function #16561. It has much better recall and precision + imgcodecs: added initial support for OpenJPEG library (version 2+): #16494 + highgui(Qt): added Copy to clipboard: #16677 + dnn: TensorFlow, Darknet and ONNX importers improvements by @ashishkrshrivastava + (opencv_contrib) added rapid module for silhouette based 3D object tracking: #2356 + (opencv_contrib) SIFT detector is enabled by default due patents expiration (without requirement of NONFREE build option) + help materials: OpenCV Cheat Sheet in Python: #4875 * Changes that can potentially break compatibility: + image filtering functions throws exception on empty input (voting results) - Packaging changes: * Stop mangling CMake diagnostic output, no dependency versions end up in the packages anyway, drop opencv-build-compare.patch * Set empty OPENCV_DOWNLOAD_TRIES_LIST, skip downloads even when network is available during builds (e.g. local build). * Drop upstream GLES patches: + 0001-Do-not-include-glx.h-when-using-GLES.patch + opencv-gles.patch- Disable Python 2 bindings for Tumbleweed.- Drop Jasper (i.e jpeg2k) support (boo#1130404, boo#1144260) JasPer is unmaintained, CVEs are not being addressed (some issues received patches submitted to the upstream github project, but are not being merged, other CVEs are considered unfixable). openSUSE follows other distros in dropping JasPer now (much later than most others, incl. Debian).- Add webp build dependency to use system libwebp instead of bundled one. - Enable dispatch of AVX512 optimized code.- Update to 4.2.0 * DNN module: + Integrated GSoC project with CUDA backend: #14827 + Intel® Inference Engine backend ( OpenVINO™ ): - support for nGraph OpenVINO API (preview / experimental): #15537 * G-API module: + Enabled in-graph inference: #15090. Now G-API can express more complex hybrid CV/DL algorithms; - Intel® Inference Engine backend is the only available now, support for DNN module will be added in the future releases. + Extended execution model with streaming support: #15216. Decoding, image processing, inference, and post-processing are now pipelined efficiently when processing a video stream with G-API. + Added tutorials covering these new features: Face analytics pipeline and a sample Face beautification algorithm. * Performance improvements: + SIMD intrinsics: StereoBM/StereoSGBM algorithms, resize, integral, flip, accumulate with mask, HOG, demosaic, moments + Muti-threading: pyrDown * And many other great patches from OpenCV community: + VideoCapture: video stream extraction (demuxing) through FFmpeg backend. + VideoCapture: waitAny() API for camera input multiplexing (Video4Linux through poll() calls). + (opencv_contrib) new algorithm Rapid Frequency Selective Reconstruction (FSR): #2296 + tutorial. + (opencv_contrib) RIC method for sparse match interpolation: #2367. + (opencv_contrib) LOGOS features matching strategy: #2383. * Breaking changes: + Disabled constructors for legacy C API structures. + Implementation of Thread Local Storage (TLS) has been improved to release data from terminated threads. API has been changed. + Don't define unsafe CV_XADD implementation by default. + Python conversion rules of passed arguments will be updated in next releases: #15915.- Limit build parallelism with limit_build, some ARM and PPC workers have a high SMP/memory ratio and run out of memory otherwise. - Apply memory constraints (3GB) to all architectures, avoid being scheduled on very weak workers.- Update to 4.1.2 * DNN module: + Intel Inference Engine backend (OpenVINO): - 2019R3 has been supported - Support modern IE Core API - New approach for custom layers management. Now all the OpenCV layers fallbacks are implemented as IE custom layers which helps to improve efficiency due less graph partitioning. - High-level API which introduces dnn::Model class and set of task-specific classes such dnn::ClassificationModel, dnn::DetectionModel, dnn::SegmentationModel. It supports automatic pre- and post-processing for deep learning networks. * Performance improvements and platforms support: + MSA SIMD implementation has been contributed for MIPS platforms: https://github.com/opencv/opencv/pull/15422 + OpenCV.js optimization (threading and SIMD as part of GSoC project): https://github.com/opencv/opencv/pull/15371 + More optimizations using SIMD intrinsics: dotProd, FAST corners, HOG, LK pyramid (VSX), norm, warpPerspective, etc + Fixed detection of Cascade Lake CPUs * And many other great patches from OpenCV community: + GUI: support topmost window mode (Win32/COCOA): https://github.com/opencv/opencv/pull/14872 + Java: fix Mat.toString() for higher dimensions: https://github.com/opencv/opencv/pull/15181 + Implementation of colormap "Turbo" https://github.com/opencv/opencv/pull/15388 + QR-Code detection accuracy improvement: https://github.com/opencv/opencv/pull/15356 + GSoC: Add learning-based super-resolution module: https://github.com/opencv/opencv_contrib/pull/2229 and https://github.com/opencv/opencv_contrib/pull/2231 + Detection accuracy improvement of the white marker aruco corners: https://github.com/opencv/opencv_contrib/pull/2236 + Added pattern generator tool for aruco: https://github.com/opencv/opencv_contrib/pull/2250 + and special thanks to @sturkmen72 for improvind and cleaning up code of samples/tutorials * Breaking changes: + fixed values thresholding accuracy in calcHist() * Security fixes: CVE-2019-15939 (boo#1149742). - Enable Graph API (G-API) - Minor spec file cleanup- Include pkg-config file in opencv-devel package * Add opencv-includedir.patch- Avoid use of ®/™ signs in specfiles as per guidelines.- Disable LTO on ppc64le for now, as it fails to build when enabled (boo#1146096).- Increase the disk space needed to build opencv.- Update to 4.1.1 * DNN module: * 3D convolution networks initial support * A lot of improvements for ONNX and TenforFlow importers * Performance improvements * Added IPPE method for planar pose estimation in solvePnP * Added solvePnPRefineLM and solvePnPRefineVVS * Security fixes: CVE-2019-14491 (boo#1144352), CVE-2019-14492 (boo#1144348). - Check https://github.com/opencv/opencv/wiki/ChangeLog#version411 for the complete list of changes. - Drop fix_processor_detection_for_32bit_on_64bit.patch. Fixed upstream - Drop 0001-Handle-absolute-OPENCV_INCLUDE_INSTALL_PATH-correctl.patch Fixed upstream - Refresh 0001-Do-not-include-glx.h-when-using-GLES.patch and opencv-build-compare.patch.- Update to version 4.1.0 * DNN module: + Reduced peak memory consumption for some models up to 30%. + Inference Engine - Inference Engine 2018R3 is now a minimal supported version of IE. - Myriad X (Intel® Neural Compute Stick 2) is now supported and tested. - Automatic IR network reshaping for different inputs. - Improved samples to work with models from OpenVINO Open Model Zoo + New networks from TensorFlow Object Detection API: Faster-RCNNs, SSDs and Mask-RCNN with dilated convolutions, FPN SSD * Performance improvements: + More optimization using AVX2 instruction set. + Automatic runtime dispatching is available for large set of functions from core and imgproc modules. * Other improvements: + Matplotlib Perceptually Uniform Sequential colormaps + Add keypoints matching visualization for real-time pose estimation tutorial + Add Hand-Eye calibration methods + Java: improved support for multidimensional arrays (Mat) + Dynamically loaded videoio backends (FFmpeg, GStreamer) + opencv_contrib: Robust local optical flow (RLOF) implementations + opencv_contrib: Implementation of Quasi Dense Stereo algorithm + opencv_contrib: New module: Image Quality Analysis (IQA) API + opencv_contrib: BRISQUE No Reference Image Quality Assessment (IQA) API Check https://github.com/opencv/opencv/wiki/ChangeLog#version410 - Update to version 4.0.0 * A lot of C API from OpenCV 1.x has been removed. The affected modules are objdetect, photo, video, videoio, imgcodecs, calib3d. * Persistence (storing and loading structured data to/from XML, YAML or JSON) in the core module has been completely reimplemented. * OpenCV is now C++11 library and requires C++11-compliant compiler. Thanks to the extended C++11 standard library, we could get rid of hand-crafted cv::String and cv::Ptr. Now cv::String == std::string and cv::Ptr is a thin wrapper on top of std::shared_ptr. Also, on Linux/BSD for cv::parallel_for_ we now use std::thread's instead of pthreads. * DNN improvements * Completely new module opencv_gapi has been added. It is the engine for very efficient image processing, based on lazy evaluation and on-fly construction. * Performance improvements A few hundreds of basic kernels in OpenCV have been rewritten using so-called "wide universal intrinsics". Those intrinsics map to SSE2, SSE4, AVX2, NEON or VSX intrinsics, depending on the target platform and the compile flags. * QR code detector and decoder have been added to opencv/objdetect module. * The popular Kinect Fusion algorithm has been implemented, optimized for CPU and GPU (OpenCL), and integrated into opencv_contrib/rgbd module. * Very efficient and yet high-quality DIS dense optical flow algorithm has been moved from opencv_contrib to opencv, video module. See the example. * The slower TV L1 optical flow algorithm has been moved to opencv_contrib. Check https://github.com/opencv/opencv/wiki/ChangeLog#version400 - Drop obsolete opencv-lib_suffix.patch - Add 0001-Handle-absolute-OPENCV_INCLUDE_INSTALL_PATH-correctl.patch - As this is a major version upgrade, the old 3.4.x package is still available as opencv3- Update to 3.4.3 * Compatibility fixes with python 3.7 * Added a new computational target DNN_TARGET_OPENCL_FP16 * Extended support of Intel's Inference Engine backend * Enabled import of Intel's OpenVINO pre-trained networks from intermediate representation (IR). * tutorials improvements Check https://github.com/opencv/opencv/wiki/ChangeLog#version343 for the complete changelog. - Drop fix-build-i386-nosse.patch, build-workaround-issues-with-c.patch (fixed upstream) - Refresh patches- Add patch to fix use of headers from C: * build-workaround-issues-with-c.patch- Update to 3.4.1: * Added support for quantized TensorFlow networks * OpenCV is now able to use Intel DL inference engine as DNN acceleration backend * Added AVX-512 acceleration to the performance-critical kernels * Fix cmake mapping of RelWithDebInfo (boo#1154091). * For more information, read https://github.com/opencv/opencv/wiki/ChangeLog#version341 - Update contrib modules to 3.4.1: * No changelog available - Change mechanism the contrib modules are built - Include LICENSE of contrib tarball as well - Build with python3 on >= 15 - Add patch to fix build on i386 without SSE: * fix-build-i386-nosse.patch - Refresh patches: * fix_processor_detection_for_32bit_on_64bit.patch * opencv-build-compare.patch - Mention all libs explicitly - Rebase 3.4.0 update from i@marguerite.su - update to 3.4.0 * Added faster R-CNN support * Javascript bindings have been extended to cover DNN module * DNN has been further accelerated for iGPU using OpenCL * On-disk caching of precompiled OpenCL kernels has been finally implemented * possible to load and run pre-compiled OpenCL kernels via T-API * Bit-exact 8-bit and 16-bit resize has been implemented (currently supported only bilinear interpolation) - update face module to 3.4.0 - add opencv-lib_suffix.patch, remove LIB_SUFFIX from OPENCV_LIB_INSTALL_PATH, as CMAKE_INSTALL _LIBDIR is arch dependent.- Add option to build without openblas- Add conditionals for python2 and python3 to allow us enabling only desired python variants when needed - Do not depend on sphinx as py2 and py3 seem to collide there- Readd opencv-gles.patch, it is *not* included upstream; otherwise build breaks on all GLES Qt5 platforms (armv6l, armv7l, aarch64) - add fix_processor_detection_for_32bit_on_64bit.patch - Correctly set optimizations and dynamic dispatch on ARM, use OpenCV 3.3 syntax on x86.- Update licensing information- change requires of python-numpy-devel to build in Leap and to not break factory in future- fix build error/unresolvable for Leap 42.2 and 42.3- Update to version 3.3.1: * Lots of various bugfixes - Update source url- Rename python subpackage to python2 - Do not explicitly require python-base for python subpackages- Update to 3.3 - Dropped obsolete patches * opencv-gcc6-fix-pch-support-PR8345.patch * opencv-gles.patch - Updated opencv-build-compare.patch- Add 0001-Do-not-include-glx.h-when-using-GLES.patch Fix build for 32bit ARM, including both GLES and desktop GL headers causes incompatible pointer type errors- Add conditional for the qt5/qt4 integration * This is used only for gui tools, library is not affected - Add provides/obsoletes for the qt5 packages to allow migration - Drop patch opencv-qt5-sobump.diff * Used only by the obsoleted qt5 variant- Cleanup a bit with spec-cleaner - Use %cmake macros - Remove the conditions that are not really needed - Add tests conditional disabled by default * Many tests fail and there are missing testdata - Switch to pkgconfig style dependencies- Update to OpenCV 3.2.0 - Results from 11 GSoC 2016 projects have been submitted to the library: + sinusoidal patterns for structured light and phase unwrapping module [Ambroise Moreau (Delia Passalacqua)] + DIS optical flow (excellent dense optical flow algorithm that is both significantly better and significantly faster than Farneback’s algorithm – our baseline), and learning-based color constancy algorithms implementation [Alexander Bokov (Maksim Shabunin)] + CNN based tracking algorithm (GOTURN) [Tyan Vladimir (Antonella Cascitelli)] + PCAFlow and Global Patch Collider algorithms implementation [Vladislav Samsonov (Ethan Rublee)] + Multi-language OpenCV Tutorials in Python, C++ and Java [João Cartucho (Vincent Rabaud)] + New camera model and parallel processing for stitching pipeline [Jiri Horner (Bo Li)] + Optimizations and improvements of dnn module [Vitaliy Lyudvichenko (Anatoly Baksheev)] + Base64 and JSON support for file storage. Use names like “myfilestorage.xml?base64” when writing file storage to store big chunks of numerical data in base64-encoded form. [Iric Wu (Vadim Pisarevsky)] + tiny_dnn improvements and integration [Edgar Riba (Manuele Tamburrano, Stefano Fabri)] + Quantization and semantic saliency detection with tiny_dnn [Yida Wang (Manuele Tamburrano, Stefano Fabri)] + Word-spotting CNN based algorithm [Anguelos Nicolaou (Lluis Gomez)] - Contributions besides GSoC: + Greatly improved and accelerated dnn module in opencv_contrib: - Many new layers, including deconvolution, LSTM etc. - Support for semantic segmentation and SSD networks with samples. - TensorFlow importer + sample that runs Inception net by Google. + More image formats and camera backends supported + Interactive camera calibration app + Multiple algorithms implemented in opencv_contrib + Supported latest OSes, including Ubuntu 16.04 LTS and OSX 10.12 + Lot’s of optimizations for IA and ARM archs using parallelism, vector instructions and new OpenCL kernels. + OpenCV now can use vendor-provided OpenVX and LAPACK/BLAS (including Intel MKL, Apple’s Accelerate, OpenBLAS and Atlas) for acceleration - Refreshed opencv-build-compare.patch - Dropped upstream opencv-gcc5.patch - Replace opencv-gcc6-disable-pch.patch with upstream patch opencv-gcc6-fix-pch-support-PR8345.patch - Enable TBB support (C++ threading library) - Add dependency on openBLAS- Enable ffmpeg support unconditional- In case we build using GCC6 (or newer), add -mlra to CFLAGS to workaround gcc bug https://gcc.gnu.org/bugzilla/show_bug.cgi?id=71294.- Apply upstream patch opencv-gcc6-disable-pch.patch to disable PCH for GCC6.- Test for python versions greater than or equal to the current version.- Add python 3 support- Added opencv_contrib_face-3.1.0.tar.bz2 * This tarball is created to take only the face module from the contrib package. The Face module is required by libkface, which in its turn is required by digikam.- Added _constraints file to avoid random failures on small workers (at least for builds on PMBS)- Update to OpenCV 3.1.0 - A lot of new functionality has been introduced during Google Summer of Code 2015: + “Omnidirectional Cameras Calibration and Stereo 3D Reconstruction” – opencv_contrib/ccalib module (Baisheng Lai, Bo Li) + “Structure From Motion” – opencv_contrib/sfm module (Edgar Riba, Vincent Rabaud) + “Improved Deformable Part-based Models” – opencv_contrib/dpm module (Jiaolong Xu, Bence Magyar) + “Real-time Multi-object Tracking using Kernelized Correlation Filter” – opencv_contrib/tracking module (Laksono Kurnianggoro, Fernando J. Iglesias Garcia) + “Improved and expanded Scene Text Detection” – opencv_contrib/text module (Lluis Gomez, Vadim Pisarevsky) + “Stereo correspondence improvements” – opencv_contrib/stereo module (Mircea Paul Muresan, Sergei Nosov) + “Structured-Light System Calibration” – opencv_contrib/structured_light (Roberta Ravanelli, Delia Passalacqua, Stefano Fabri, Claudia Rapuano) + “Chessboard+ArUco for camera calibration” – opencv_contrib/aruco (Sergio Garrido, Prasanna, Gary Bradski) + “Implementation of universal interface for deep neural network frameworks” – opencv_contrib/dnn module (Vitaliy Lyudvichenko, Anatoly Baksheev) + “Recent advances in edge-aware filtering, improved SGBM stereo algorithm” – opencv/calib3d and opencv_contrib/ximgproc (Alexander Bokov, Maksim Shabunin) + “Improved ICF detector, waldboost implementation” – opencv_contrib/xobjdetect (Vlad Shakhuro, Alexander Bovyrin) + “Multi-target TLD tracking” – opencv_contrib/tracking module (Vladimir Tyan, Antonella Cascitelli) + “3D pose estimation using CNNs” – opencv_contrib/cnn_3dobj (Yida Wang, Manuele Tamburrano, Stefano Fabri) - Many great contributions made by the community, such as: + Support for HDF5 format + New/Improved optical flow algorithms + Multiple new image processing algorithms for filtering, segmentation and feature detection + Superpixel segmentation and much more - IPPICV is now based on IPP 9.0.1, which should make OpenCV even faster on modern Intel chips - opencv_contrib modules can now be included into the opencv2.framework for iOS - Newest operating systems are supported: Windows 10 and OSX 10.11 (Visual Studio 2015 and XCode 7.1.1) - Interoperability between T-API and OpenCL, OpenGL, DirectX and Video Acceleration API on Linux, as well as Android 5 camera. - HAL (Hardware Acceleration Layer) module functionality has been moved into corresponding basic modules; the HAL replacement mechanism has been implemented along with the examples - Removed improve-sphinx-search.diff, opencv-altivec-vector.patch, opencv-pkgconfig.patch and opencv-samples.patch, fixed upstream. - Fixed opencv-qt5-sobump.diff, opencv-build-compare.patch, opencv-gcc5.patch and opencv-gles.patch. - Version OpenCV 3.0.0 + ~1500 patches, submitted as PR @ github. All our patches go the same route. + opencv_contrib (http://github.com/itseez/opencv_contrib) repository has been added. A lot of new functionality is there already! opencv_contrib is only compatible with 3.0/master, not 2.4. Clone the repository and use “cmake … - D OPENCV_EXTRA_MODULES_PATH= …” to build opencv and opencv_contrib together. + a subset of Intel IPP (IPPCV) is given to us and our users free of charge, free of licensing fees, for commercial and non-commerical use. It’s used by default in x86 and x64 builds on Windows, Linux and Mac. + T-API (transparent API) has been introduced, this is transparent GPU acceleration layer using OpenCL. It does not add any compile-time or runtime dependency of OpenCL. When OpenCL is available, it’s detected and used, but it can be disabled at compile time or at runtime. It covers ~100 OpenCV functions. This work has been done by contract and with generous support from AMD and Intel companies. + ~40 OpenCV functions have been accelerated using NEON intrinsics and because these are mostly basic functions, some higher-level functions got accelerated as well. + There is also new OpenCV HAL layer that will simplifies creation of NEON-optimized code and that should form a base for the open-source and proprietary OpenCV accelerators. + The documentation is now in Doxygen: http://docs.opencv.org/master/ + We cleaned up API of many high-level algorithms from features2d, calib3d, objdetect etc. They now follow the uniform “abstract interface – hidden implementation” pattern and make extensive use of smart pointers (Ptr<>). + Greatly improved and extended Python & Java bindings (also, see below on the Python bindings), newly introduced Matlab bindings (still in alpha stage). + Improved Android support – now OpenCV Manager is in Java and supports both 2.4 and 3.0. + Greatly improved WinRT support, including video capturing and multi-threading capabilities. Thanks for Microsoft team for this! + Big thanks to Google who funded several successive GSoC programs and let OpenCV in. The results of many successful GSoC 2013 and 2014 projects have been integrated in opencv 3.0 and opencv_contrib (earlier results are also available in OpenCV 2.4.x). We can name: - text detection - many computational photography algorithms (HDR, inpainting, edge-aware filters, superpixels, …) - tracking and optical flow algorithms - new features, including line descriptors, KAZE/AKAZE - general use optimization (hill climbing, linear programming) - greatly improved Python support, including Python 3.0 support, many new tutorials & samples on how to use OpenCV with Python. - 2d shape matching module and 3d surface matching module - RGB-D module - VTK-based 3D visualization module - etc. + Besides Google, we enjoyed (and hope that you will enjoy too) many useful contributions from community, like: - biologically inspired vision module - DAISY features, LATCH descriptor, improved BRIEF - image registration module - etc.- Reduce build-compare noise opencv-build-compare.patch- Remove BuildRequirement for python-sphinx in SLE12, since it's not available there and it's not a mandatory requirement.- Reduce differences between two spec files- Use pkgconfig for ffmpeg BuildRequires- Update improve-sphinx-search.diff for new python-Sphinx(1.3.1) * now that sphinx-build disallow executing without arguments and give you "Insufficient arguments" error, use "sphinx-build -h" instead * the default usages output ie. sphinx-build(or --help) no longer are standard error but standard output, drop OUTPUT_QUIET and add OUTPUT_VARIABLE throws the output to SPHINX_OUTPUT as well- support gcc 5 (i.e. gcc versions without minor version): opencv-gcc5.patch- Update to OpenCV 2.4.11 - can't find NEWS or Changelog merely collecting bug fixes while 3.0 is in the making, 2.4.11 didn't even make it on their web page, it's only on download server - remove opencv-underlinking.patch as obsolete - remove upstream patch bomb_commit_gstreamer-1x-support.patch - commenting out opencv-pkgconfig.patch - possibly it requires a rebase, but the problem it tries to solve is unclear- Add specific buildrequires for libpng15, so that we are building against the system provided libpng.opencv-qt5-develh02-armsrv3 1741181632  !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~   4.9.0-150600.3.6.14.9.0-150600.3.6.14.9.04.9.04.9.0   !!!!""!!######!!!$$$$$$$$%%&&&&'&(()(**((((++,,,,,,,,,----../.00000122222222222213444444445565755889888::::::::::::::;;;;;;;;;;;;;;;;;;;;;;;;;;<====>?@A>>>>>>>>>>>>>>>>>>>>BCDDEEopencv2arucoaruco.hpparuco_calib.hppcharuco.hppcalib3dcalib3d.hppcalib3d.hppcalib3d_c.hcorecore.hppaffine.hppasync.hppbase.hppbindings_utils.hppbufferpool.hppcheck.hppcore.hppcore_c.hcudacuda.hppcuda.inl.hppblock.hppborder_interpolate.hppcolor.hppcommon.hppdatamov_utils.hppdetailcolor_detail.hppreduce.hppreduce_key_val.hpptransform_detail.hpptype_traits_detail.hppvec_distance_detail.hppdynamic_smem.hppemulation.hppfilters.hppfuncattrib.hppfunctional.hpplimits.hppreduce.hppsaturate_cast.hppscan.hppsimd_functions.hpptransform.hpptype_traits.hpputility.hppvec_distance.hppvec_math.hppvec_traits.hppwarp.hppwarp_reduce.hppwarp_shuffle.hppcuda_stream_accessor.hppcuda_types.hppcv_cpu_dispatch.hcv_cpu_helper.hcvdef.hcvstd.hppcvstd.inl.hppcvstd_wrapper.hppdetailasync_promise.hppdispatch_helper.impl.hppexception_ptr.hppdirectx.hppdualquaternion.hppdualquaternion.inl.hppeigen.hppfast_math.hpphalhal.hppinterface.hintrin.hppintrin_avx.hppintrin_avx512.hppintrin_cpp.hppintrin_forward.hppintrin_lasx.hppintrin_lsx.hppintrin_msa.hppintrin_neon.hppintrin_rvv.hppintrin_rvv071.hppintrin_rvv_010_compat_non-policy.hppintrin_rvv_010_compat_overloaded-non-policy.hppintrin_rvv_011_compat.hppintrin_rvv_compat_overloaded.hppintrin_rvv_scalable.hppintrin_sse.hppintrin_sse_em.hppintrin_vsx.hppintrin_wasm.hppmsa_macros.hsimd_utils.impl.hppmat.hppmat.inl.hppmatx.hppneon_utils.hppocl.hppocl_genbase.hppopenclocl_defs.hppopencl_info.hppopencl_svm.hppruntimeautogeneratedopencl_clblas.hppopencl_clfft.hppopencl_core.hppopencl_core_wrappers.hppopencl_gl.hppopencl_gl_wrappers.hppopencl_clblas.hppopencl_clfft.hppopencl_core.hppopencl_core_wrappers.hppopencl_gl.hppopencl_gl_wrappers.hppopencl_svm_20.hppopencl_svm_definitions.hppopencl_svm_hsa_extension.hppopengl.hppoperations.hppoptim.hppovx.hppparallelbackendparallel_for.openmp.hppparallel_for.tbb.hppparallel_backend.hpppersistence.hppquaternion.hppquaternion.inl.hppsaturate.hppsimd_intrinsics.hppsoftfloat.hppsse_utils.hpptraits.hpptypes.hpptypes_c.hutility.hpputilsallocator_stats.hppallocator_stats.impl.hppfilesystem.hppfp_control_utils.hppinstrumentation.hpplogger.defines.hpplogger.hpplogtag.hpptls.hpptrace.hppva_intel.hppversion.hppvsx_utils.hppcvconfig.hdnndnn.hppall_layers.hppdict.hppdnn.hppdnn.inl.hpplayer.details.hpplayer.hppshape_utils.hpputilsdebug_utils.hppinference_engine.hppversion.hppfaceface.hppbif.hppface_alignment.hppfacemark.hppfacemarkAAM.hppfacemarkLBF.hppfacemark_train.hppfacerec.hppmace.hpppredict_collector.hppfeatures2dfeatures2d.hppfeatures2d.hpphalinterface.hflannflann.hppall_indices.hallocator.hany.hautotuned_index.hcomposite_index.hconfig.hdefines.hdist.hdummy.hdynamic_bitset.hflann.hppflann_base.hppgeneral.hground_truth.hhdf5.hheap.hhierarchical_clustering_index.hindex_testing.hkdtree_index.hkdtree_single_index.hkmeans_index.hlinear_index.hlogger.hlsh_index.hlsh_table.hmatrix.hminiflann.hppnn_index.hobject_factory.hparams.hrandom.hresult_set.hsampling.hsaving.hsimplex_downhill.htimer.hgapigapi.hppcore.hppcpucore.hppgcpukernel.hppimgproc.hppot.hppstereo.hppvideo.hppfluidcore.hppgfluidbuffer.hppgfluidkernel.hppimgproc.hppgarg.hppgarray.hppgasync_context.hppgcall.hppgcommon.hppgcompiled.hppgcompiled_async.hppgcompoundkernel.hppgcomputation.hppgcomputation_async.hppgframe.hppgkernel.hppgmat.hppgmetaarg.hppgopaque.hppgproto.hppgpucore.hppggpukernel.hppimgproc.hppgscalar.hppgstreaming.hppgtransform.hppgtype_traits.hppgtyped.hppimgproc.hppinferinfer.hppbindings_ie.hppbindings_onnx.hppbindings_ov.hppie.hpponnx.hppov.hppparsers.hppmedia.hppoakinfer.hppoak.hppoclcore.hppgoclkernel.hppimgproc.hppopencv_includes.hppoperators.hppot.hppownassert.hppconvert.hppcvdefs.hppexports.hppmat.hppsaturate.hppscalar.hpptypes.hppplaidmlcore.hppgplaidmlkernel.hppplaidml.hpppythonpython.hpprenderrender.hpprender.hpprender_types.hpprmat.hpps11ns11n.hppbase.hppstereo.hppstreamingcap.hppdesync.hppformat.hppgstreamergstreamerpipeline.hppgstreamersource.hppmeta.hpponevplaccel_types.hppcfg_params.hppdata_provider_interface.hppdefault.hppdevice_selector_interface.hppsource.hppqueue_source.hppsource.hppsync.hpputilany.hppcompiler_hints.hppcopy_through_move.hppoptional.hppthrow.hpptype_traits.hpputil.hppvariant.hppvideo.hpphighguihighgui.hpphighgui.hpphighgui_c.himgcodecsimgcodecs.hppimgcodecs.hppimgcodecs_c.hios.hlegacyconstants_c.hmacosx.himgprocimgproc.hppbindings.hppdetailgcgraph.hpphalhal.hppinterface.himgproc.hppimgproc_c.hsegmentation.hpptypes_c.hmlml.hppml.hppml.inl.hppobjdetectobjdetect.hpparuco_board.hpparuco_detector.hpparuco_dictionary.hppbarcode.hppcharuco_detector.hppdetection_based_tracker.hppface.hppgraphical_code_detector.hppobjdetect.hppopencv.hppopencv_modules.hppoptflowoptflow.hppmotempl.hpppcaflow.hpprlofflow.hppsparse_matching_gpc.hppphotophoto.hppcuda.hpplegacyconstants_c.hphoto.hppplot.hppshapeshape.hppemdL1.hpphist_cost.hppshape.hppshape_distance.hppshape_transformer.hppstitchingstitching.hppdetailautocalib.hppblenders.hppcamera.hppexposure_compensate.hppmatchers.hppmotion_estimators.hppseam_finders.hpptimelapsers.hpputil.hpputil_inl.hppwarpers.hppwarpers_inl.hppwarpers.hppsuperressuperres.hppoptical_flow.hpptrackingtracking.hppfeature.hppkalman_filters.hpponlineBoosting.hpptldDataset.hpptracking.hpptracking_by_matching.hpptracking_internals.hpptracking_legacy.hppvideovideo.hppbackground_segm.hppdetailtracking.detail.hpplegacyconstants_c.htracking.hppvideo.hppvideoiovideoio.hppcap_ios.hlegacyconstants_c.hregistry.hppvideoio.hppvideoio_c.hvideostabvideostab.hppdeblurring.hppfast_marching.hppfast_marching_inl.hppframe_source.hppglobal_motion.hppinpainting.hpplog.hppmotion_core.hppmotion_stabilizing.hppoptical_flow.hppoutlier_rejection.hppring_buffer.hppstabilizer.hppwobble_suppression.hppximgprocximgproc.hppbrightedges.hppcolor_match.hppderiche_filter.hppdisparity_filter.hppedge_drawing.hppedge_filter.hppedgeboxes.hppedgepreserving_filter.hppestimated_covariance.hppfast_hough_transform.hppfast_line_detector.hppfind_ellipses.hppfourier_descriptors.hpplsc.hpppaillou_filter.hpppeilin.hppradon_transform.hppridgefilter.hpprun_length_morphology.hppscansegment.hppseeds.hppsegmentation.hppslic.hppsparse_match_interpolator.hppstructured_edge_detection.hppweighted_median_filter.hppopencv4OpenCVConfig-version.cmakeOpenCVConfig.cmakeOpenCVModules-release.cmakeOpenCVModules.cmakelibopencv_aruco.solibopencv_calib3d.solibopencv_core.solibopencv_dnn.solibopencv_face.solibopencv_features2d.solibopencv_flann.solibopencv_gapi.solibopencv_highgui.solibopencv_imgcodecs.solibopencv_imgproc.solibopencv_ml.solibopencv_objdetect.solibopencv_optflow.solibopencv_photo.solibopencv_plot.solibopencv_shape.solibopencv_stitching.solibopencv_superres.solibopencv_tracking.solibopencv_video.solibopencv_videoio.solibopencv_videostab.solibopencv_ximgproc.soopencv4.pcopencv-develLICENSELICENSE.contribvalgrind.suppvalgrind_3rdparty.supp/usr/include//usr/include/opencv2//usr/include/opencv2/aruco//usr/include/opencv2/calib3d//usr/include/opencv2/core//usr/include/opencv2/core/cuda//usr/include/opencv2/core/cuda/detail//usr/include/opencv2/core/detail//usr/include/opencv2/core/hal//usr/include/opencv2/core/opencl//usr/include/opencv2/core/opencl/runtime//usr/include/opencv2/core/opencl/runtime/autogenerated//usr/include/opencv2/core/parallel//usr/include/opencv2/core/parallel/backend//usr/include/opencv2/core/utils//usr/include/opencv2/dnn//usr/include/opencv2/dnn/utils//usr/include/opencv2/face//usr/include/opencv2/features2d//usr/include/opencv2/features2d/hal//usr/include/opencv2/flann//usr/include/opencv2/gapi//usr/include/opencv2/gapi/cpu//usr/include/opencv2/gapi/fluid//usr/include/opencv2/gapi/gpu//usr/include/opencv2/gapi/infer//usr/include/opencv2/gapi/oak//usr/include/opencv2/gapi/ocl//usr/include/opencv2/gapi/own//usr/include/opencv2/gapi/plaidml//usr/include/opencv2/gapi/python//usr/include/opencv2/gapi/render//usr/include/opencv2/gapi/s11n//usr/include/opencv2/gapi/streaming//usr/include/opencv2/gapi/streaming/gstreamer//usr/include/opencv2/gapi/streaming/onevpl//usr/include/opencv2/gapi/util//usr/include/opencv2/highgui//usr/include/opencv2/imgcodecs//usr/include/opencv2/imgcodecs/legacy//usr/include/opencv2/imgproc//usr/include/opencv2/imgproc/detail//usr/include/opencv2/imgproc/hal//usr/include/opencv2/ml//usr/include/opencv2/objdetect//usr/include/opencv2/optflow//usr/include/opencv2/photo//usr/include/opencv2/photo/legacy//usr/include/opencv2/shape//usr/include/opencv2/stitching//usr/include/opencv2/stitching/detail//usr/include/opencv2/superres//usr/include/opencv2/tracking//usr/include/opencv2/video//usr/include/opencv2/video/detail//usr/include/opencv2/video/legacy//usr/include/opencv2/videoio//usr/include/opencv2/videoio/legacy//usr/include/opencv2/videostab//usr/include/opencv2/ximgproc//usr/lib64/cmake//usr/lib64/cmake/opencv4//usr/lib64//usr/lib64//usr/lib64//usr/lib64//usr/lib64/pkgconfig//usr/share/licenses//usr/share/licenses/opencv-devel//usr/share/opencv4/-fmessage-length=0 -grecord-gcc-switches -O2 -Wall -D_FORTIFY_SOURCE=2 -fstack-protector-strong -funwind-tables -fasynchronous-unwind-tables -fstack-clash-protection -gobs://build.suse.de/SUSE:Maintenance:37755/SUSE_SLE-15-SP6_Update/f752a70d735c202bdf7ac2d425a92bb3-opencv.SUSE_SLE-15-SP6_Updatedrpmxz5aarch64-suse-linux       directoryC++ source, ASCII textC source, UTF-8 Unicode textC source, ASCII textC++ source, UTF-8 Unicode text, with very long linesC source, ASCII text, with very long linesC++ source, ASCII text, with very long linesASCII textC++ source, UTF-8 Unicode textC++ source, UTF-8 Unicode (with BOM) textObjective-C source, ASCII textASCII text, with very long linespkgconfig filePPRYmH2y+&JUutf-8b6b3588ada64fe87ce06de401d622ee14dfb442902909b02096c5e35bbbe4352?7zXZ !t/+]"k% .V8(wxn1n5h P&0B*H>`b"zA唬eoZ.J+ |":GX!}tqw2X_ αź8Wv? Ed)U7OcU (׎'KNF725+w@lY2*:_QGSk\ihW]z.VEo7hU[SYc!l|R, e*[r&zGeL:-VM.=m[K ׫C΂\rhcg (عmtu19 2_R8F r~?~^ݨx%=c;k&gP; sg)؞>-'x{vFm绸 SG]3 m~;'(kv6Rt" ay8&V8ܥkzC~OmFvKi>rmGWER*Qh޳ԂRGn>k !5_ x3BWݨ#SG`zQWBD)3x͐o+O!6MaoD`,2c :ݜTMm͕_J\c4}+"2‚Yٿ(rVX`Cdv ~L#qa˗f>͜!, N@dN•e20uIah1)j2L 9#:ʒuHetʋAQ Zx>%w_*/'vd^:RU䯢!92U q"@?bel=bP loӵ&""`5)cakUfDSWܼ gr{2&`ZZ34::3:n2Gƨ2ASߑПYѾ ƶڃ9 5D &lhا:'QngY 9b$BN,~ll W:]>n$1b9;j~S[\ZM!-LCKl H27L9~ - %*fBHN &$ʻC%d+M_**'h9j`9 .k&Jl2Gpԍjdw_N*o|:3OcB_]p0PmYTWp=0w5Fm2*g9՝$Ne)Uk:D;4)?56 /^hŘnslHry FHi_cPWɇڃ BW ,Έ:? Ӿ˓gh,G 0QEXT&;y5Dh3'Y6:7` & t.eqsF'%9sF 2A(vƲ0ȶ1"mAWg8|L?MxcZX#Jc'24]Ox>?zm1wm,o@v-h[r}3C±"^a 9vO$ 1(SZIZ`%c7 %I ۭn)EtdݞʈG @ah =/(z1(αД\V6Z0C~s$$Pc6E&dU tftG*INm'gEa1N.Fz7*4p)*YtXk?f=&##Zfͧ'ިF(/l,s̹R߄$|.V!AmoܖMC+tݰ!!8NƘ++~0%;)HaZ _x Lrw7`[>oh{OFI t_vm΢NN<1 ``N:NHP^3HL3_A "瓈5mEdH "wQK`#0iKG,] JsoX-L`@po"i'X.WuQ73r6J7|`eo)#{dˉ+-O.ѯOp'9\Dinұi !sA5XBR{(iz0D9UD2!)Z+{0mUS&x$6!> Yga|*f-9!Rh2#d |c=[[*4MoVtI*f'YJBԗ\vM}FC,~@L ԰ۨ Lqn\^FO 2yCZ@; &^Fd4歪Zɯ{$0 \ȿ벝de{?#'hN¼8D\v-e 5åƠ E !u B",}7 j[A~HW>3|JwD~jx̍tEAwD]ފ$udZ_6LXae5 cC.φAܳbɔd#("'ZN_X#8O)+ +H*n@|#HAcuX%MR`T>ͷUC:yKvM@dk ʹF{)1( ׎(Xt<6%'wÏiq1t~"l35l'g'k@Y@t@#ċe)sHeRmQz@E4VZΘp7Oc<Ζ$8j*]~ j9g4nAL+͇A5}f\Z\k<޽^oVK*5PSp ň30q}B_^ D fX` aCOZ'ة'M;9Xeu#x Oj&RN){Cxd^؆0u-Nj[SXZGc~GA1-=Hg CaqitoGz0 ȋ`5-59Zsq.@*5R-HŨJԘ5=R^lh97d2'}p٫ky3ȕk}. Nq6Oy N^ Jzˋ&IIܽ=N +HKeի$TzH*+2#C"YT3-Y^~m p+pvy~M-՞˖by-UjMtߡ/6ǚ] K,O9rl gC9Ift)͟O»

kgEǜR\Y5igā:IT ;2- {\-dt uɿ@!mx֧|tԗ|F713 r ۉs2w\8vKry (VQv_c?4"d 9jC_l߆Y |4y@3&- =Mc';6J,qt0[7;-DA"IX%7,|%ր핃ڍM沪|#`\a *8G4s!g$ p= w*t!IV%nza칌D$+MjLUCF>7r;|Fuڮ7t.ŨήK>ù.>6/BCK1PYYrhP+mRc~!oO;\.Fj[ItS4 aqɏqd#:hYLR"jl-- 1'ض- (Z~R_Bsj=ÉLl&ȾB vQT-Lzf(EGgސԣG2ȰzEG3OFձކP{cje ]Za%R @4Ǐb΍.` m˺Wᷖk"V` tY5n_=_ZT XiC6 μ",U~>['A`zcA,=-6C攮Ǝp_{ޖE7%.MCBAEsL%ƭ1TdBi@JGO=)Z7H5z.ևjaF %ʒzĠ Z0#IH` hHL6*P#0J/&#/_.Q)<9`=_}_ iX!v*P5ryiE)~RͶIoJEXSG$qqY+⡂`( VXuuyt:ʘGQlryA+.(TɑXojH;_K:r7"(ί)ڃl.2>+Բ,ٻt,e+Etݔ7T5wD>g;fqH@޾_= tcqd"9zTѸ Qr %39v#]P}+J^UL8 &/_xw. &3JgV G}jד?ttVO+$"S8 nfS>'P{\VaV%F(Ch1uq4/}Z*T_&b~JQ٧psX7$t.Mq#4F;T3\G1g.;Gfrb)QoN#oPyF4/tV<VzLzٓ4I)EQr4{hY[DjQð 3vP"]=}]Yh?V Kix0uS\3|s@rm"@*A 3MaC-Ru_DO:+ o!⾺ْP{SgAOۘ-wa}Zy|E]\ش- od`PHF⧥ 60$mh< 6| % N,=Wѽ^ŋwg)O=! AsIPZ~&i.4%)oٿs]PZՠ[XTg9N ~W RƉ%-q:d;6r: lE\+UƋSMiEx֚CRƱWv83h]NOaJSP­z-viӫSdr3&6 T*o]n5 Ϲ\M܈ZR _o;![=xUVL@FYSA 5BxIAX\ty5+Q`&`FtB볃~6BGCYc]gǗ2OM*ԂtL~3 vlqGKh:]ZCg6P6 j]L_c0HP官d!n* wFga*^ޙv9N26h}h)9fYY6AπBSoݸm$׋Հxpq:m;iDyG͚ ;=^֞<(T6QiC{(}ns$B_:RDmFo](">'`PhFX;MYpz*u }HSLrgo)_KyJGa`M\o! s#1ό9d`lN>_AaqǼ8|um$(6\aLI9vr|s4ÁfRy 셟י! EG"9-[̨c"mܳV"ϰob{]&JVHŨ0^گpHn% )_)g)3<^7j <*w%] Zgq(~88/3FqT/Sw#c<ՑS}U /[ ry 7 3kC$gjOP?`ݳ-Fl|M_BAFIؙb4qʝܛ&pq}X'˥eێ^';d6C\^E`ǩP~*u;/B!}RbYt :|26k}k7T?MZe4\x ZGmga<(z~M=4 ;g71j)뽪E_✍ȥjFnJ`~9YOMNn}ReF~nKK21cY$#QS&)96~~}*qS^ESqaB2}DMD>–)ۉE4ɔ_9R o`,rCK2h?˲tQfchpQj@Swn ݩZԾD^ʱ<oKO̞4wA>4?[G4kGJ%z8g3E|~_cbdLngڑ}F~̙$H38^IܹZ5rEwo,%p9fYH@:U3JtPl?:oTH o4#ݍ~s1X)\|s a.C*85H1 b']N 7ep/pܲ?1wV֠Cjpσ^ ˸k]2^UbXZmg̙nIa ~ a \`t})hi_3?&^CCE*!ߋ e 4DW0jbw̳6?^D;9ΜyE~H̴ٕhdp;'p;ޝx5OW mG6J6D YgŒؑUmW^O)uV,Ϊs_}:C/*3<]xzzgSOxuI~{8ס1Ѷ M2>$-w_  ֛,Eζpă]wd Gs8X%K( Y`JgaȩoۏYo!c ?cQҒWJEf'w%G D?ZU#KLrֲXOĹ}d[v' bWb4$d{*vi[T&\>ơ-<('.&~eTƬJ;rWRx"ɽ0aQc0YI?_t;c]YޜKB3 p*]~s]ϩ:baaG=Xa jwgA ֪)+X0yolK~|0wsdnᐿ9~ 8Y<*]WvOSIp1d$7%֢𫎤#Vk݌\AwzIؠcxW %n[f,Gc39lj<>m8]eiN@zفҶDwgkGo@{)(jUsUx:*c|: Q_u']7|3W+ֺxXYF-ƌ:iti0qIO $q:x Pȿ=;fykH[/> 54pQ<Ļ&" \0?읫kYv"rM$llGiO; R.*ZOrmUmAk\)E{BfڦDt?4dsQ52VnפUtkG&o]Sj~&>^P[c H\nn% mY8,;{#h-EwxضA8g- FU, 7Cx>2]QA +a۱5ßm"P1}$ŵR'M㳁UT0gV d1%S1̀C(1s joئa]@,m=}BC9~'Rp wի6X+l\? ݿSjlOhܬQ #dl1Q^pdzңUt<ǻ`seX_Le-'-f(#{32Ct)R^sƅLPu&]O{ |+Xy{\\Acאf,9܆MHNQp[b sźCr7@`Q NI lC?pGC]{\)׾:j: P&7_WrV|kw2t> ]OR>I/4@":wLZ \Fi!$ջbS|ʬq K2()ld2d~'Q9X~3xGTJw_Tb7~2$ $/BiwAmW=/[F5uo 6~ǶEnB1=ÇY=æH.f &[//*~+ K~В*hI =_ kjWāvS@s3f$y}8 \%`8l -{]J)錉 \ahc_8s}XDm(/Ԛ{;Yl#xeLzwI9'0 Zt=TtN͗%%mC#<45͐ <0qMg%1_Ky`<hvBRlt*ȍ#ogN?*B吰|w_/`٪+Gxbo5< .8ToV%~ɿ",0&=֦W:3Rn;a_PIk?bRYV-?8 m@I~`JD] #{xUrtG5'Oj38t9mЁ0fP7ByDT&]@ +>,JxFH V{㻿U#%r7zK@ʯr"7k@h.V۾,27Kj;6Mߦ wsgB Sz śͼBߧ`:ěFlSo㻍Hcfx4~{:T;p ~NN(b$-srJtNڽBܳ$eΐqgGDH/Jo*E g T M!q*}W#.nc$6C0*"vuC&p #2os8 A*H`"2_HM/SꬄBYmL]ސ& gօq+3C\F0 'eLKhKہ_>9^D,<6yX*R;Tf)fjO(lDӹM"a NL)_8D~hs+9U$~@poj) ȹK"ǔT [UhIebԋG`v3A_с-ś 6P [$a@Z)fiR.^ν"Q~E$[P$}pVY⧼xٮʄt9#{@M(X ,$ yrifu_xDC`\͏z(PiUiy,V#a-"K:[gU&\2.,r0;HZsOиRDeZ|zCݧ5x)ÐwFa :u:Z"<*\9!PMW UmY% }7.'$GTu>kM{0h͙ޏ [KEdG2K tGz $a&V*M v$QÈ_lMPMBrZQިEr 09m9: -Z׳P^:Nk]YƫaJg\ZϠQglĶh 0` !{@%WMV~ Wr\8l`CP>Qǻ2 HP 1ɏQxFq j( -՗NO8`شDSV"LI Púh XM DIT%t(\T;ԛeFhIOWTngf":r*8b\ DN]) dO+Jң!fVқ懃 "nV}*925>6#,k)ÞcU]:]= ;5~%Zdn%G?9jXe% R#lSR N`kr{%bLǝ}e5t"bB~ڭ}S ʱF'\ҎVG_r,d9!&}0' z^ZQ@*E{iDj[rߒ1o[(sAB!g7}1L*T1~:BGWf@.=? 4Q%.-^>Cfgm 5N??' *Q,qM<|=c25y+Qk$8n;?lhͯX&SEb S0ʃC oy=`FщErunZ&%^)BeDQ|G!<j;kAF vD&4b3ꍗgƂl/B_7ƹ/$ fxUП~2 ANhN ܢrAjey9ْ3.s6pϢmӍ;Mʅh4Gx^6Z1u1ǻKAIwڪMXڤLE\gdM+1i1`ڴܠ):D$ZdpIwWz$"Az91Y(5 E_߆S`8yYB B*K}P Q3>*PBjúR G|h0=[GP.'vص <DZޖGIZ%Fi5/NH[ qQI!B|ϱD;n6̴{,T2F@yDCIn.]/4V[WB8h0+nOc,`ہӠv#N[_W;8Ǩ:4N  [5 "\']fdE@aR7/joYD 8 v`ؒp^9}٘9t¤'R{vf}!ybbyׁUa9-0BX~pc m"Fx2ڏ<maDei6ɯAeO<)GH&m'*~PJ'B (QT "pU=kBU a!#$PW1- vbƦ $)h0;wl"W"lݞ5Q>2S O@1HŲ |kM3 #cF>~uMr8\7˾RCEY?=>?]Gna3f_ dR,uԏL)BS [$euKsf3i񋡱xjVӻ0H^"!)[T# VMy73=U6 NswIM9 Ccp̤*a[Hސ.\rs ̠l*n;H.).WV:긞NظOq}8p&l r6V iʯ@%/}Ob[5JEڄ_)PV1C!! ?7`{MD, Ix>!¤:B5_@?dtT/ buq\ۢM,.3\n(wno KR=EldY8$^o&:2}BC( -ȁo+J N7(n)mN))nXV Ef Vr" 4>Q(-N "FRY8bnqtjջ??J( rsRwvK2gʷ~Tt#c@cN]z*3pEm'+3j_}yF?Mk E瑜OxXz#ؾciLCeי&$<0DZ*$=812+@/sCؘՀ9u.d)[)k%! 6(pXA MɎ?MƓ=!u-qyaO>ȔX$'x,?.Y s GZU:o8|M ճވ L ՁNPQı98 rѪ"SSvbǜ1P3X~7rIҍ;X,(cy`oYP@<IJI-Y<*jif׆ 4b;La[+<쎆›H!=@:;T-0*(=xVLJG͛:@ח=)%LX[ %xӋOqFE i]Bre2?V "f(r/r^3ك4JۏP8s}lEuFrx:=P׷8F> Ao[4=(%J ڮdY DAoC!Q8ݙ~(̷Om`Jb@9/ʋWdreՈ/<)(|f2圶n`d*xU jo\Ե9 p^UWlPC:,.B+чe͹uGtYdK]mS` UlZ%.w4 SHEwr*ڏȽOZq)&٢S=*Ԓh[m?;WdUTOR98u__dcL]6v2\C$qQn8UqIUvnqX.FI v)p̵1y¸= ƛB^}Btp`+@I6jƊ.؃i#+J-p 3Rߦd4@u+SMGP<+SR׉eHmb GWRz[eN6\s˹rioAwMzLޙ78-g74˪kHAߵEmmQ(58|ۈyWpl]s`\ŭ L D`B=չq3bL{b%evg-pZIUQ]L)"_Ulԕ-ޚ{+k1QK\lXNu=tNrrG?87}*N("5D;w 4YN)lXuBY 2~F 0D8)m"5*1EC|3> U> *my`HQϹv#/sCBF^z 5D 膈_&ZƦqQ-{$AȊ[d#&zh5^; iS/`lRׯHgKW]m-ĔzɤՕz%)eݧvU`M lr.{f"g# LkUr.*- z_.ю lX5en/xCBWG8.>i6m*4M> 5srhnF6^+mH/wj, =9݊~-LLMw7%RL#1.cV1>C/EBBB|rp?C9 L+Q qG$;7FWEKD#.EOte7D<;u LPPCh <+,zQ7]+*om7ae^ }M&-uٳIx 10j7K漀OcQםAƛLyG {-2W(|$ QiY=uai. {źJ8kH ƪ]?z ݬob2P 9Px~0bxyUYe(TTbz:0vU M}D1)d1ď`꩓T@41'$Va -GQs:@DZР9:YqKd尝 AL0Ga= Ӟ 8lexf^^Q:P1H58bv{*4̦(qVȭ'f<.l|6S(x%BH3 M`dK16` hVcG l$ k7j92yMnx}GqH1*P4c&7 m$\#B$6w: L\/y1P3aSͱ#9)nX /^l`J jq~&lV0ոx]pHn\A)u`ygBݝ\gk3O&6oN ZGs6?ǹOm$wmaSOt[s/\^]ِzL_II &_p|)Oe}dձU4[t?aY:|NKp@PzSJMػ7"C 1/ja75ׅAm;J&@%H\h7 H0A_^+A!+&ecu7jDi2OXrB2WՈ/!?-"0L9l0Sq!:bT (b/E.qSm4۳6?M]<n Vˏ3#:oȿ֪<\m]@.F ZE׺?j$dvф|m!xm(/ хU椦KUK .CSx"@vQ=6zA4+6w]VҔ]ϷX^3ozhK/OF(WcUن6@ MaR$ϲ{-}ROdYZ0 &R.{ʒ{Qrznh~{Ǝ ~r͜cΛmO"&뒪-Vc=r}6Sg-ة+ ^ "- ZqJuT*Q׊ YK/Z dta/bA'p``9a賂9)/)\]dI-w cu^ afqcn# &#sY玚%%gCA_Smj2cŸ LF 3z." ۦE91ȀE5cqwAWg%ڭxb3+UW,i4+07m|vʤ]5yb4u{DG{5 P !pYjd7(E9ۺ& @)l┖t^PfQ{2e@u>Ll ƙc^Ë as{"+|lMBr7*ϮC)r8BF(yHTqd)۶FN%ƊSRIę"JD& ::?+)@4.jG"Q2j֏PaXb;q=y4Z*~(hQ`'GA(K]Lz~O@Ok sJ%i[Rz0GYm@FZ>_r:_iu%d6H㓸ΓP¢Rz2H-NDīq^Z  3a47*fdԈ5[e|f 5ȁ^ɿH ygX8M\gni& $*.gʣ@0OOB`Fiu($9!N6H PZԗH@^u=(_0b]:ݶ5wv~,oXRU_:#Bj5ukG`eMoЃ zҶ<\5WJmpcU+E}RqE T \X~b]m-7U_MFa)&_] ;PqCRˊO^;IX)<Yۛ%\UJ˥S"tltUCZkGޗKև7[La#mDeOtI vf[/ V8aOjm N5hz<|e2xݔB)@(3ʈ /K{zdz? ]n;oW{Q$}+3#N[b*:?- &?Ys«-F=ƠPZ**ڐc[ɀՏi\/@ii2[SBH ~e; S8UW=#xJo"vz gu~>7x+EI?a+ŹRT~e 幛[ 'ŶG#Im h:hUOKS,ÇW)vX<-Eн  h? [|3 =.TBU;{I : U23S{E;D`#r-uQUD|É=* 4sʸmk֔$[2, ubkޙ U91#rJز_ RqF,r3mF5)1Q\.>!eaϵX|H-4K$zvAկh4ED6FB(U"%M̊(B IG{tr k i:,۳9ja"i{z$^=MEPud<5{EY‡ \G ;Vw]}H8l/AzA!M;uVZ<&_94p2.£m 2#"ptA5p`8&^tuP4VKYRj5/P׌^Pqn-[dP/j"x) K0k,;Rg_# :b>0 h4)"cg#.ˆ;F~zc9"M="nY5V.w05%W p剪:%=`[3WC0GCxqvA~p4'aa3YkknGk cuh[\RI 4f:Juf*يNW۱IPSYvnoS0U)c*˷'aSC(Q>LomN$bKؗCޣ~:nmͅeHGt{0%9}ug6/; +I֧ =XƁF;쾻`f)<=E-ڄfyU7l],jEM fjT$:#fhY>!LiTK< {H-qh'Bײ眶5 t>wJ{ l*!0"E1)sᡪIvyi ˿KYxVi V6n.pvAcZ;J,P905:DǑsdkaQw`>N}z?3D ((95̗롫ċ:^o\% Du}ы2}lJGX[+1tn0$DYޕRxDu ZqzBNfDsE4'5 _ `n䤄O#?.!)&Hٶ캜1* 9,neh9H;J@0?^L,I_*V@ej QkBXkL8Y^R>@Ru":pKLotӸࡍR2*-5\!?~-+U7V*"䧥^ հօ<2ǩsw`;._G_^@/X lkD\6qTʄrR`Ts_ ᦄ֓ƻDpc0zY C]䇂^lM^ uR9TJܙ+Jݥ:AŽSyCH,?& jWSYz"ܷ@卤fiX#f} V$rL oD]yzSTkʟ5}y\5.ɵ"h_!7g{__{0Q l"TV9O'Psg>[7q ˀo/PN䎯7S ]AJRԎ"۰@1Siz":@UIlؠ$UuAACq&C6%,P>5 93O4klw"@[#s T *tV&Zy/GsJa᜿Wݱ 2ɶ=t?luaFx} r@笄yֲ~UN3_\QAd5OaDIs֧:R#R2q`3|g,_!Xf0m %SQ/(9eCR_ƳnAy s,+^!N,~.4>{OQ~C*%f}q242Cяd6H*!V`hV 7`tڥ- E} TxKOJx&H{YFq IP5 $ĚKgFgÚkI^a]?8!C:TkkKLەjE׶qu&fڮ4<̭C2#sIEW|?0-qhrM"#B{ ȶ1wGbh']䯩Jԋ $qq`M7.U<жW%+%f;s;qISkŵPJ51үݨƪ7AL`"FRōxplM,tSJ6I j5{k5E8 ؃9jl[z.nniF9É'^!ߛs5]fU 0[_dXأGz3#~cG$7i5=nE68AψGo<䖴9 O.VkfWPȸg[;OL[Bf_(ݿh2u|JSzi2_$Y<B*(^σNεuHӕdv<ԠBD8O9#|tw"ଽVJ-F{Fo3l3Ieùz|hh#\k6s**DOvI3Rղ{6EOͺ<%Yy#l XUϹ`|gM覙̅Pz7.xi!ךKD! ]z:h#\mX)[90{U֤]S;Df,R.\M00䵊DER:b5!DvA_l$yss<:v Ǜ e$J:V٤d-rsZI,;VYez [0Q4_(Zz!x7r-+8+̻[֓5$3ثŠ.! _w#?h( dEoy_"^slW!3 RhORSr!U=X582 ]1m v2sYrڴcbϒR!{pjIOԊO o:53C/Z_}}(@kfaLgt9h `1`ʕkH(nP L3{uw]7=H$@5ݦ>+D㧕ij OmƄ9Eh^v/m,HR H3+IK,n~zTe9.e~+Vߣ̩=CPhiu3*)z~OﱩS :tQ˃BH kTj##"QđB24:\4jNrt;ضW/L$L@,}\vyaBU -8Y#X )|n e9J13>0Mp @mƿW9-"JI$elFwm-X8quJgI'fsiti#v'96oR(Ƌ] MNo*pKE׎>ExG1ǭlVNfڂC颔#eFep i41E$SKׯ%xƦ|f2-p6HHրOrIvE 3h#J{R\L!JŮ)QkF4 C%"GMh+$AM~(3pJ -$Mft̊cbx )w5`i`PƤՅˆ9<=]x-!7+ilpN48r9܃³{&*505=DdLT*4qQB6#*)DÀj >HTR+KDP(\Ud鍎iAI[Z#(4l0hi[e"sEj\8:{&60^~? nvM}Ե2H Tu+_޿!_+'hb0,v0nT+97gpɳzn/n"5CQorZw?t7)E{^ e&?{CPފ]DLu'R !%a"݀#Fb)Xb'^;v 'nN +Ɏ̕%4k#,Kb){Dvl#h˟<+Oku/Xi?f;ig>ŐUΞw_1l% m|**kQ$5`U H5Bs("y%SQO7 ";kkdۈX5ΌܚdHX ֎&iD6̦)f 0ah`E^?}('ZnP]v/Xe$H'sqEڴe/ެ!ro"Eke+mV) ?© h& [ <&Y2XR{pX Va^BϹ<`C 'Y\G48!"vyƅ T)2ám߅8Xml/)ۨ+ASN&5\TfLJ;m|Fk(YvSIIVEc 6f)+}HD6wE'a 73l! uv*`8!+Nu 5ac"9c]=^\a=\BMEEH`yݗcB6ZXM&ؚa l _!]JO> ꕼ`-ӬuZ/%§FR 0"TkZB b]@clCtg0۞zGлtL.T nW{ :*f5ea!;fCĮ}Şb]k;w#U%k "#LFOr}~;E[4 6aH{ ' @`v~9t01P|ء"WÆXIkUƸBdC$"#9#:g#ZSQ0[ݯ_ |``)3>+85xOc,)5C8S*ĵxL5־T:ѴTΈ}(ԯW~8E7g Yv/"؉V470K^?i ~b w}*\ [e,OӫӖx; H6j`z E ,)kLf)F,hiX &8k!˚. Wm:5;]* r]SRՋNG'}t>ڽȒG\:d>݇9ۅ. =Lnϻ}\~x|HU<2ZUCqgChZ%^xHPp(@BB3Ʊ>b9$?omUIgCb}~/C,."MB%("XM2a 8)ɡ::vcJ(mnl`SS$.f߲Lb\$ps⠶NKߕ2(AO^j%Ǟ QsxJg&{ٔ =^3A,c-x(sP:056y]j}Yӆ&\}7[>>PB0C$fHq` [K4'E=u&8"1EK|]fkkХf5Ehv^}~X/F=I  >DQG'GY.Kx_*~T ikf] E/jE콐( U6}"g!s17q:L(ÍS\%k|-Ft(?`,{I\8sf'`%ɡ'XB rUmini5:ep; @H%MYi8JGÿiP|aRnVE~ഋSFIo>ܓ7U5k5/§o,ףG8|;^ ʙ`a  sg#E0|?"_7Ң<7.bI@hqf/I3P uayI= E^޷o\REoS`9ؘNJƑZLc`iqNQp+1¡uKӃOB%Wa˽+g$Ca,u!twR1#%{oYbҪ*aE!(DZKr|zm%v]1պ /y%jpOZXqh^Ѩ3 "tOt=U"x%ך){/JVH H60L$k;s~ 5,,$1_NCu= Si W\OQ`d#/eZXAHi$FFC 7Y9{L?a:8_ iZYEnS忨y)WkAuuFZc(q^^%0qm@RB!y'B3 7M* +Xd֏F3~B(U6X^L(:WIc`PsV_Oc.uuArN,*/VdŚ<d[fjz.>Ҿw)q Hœ \|ݳ9:bl685?UOJnw @bodWBuK.N VZrpZx#q10rFULc(Ź*o phlVA*PvO?`vy72c`7>kk0>E>+}:e-i_"jC,v^~1TY;DglJmЫ!s} 4+"g^[j;>+(AKFy -d ${nKx!)K,ta[cmUI2'_1GstkM\r;}$,N0Su-C J#p ٲ3$v"$Glm~=@0.klat̚茭JB۵U,""|ӝH%z} \%RXm2n jm4CBҝ.6 J9nhPaJD )Ida3F$릩<(Y =Xs哥M%(ʟ]B&{j$Q(HC&D^|Ap}Ԅy+q}(D>d?1o"zx&q|uFZцPҝnF))tmeƏW*:Y՜CxumW4C&xphKbύ״/tY3:\SaSƿf5ޗ^!gd).œSb⣒(}Qfs! ;[2jt.CN "(/%Y40Bt>G4ZHE`*WBJf GfX M^L)u@ Xg+碤4DCk}S?}8FH @WķAi:eyvv|r5`95#:N[]iJG tz-y2[N>im/IL҇ S\yWC f s=[pԤT=] b!!tVzaO5;+Jfmv_ f*qeagRoǾ/PwyJpd(,Ԅ}DxD{%lDGeQP@ZvuKHpVo(a 1:M"iR';oSxhD;v ٚ.2EP{eԌqs*LA~X(#X]BZ*{%'5txjOX[?ͳ/Hs47mqǵ/w17񯍻ãw8ٳw={f gj #\ƳOVț3?+B dRe&Q3rsϯXW@@k#9H(mKjZxOMCU1cž @? +O $,c63-τ+1@#C6^`MD±2]2 V~Fb.oHwϟWfcu8Ew]ڐ7q*֟1Az*yJDŽJ'w=)$Y,1;r\,HTQ\" ׉kǨT'.!Fm f._hf|,ՄŶb\鮼 <)I|DU ]9w u8SB>%2RV8`&%ĻQ9i*e&9BﳉEsKo~] R?V{2J_zz l|T "%:RQ[LLny FFvXbߧƸu9E3Ѩ7ڤE9|2[rgxyYXu=wm{@s`?3`,9icWȲE g~3g<M`EX)xB=X[^a[fGuظ5< лM:(T=I4UO(s{>ls1!NW%lna^)ܱL=ⵉ1˪$"Sњ:oҠu{ T*f4ΐyz¨PD"Ä-T0wu*ZfB{iv4eW>Ŭ݀#٩[)b a\X"[m1G^BӁ~BM&Jy6>FH!œs#dE,C0<^DOw_0I?AZ@|7qZN:@0mM(:e`7gZ:Tڅ<$޸hfW\|d$QdT9Wci0dΤ{[WCY"s\47:h/Z:|†iuO'ٰp> b=x:]1uL%wEkNS%4Wg>Ň5GB*G'cRgRqHU~]RbgZ ABtedwR\DlQ7$2~ˀ2rݦHU*!<0 Qgss9s#CH?~8JNYH$ΎoBc*J pMr/索t1=f)# }ݱ#;袌)n+;(5HIf9+T Zs6Cq| }S𐍼$thݳoy[O+kF9f #[;7/҂,(>sNr6u< ըt|`{`d:쁙N,F(I;x "WlvgVٚO ?9#.ޣ_yuOv=| Z7@/\,5;2\ ]{mWΒm۪a`yLg_)*>gkY迢z:2W#f O*]K }= kX N=ϚZ&Q,(byW;UCح16}r< )QjtS\ eQ( :Rl i}}~l޲xneTrJp:BT{gW=I7ñ>EfVetx+]ZMTu`3zP*jPNG#\>WPEV63CC XhU)9D2s%|0!WںP! ^)~I'󏾐g hx@H͉L-'2zID /^ ^愊r.8S<`a_=_`E(T,5lV}]xNIgiφBMݩO p%!]@ux 1Qp%IhdE%:ݿre)[ hD} *MkXf.*Qp˼1 #:ul|tϕzWL^oX>khk 4HW`M~Tq_hP>#%|VqDⶃz't]?V!tr7cFikn_ vs s*Q8F YQ Ϭ­?69@)Eq֫3RLމnNɑ҇wUl J=ʁ5Ac/4tr\0@*BLi֛ ?ޔv ˶V`JS 6 Qg~pcA M >OW0Si9$N\ѐ|d舛SWn* y\8~O,j@xc惘3ODX;β9hx(Ү_%$+U n}{G7^}ڞڸQn#]{>5;݊4Xv'7~v+nڼ,Z`yR6Tr;1S*;ᣩغZA0C\F}гq3sSH-ծĒanY,F'd'rQducm+f|Aӳ+n.Gn. wy^xLaSŽ< \ `+WHB I+AW2P9rksR5֓<8ފ{= ;,%2- 'geKÑl"S[f_/LjdqO9~/ }ـ?G:<KSB1{H*T' Rzɴ}Zg;WF -k?DsR.j?mɓ:n_ןg:nV -tRz#]WsTaigqrI>M:%j+]fp7v,Z $f=3pc14oa,ӆ#1*_gJL' @L*$1T}@k{45.[>Q C|NX0S$`[@D.3L?D.g+ͧ?2l}oaMx/%S0Y)vn(9TkBj eh/_aq)N IRagF1SX5@J#~1\D)]|ȰT4L!$}7 Ly突Ӣ~ZC AWno_J"憸7rP6-LCS[dፎ"&x7"Nuv.}S)yueMT> \a2@FО|v(0b0#Ɔm LjJ H w6Qf8.yb[]fiK1GK,o7/"u ccSjp!`Rz U)g.{,vsgT>+1qb`DW(G8˧bp"Hz\o" HֆY"#-XܴK;=ak^uj=lsnJcKOڝWҘ yT 0Z|O{ApnH$ crmb%hLYX_fM3鹒x>2-ݗ 6N(gZzK=+볆@@/׎+reqMjx'buҰi6vmx_E { Dt|dW ~2aϱ5$1ޝ)4%\ebl`Hy+0,Q>?F܀+MA:XATMP eIZ[]kVsNnTX}j)g e1SRfxg?|9tC ABXysl/bO/Ucg&%0e湀kR j&Q aHnW%=eNQNTeK~Wq⌤w1"> MJ%vJy]*N8y8תSAt8^}+#|(>Dtէǜy&j =wZSI8[=bXWCc v}?ZVg_E+Iw`s{ Y9V Ϧ.$L86QJ 0&J v* @eEHYxO[&֝:F;(q.,fv{$wu8C81_Fu%.kZ#~Ix[rf Ђ~!B(H2H# Ƹ?k;%j?K5u@e*g#,}~hrS6l%\l7gΕԗ rțɈjH88(TpQ|ow օPPػ$r"oaH. ҉Zoc6[T 3iU@g ްOW#ĆL=(wl|qkʃ(=!%{Cl^!]w]0 GCti^_iC, ]G-Unaՙ/(r!'VZyE~|a*2LzYTN/a xZ(ֶ9 0Z[^k~S,>FvZ#NzQ/\FuGZ|`ul<[kNsw̎t?ݖҗǀ̴=@.g3˘؟N]GA!E߹VƋ:/<&DJ!qXo%j8b~au(v; ]P~}Z?k"޴8<\xwC*DR| O8zjzkŐM^#RR<_ xAw__ Ġ @-,?Sm2%^4%mcäLyHC%“aG#L5ls`.@cF}ix2ڥvzHdt L> \C,!& "j){ӎ[.`d8:2C`Ԙ*BD>Mu8+.W(S.x{ D$ܑr4t^u JGCǢ? ΂z,z`ne}P6k<]l2G^6V"Xתy<R5y8"3QLE8 c?1?3R؝4*p<eR#̈64@xa6-=!sQzښRGZ ~$Jɳ?)$>*gːyD+l74R ~r Ftr`X띥m|Ά;}L^&:-t_ ?Ht4sghn!iQ?6lȖ%g1Q % XE{'˺8 EtYN+`(ial 7ik^Oai< -G K?b S8>91v,B%f$銱6C/2퉔{a$oE\XPN%?fU&$upD}*U֍8Q]>@~;PIRZ`cT#7~-*}98X#%]3Iyo.ID>;*{ E#a Q1l_։ޘeξYYW2Iи22Pf@门 1aKpB AVjڎI@s 4$>ܝխ7wCG9AZ[+ P߆ !{ 2lPGo?Uvm}ؗ>.ǟF?Rcq=o@ʨ.f͙1Uh}6ZfWPHeWHJ;OxDI,f|B%t$vQ6V6:ܴvzًo`fSy%tKzߗKlVM1FZ({Oztc z߬(D 6Fx.%-Sso$w@P63Ⳕ^qPp2< sbne#T?+v':;o'>*# HfV˓(6]pXWP$)#Bፔj XTebF  :-./p9{mRadz$r<ې8Dmң5&8Wf7|ʓB[x끽CA̪kaϚL"޿siџ?L"\2eXzFhKB>i$@sa |f2>;LM=N(dJlTE ~ntyc/~/4Qy<4&AԄdiAYE]nv[L'sS9%Yg~gN ge6J2-]6EXY?Q9N"37Ud&"8+)ݲsxHcQ(la44u&4iM3qdŲaJ`bAd|;R~ ^:yWWO11K/!;UFeɴ:,Ƽu' v5ȅ~2E;,T[Iہ̟;ԙ= $0:gZ4Yln\'Z͇DŵwAy=ǖe|yhGb/426ÆK&>tz\esIhSYV '|˰߶~iv@N1uFt~Y]R{uNM{*Mb2[`d:<~H)qʺIy(m[ɭE©zpSC)ԣ#BeXST;~gEW7^ahP]QoEo 47PZXjZ,65VH2bOmK!^m8嘡/)^+Bpvd" Ԍ]{Ԃ]Ȋ߆4A~4| Y?-l>Z .Brܴ|?H>BO\ٲnO#(ʆ7+  s?,9.I[{ U]ӯ9b%՜$Tʇvwֹj4fHa U.o3X7'\T.>\PUI'@t܂ i֒UݰB=|ϥTj=𠖁}>ԳwBeYT6/pv0zX:N7hkbtGbhj$I!8DI&j"oOo2ZKYBCE kcRÒMr^%& Wג{rL '^H,t!uὨ12-VY(|ns]v3= /K<ǧAj"%Ɲn13W /b=pM8X#LslIł JE++++:Mwd(ᡑ>"vb73j)KbH)qh99!=g&gg싛l8OZ[ eCTw vSUM2!0QĀ8x5Ǯ) ڒل(2Y[_,Wˬ˖/qBNEŶȌJJܱ4kѦ[5e>' jb~M{Is`%P9x< ^rƎ0EM-s(jBYɛTnEV~͐_!!)l^Urϟ/T3n ln+  h' &y:oOwŽqAp1g%F 6/hm{; }n E 0X5CpR/2i$-[1?MV4}^.gkXyLHV!~Jw3nu:-TK{)o= 8W^-&ˈcUY$C 5QI_ƣPl!GUpAIJ)^^h-Bon8W !sQT=CYEǘZVkJWĐ+Αs6%ؑ4gf9dfMǒ<:Iv IMO0m=ߤ ڏߤ"Dė'éU+oF7v)BtJNY\1O&:@ 7elw7#RviqםowF8%٬m)%oqCP 0tel&]f*L&NCŨ5a6{{"ۆ%kRђ G񿫛r䦘C4Vg;Z$.ozeTK @52i܏u*NJ=zAkI]h^^8]"! Y8k=)\aO3 +WÇ3¤ze{Di]ھ DYQ/Q\ɂ9-(geGm)u,~OF;J˜\?ܟe5! W ?@)0}hl5^nǙ{*U!]\?;mOI;Xt`֪.:OƓ,GSs )-PIPQCպ7E'PA~Sef-ㄳ=!aV$9BÞD$4_-g)IJۚ(#|}TC aij;Y =otvdf*E娄X<Q8ikfX@\4(CIY݁%H,d<MPyrv]T3sK^A^w(J( aI;/rBL~gnc X^C4Xum;3c'*Xb9 -G4h#xBK%%E6 hd$OTĻ$i5}Xl9ZvyN2E]9=ٱs\*3jKAת̹Q!>TJ4{jڤ; olUeY٣@2 &s"p S{~,;Ra%|/b,'j 5quA/̀[)MslS-;+bT3T<3!S#01 kǤ/JS*d<<|u h'ݤj( >A\7۔hYJz0xiM;~ Xm?x^k]@)(?1RC_Jr=~(!k%HI_-&X /4 Dp#ﵕi.Rݖwrd,2ӝ>2hsJpu[7尮 oRLĹ[ i(}N& 偬g|#1dsI=+y1f4} }Lj@5џ̢ PEz~1ͨ_1/ Poę[8ʳIoWhhRs QNGt oN+K-/R+FD}s}<yQ,嗷S(X* ˹',NǺbyÒ] H 4]e?wA7@LU`s2^ ?I6iFMd# M c2m'DC>(Q*4e$vqDQj 砛o\36KA=CR]-Z%OIU I_/*,|9qf*X7rk4̝C$zɀC@^ԝ$kw%].Jy`[Q.fN#°țy[ELu9ȿ.$m9ƴ|f%vhL b3籍zfxGw_ etK2uPHK\655+N'C|Θ b|մdkGPbo{uw6 }5=O^O7{ֲIס2CY$Cp$h74JeKYbxap;75yZa.~`q/fpp)o4l둡gl5) @o0 W H1sM8q$YD_3o P ,lwRR"2ObHi4%seh]Zq_y.xvWfJ-rr.5b9,=B;Mnhp_\VO)U@C9w3.tʷz.6ʭ!N9/%/y휅kJ(_4~e0A+w0b.ݸ㿼 @߯ 6eѺŭDS~Jw+aM%е|7:btn(k6 Kk3+β(jEIa #Y@_ =g \S_\'i~* $ nH]rB[/(=6q _Y~L1̏[9ɞhxEoaS2 GTu%P?}p'aoa ^QH7mF]J.ǭ%m{^%M\!)--)X| !HNi"RO5eVKw(VV.1qtxv~dEhM'D{W%Eׇwyfe(VsiRRb_F`KXT/vTZkd|cMe^eb:n2^(,}TFi@WͪCiorԗB"9Z |#v|zi~5{q_Բ̜c$j0t]%E=]et&FP/yc9X:{A"_ƸtKEj.Umҿñ-?'IJ{MAZ$O 0&1"rX[hͯ%QuTKTE$ %7Jr&"z.hD#X<~Ro41j IW0AFsDǝ HZE؄u!R*zRDpI`@W59<eM+-bymܓu*8HݴC5"wjj’߉'P0ؘ׊CiR焚T'q~-`ߌ -ӄUAR )>+7SS-w/Eש/+qMO[Pvp“6+IDkMLt|EPA*>Y7e1}dG1[<5^o 2\ƘXn/ȐAj61V;QV0BQҍ޺0!)wowd=bR} v >inWt5&"c_4ӆ $o[- ovUMG#eЈ*wj!ZHK9{,<\l4*4 ?LC!I av_xbK 7ç. Uj6p2bAN\e:-_GOUz8<$[t)D:?.G@Pip1f;Ϊ؈^39Oo Nk T*KKעGec#Pod^{zmhN6( Um"C9~#ǽc$YEP%KJ-GÈ?(ij?C(PQ`U㼭6_LA1jTYyC&Zzn~7<>xRVoEAo-auz<j`4,*=KZ Bn6EY4k&Z5-uB5{V)Ȓq9GJ=̾֐ %*Z{ 4""K4S{~㓸8O&Dr75vP5}fb&@^Z$ ql#7826lz J:084zP:i*m>EInFI#Օ -7kEw;HI WZŪg޾]MDDfVRT4HMY}vА7 TkRE*ξ,(Pl"`B?<%w"nPıxX i1}U 22t[$qmaJcgy)"cn%#|9%2F]dc;o e谤˭zcN0obʌ./ ROF%F@GKh"4\dC/ iW'%$v,TSR Orj6Ap 2@wl0m%|,XK z/;WAoNq7p}:Aʰm]b.+t3ϝz?/KODI]& bma2 M~Xӆa޸*%nY2U4 N|#G =~r0Ng,~-F꯶e(u<ɹ-[4N.Ǟ<'U5ְƃM,DMe=P;BwaR9?Fi^wQМ#dbS# DoWl}c~%ʑ h?xuEX+i{r"Jr~wJJa NEtmo> go| LuU;Tx#?ZMKؽKczKϜ'*_0g%>xZWuĄg /"Hy-JOyoA뚙L@,w!ƀ ƫNv8}#hO񆧹pրc $~dF@Mgj[ ];$B 㖹_%;^K1w$ 7jѹ/|"Stl^:6 '7s)@ P8- 3JEX6: IUKe!l-r>Π*0ĎTx/7Mُ֗UV 䅖y4Խ@8*C[SՎ׷"2 Z47(y6Gsi,ȅ̘$6edҭx1̜zex!E|8hoXB^!dK"W=(1W#pWV=Pr]OֆSgf6+d\Y}Nު4Z.$yiPVѨ{7${tC5_eYѤ¯~ޖvP%5[䧷k&jG8)hJbձ/HC>upf'_#s ?|4M,W! @jro $f<.ފ5>#*_\H1LA 뛮LWQ0#O.eW?$/hǠ*3$E,&b0Ere܎Sg 9"S` C̄0!pUCGhwF2g]&N$\qKg!# wz`4gsF\~,s@@FӴ#iP%Kf&bVylX4u6Xi_̞Ϻ#X ^!k=~ql!{? 8mfS/k+6=Q~*0z`u{!zR5Ti.atZJ^m_P9NRf16rl6\騛 7H\L_Nޚ"0t^},ͣ^y?ˇC$K)k*$Xspvd9}"$* w EhFO^ kd16+Cv{V('3\o7'Vr\JYw(MU/\;e'Y&no[xZ ]cIE4{[oŏCed9WHmD9rݚeFKױIHŋAqٙN7<َ.c5AWfA?>;%Ib #GI$*Lb ZRSdG.-::8w YI%X PBhOd78L-pd2G)7"DPb#{Z}+B}pETߌ*4h ~"M鎌Euj)\>msS? QXCαy=)J"#M*'hSc7lꕓ^1/>O;`]1l@op/'%%i 2y vA͌hBTRdwN*Svo>9ɠ.B34r,9H/e2X{lZl#*\v҃K!K!S4ft? Pv=%1/WIY}pŖd\ț~ z;<ǡ8{yr * 61#3όk`jSZ϶4%#PQ$ EtJhzSx:6t1bG#py+ΆE¬y3  pҭz~akL^y|fW4SXkx,Y IV,ňv5SH%5܋0r:{d9u$@E1u{݊]:*!W6i.kc)(Dj?\!*5BfbshTէtG8@ilUvŽ2:Y;x S]*Z& k{?ᆸ\]azT5V)`Wkwjc`a{磥 $J]X[-ie"q >ЪT*_ >5'ޒw玡'VuҞͻ/OKJxmF3YRʹGgоtQ18;[WN7B*/0N=ZA8Su.f2@Fr&2ȬԠ %Q"*fM Nn|rc?,+U .ah)AȰz`ȵpCB4\/'0۾NG^/jj;: 0gS0t b6K_Dg0쀆d9˴Ҵ/ٖl0 d@CIջM6,?|Q;߭*pZ,0LFp/Kܙ4?Zy- @hm2kگ  y9Zd0 2uL$UL5NbTZCn[E_Box)/ɵQD4WƬh&P"Jz"w%Ww6 ondz$/wRBVs 'u*kJ}xiTB69d⻐{FL: HeWގ|dcNz29T|_MdᱟSxe`5MWB`{P/kNk gmF &4 _\JLq־`=!+Dletn3*Ā#)i(wictȟ}5 E7ə˶סts)9?Ív<&WDRl_!ڋԊrw$%3ICZse{-H$ 7YD*m}%M1³:V &A7Ͷ>U4D8~v[8/j^vyRs5'l}Mi2awXo $5ԡ p\GyI]1yڕ4&)$Pvk3ϐgaբ+-vH{!_:{Ʋ=k%ğU8n` 9 kiܲ@Mgv|KU)7̤!l®RYaivIyquVЈ')2h-)kI0I*F{w2*]xq`CC~뽐pLiUso?^/0}y *Ši*+oLrD8Tɓ1X ЈF#=Xos~8WH{/py73/[ OM8ثvjiY9E7,"w.!yϲ}crڏ$`ZZ?x{f4l!k: [338_5&}.K.qT&etQ5*M#ca@9j.F5ły)Y&I3Zh B$m6ƵQFThiVDzZsRExkVx\b?~ke9yR;P_)$ -5m~EBӰq-j";W ]:Q-?$ 3ApxxpĈi\;f֮Vdvu#&AȝTpJdQB1ULA+n(Np)!_ >w$$.ЌJ'm_URe '('''čk84E9#<]?88<8mVd$θ'ӍH&gɴKiUuaenw{ c 7BMu9t#ᝀFRƭ]ZՕ|GzNwk68-'"]?G߶֏]^y%Ȱr{%Ebb-y{`WRS mG>f0Aԓ̤[ '( v\u~6׺h;B}8}o+i4;bR\MV.=(ۡi+i+ѬmN77˳`1Ȧxk ?2˙qU@cf*;:v\1O)!:JQ@rš~fQ"g V"7`/?2)Z_{3wybS;ŁBY7j3;Vv !Et>7P x`ur_8f7Xk^/ANnCuY ](IOBkW/ål& akh}6;َrXi\##D;n5po8)H5tqd^vꭧK̿Hc=y̪fZeSi`LaqCGZ=CL@m|R7F v5?{&8 pR4s #D*9m z]pi{s j['~Φ@Ŧ.uSDEt V[ly IOL4poPQ3msZ&e,|M~|ձꄳe0% 6oz4dF8BY BȩLEĀ.<ѫxyln F#J6GXnv/@ݽ'6PL[xwfvxX9 -wݔ45ǼLt']MrTyٰptq9Hգ5ݔApX WLRi qH62}0He`SLQ{p+gVӰ3W.1;,q9I7CJRSK.<3^]u] "k0ָ7fZ3Y3ew/tG=<՚1]1)FJ,ȑ4a++^ k/aj++"S { Ya~msP}CpMw:w}gyL{V+Nq챡ze3zI3ڡ>7#&/oY2oo-価xk6c'4hZQ4$ol[cm]=e:dXeRFQi=<(nGi4h"Np&=-#1dQ4p@)h"mm3!j?VuiۭUl~FW/ʃyޡ "_t|sTеX[3-Pm%m0&]unR /6?@qďQUGnxA$(_2΀Q ohĠ}ʮz :^4&/+ZZ`ֻm-MR1κ.i3/.܌lQˡ0[Lv*iEݙN, hWe!E{S$puCm̫G**}+<"0{)!r,,vzFM_ TT7# a'2!U>Ysjg^Cb"ӉwYMu~qze6_Prrs5^uOu٣iěFzE`Po۟pT/gAfWsxM^3Z5J39h%Tτm-bٛ:j/Iʀ,Gw~A{mɛ!\"c$OɩĶٗGs DOxI>ϗam$Ԇ%/*t=!}K->.М(l4!նWp|ܻO@S%]?#Ӷ vJEF:`1l}'L^#q'q2HSdߩl՝~'Y8&v@"HW+oK7*-?ˇ#NK8K_N, Υ)ύNv)Zp7NyXtcU>j 9 x_Z|&ۭ\Tԝf7ɤC.0 ".&Wj79MGEyewFFT)V9~~&=A fT*Pf۞ԙRPt~#݅ޕSz_51Ҡv)<2J+ϞV>t45\SQp0HaXX{%Owk 2!VX9G a^ Dzw-'g &t,M72&c.e!4#c nxaB~4>Ppc8-O*Y!TqJ:?k$T}S y?3'M6#EdLxD\V]!"M;%I: W݁$8xҶ,` xX˚?pAn\m ǚ kg~!PТeX$J?Fr%@D γ;QIq{W+Ekovn5TRf^;W؀4HLi}K^N># %HO{̠r?L{BΑ%SLd飐}zΧ~X;cDG>,2:ٱOX#b8ߌ|Tinh|F͒ ݙMazjjgԋ]w oJ-S M3V}*5tq%>8_?/Ͳj *wME=W䌚##%\Ž֋N uemmPUmIR(J(9N8mv5 g(Ox%]YS*8]Bd 9 `z^&1N[nu~oFfm,Z,+-պp-$f86A g3|2^ՎKOGALSCk 4ߥK,uDSEJI0fi;# @e(1{,jf@uϩ-)U24;Y]WŸ O:"Y7!#LU=M )ձ|I+n"97T6Ar("o|KeEpC b1)#Ո$&~a~ Ri =ґնFtA A@P."GN@3(sC|]<"Y+h1(@h jV D@r8ƠtV B GY0ڈ|TjW75SیM\cjZ\X5W5[(u҂z559ΞQaX,=V'͜R,J対H\Wt\`¿-fw[_(D@V8 \#ղ7 #R{h JE9d6' FR|#`g1'H~ 7?`tY E˘f\,hyڬeXxmo<-ŇR5>dQ-g YBU)5{'& #D)ra#oppe}?7#" zniS5M!I.{AIjEkv.P>'5! [5ΧxTsdD:5xnUC0O NC6Q|wx(4@2⾸`QTLh$Ũ5`d]?KL*m 0/Ṃ<(mEA%қ,B&t0CdhusXrc8'^RQ$~N܈/vEãj]{dҞsu:MQ](mXv?Ș,N5Xhqm#N;*s-jyFa$1_ى&T4Xd|o} Jy<ʊQ-R8i|=UUyO>]KnJ̝=WGC5󕁲ʂ;+D4gZ:ʺ .%srO2`fؓ)GO^<$}y=jK0j@-=-zw|pϢW53YqXQh50_ѻ"ex|FK8zr ќ[I45pqPb+ɸbDS@ͩzUbL!BQF3_8ޑYަ]ӂ+VvX&{.M }`j!ksjjV9h[-1QQ.m8z_XQ,FG;= gZ!4P#\s)pHЙG 3%Iob]KYC0 `[r37O^ djGX8oV_*/d&(yeSc_/2=˦!s>n$4SǞʎ zJG a5o^ŘRl+D'`8nAi&x"D:;f|XLx7ъw<3-nvF(ʲ{e4PX(IJ_[Nۇ5Zvʡ*t@$v1Rb1)xI*9)!B_\bNzN{X$-B*cbL&8^jsG>.pX;׋HCҞ:HO܍g,)|{]B6ޜ TdyEì [F%wcHg3 V]ˌZ $rWW9BLQ툸_qEYz 'L>'jaZcߒ8lꆱeOڞ3^.T5 b3#٨<[Oszb^i59h zd?pKW-`QR-4ݏ6(RMM<ǯJe6m\ۖϺnI'D.)$QG kC2qXX k|+J7 7)&$kc):J#2lH]og)Fhp0~; ę= LRKYcb'"# 2[k%C|(EuwZ:{~Z变qq]b.zk\K pcGX9@YmCp{NjȉpV=__J nG%R^:8=Sq=|mP0A5l+%(Ns7YǫP֦xfTH\ iJϰgYo3&mgmU4%oܛlk|Hbpƹ96N)[(aDQ w,մ,Uyxa>feO2|+s݉$ _JGγR׺Ewt2nAV^;N,mk6)> !%l4 j䗸l5B&/Cu0ZۯD/rj,oՔү\5,[HmWPY= ~՞(*7ERܐdA a)݊ BŅɗ c/aͩ{(A)V!BpSĿyQTfapBb0\t.*;׷O)NsMФM~dSͩ[g*h?6-h i6뜿& AOU&9-Uwde{R; \[#lRTi%;N>}YB|aM+[SLdA~qg/qLbnT mb8s  .jBFrł% (}RO]Nx^P(e7^`dZ5oQTHu?a(L|7TM^>A(W!t%Mylr1$\|T#A}*};`6!P3=vk7ҖZz9&3gELjmKK-' %hWny@ZB?>X&(f;x v~BzAinzi_hj6AXPxߵKm 8?ue)X?phl؈]Hƙm ތز?)tX}iYVp:KUr0/FӞ{Tw^:w5-7iH %hrC{No8c#_JqHt)}Z1αvc[yfP:Izge֥U/@̞̒e#;%v|2.fm4m[QZ tm >-—=S釯 f./{%`/ 3lV z?M14/AdwoT(_6T-rx4?}Sֹ+^O& oH5`I@⊥rnq;_G&1THv-_d`b+ k:Va]GL3H4%M.qf3ozL/2^E~Wk)%70nX;9KCb8%ۨON끛GiYd߆IP#RUŚu'>Ϡ"+]rLTg Lѷd  񨒒Խ%\xnn(rϗڤr96mwSeF:l$!{U"GD1H74Hp\jkl\eͼQ`,HO@Yr,Id;vtYܑ@hf۪#s'^Cճ(<{ldi7O-M~;.eyҩjhȢx|o,ʧ'i$E Q2XBI +F ,aFFJCzMq&D*O S$:@E7}qPӺ\YV`fzE!`O@l}'Q }"^ \d0SLIؤzn9[赞HF(;i-DzC6#^ȉC671@-jK~*B:7xY#T؛{nS$cl sʊMf!N+̢4F5G VNejÅ2I+h%E2VmRR w' @>տ_ty^,k= nB!f)LgT}*PUw Δy>#1>9[ 0.cAoZ3hZƶ Qo2XM(U< >5nblU տ|;%zEyKd@=8_-uչ9k5SLtzT1.ʎ};8,M<<(hbN:,bs9wJ"f7 WoyObvvٖ\΍\?aEeC4P@)%oN6OJU9Ob03֡sJ,*Ǔq~m/0=;yd1uo:+2.bKpn=SG0ׁEa7QýW& }]2mYYo/8ջ}Ī|LHda^HNXuLJ܀qNo}~  +}<@QLN)amm0yO>윲=U3x:Wy$rx/ej8U3G/sŌwAqPl#>UޠM[9*إ5H( ľ@7>f`'?"\aj=*gtG KF3 B[Fʷ'{>q\uD8p} ~vq1Pn|1W /:ɃY 4s%*qxpx YoA H7Ux;9R2.FfyyB2Flöȗaũnw4vvAj:Vs/c!efa^F{ ;7paXGpPw|67S)I6MΆ"͔I$yRFW5 >@_8lXQhKJYF,/N9SImonnj _fkz&ֻxJC) 郍| S4vuq3tߒCm &Lv/jNڈHtphx$SA$4b 31#0 rIa-/m b뭐]+J:(4- ZxLA`čB axyId%S +(@Xbz#?7x`2kLq8"~HV{Ȳd.`wu\YG*(*iZ`Fs!5HCXHu % S u*}iqE %= d!e8/C}.I; T`Z_PU`.Pn'_ 5b@9zvA nNm9}"o|qȰtYuNbC#8(PoL7U)g)/g87}l5PJp|-/ܿKpRn6Zv 'R$}=v@G=zj6#')ZO@aEbIv+%7}!e9PIO&,A y| kYhX"^)wyIa3&z'oKnY$F̓®ذ6l >Ⱥ/wd)Ouj R\\ۋJJ[6/c/Y'@p5,9$b{Lql,OİpKI)0)$eJ@PnD*~(el7E)x b iS" uڶjk:"zUfQ*,!wq1F:Moٜ ޽N$ܓߐ,:֟u|[˓`q!5pC$C4G2 ڇb&LPS2ᝅ-{Q׎zƨJn^ؤLlzLоrY w>c9c؊iح 4A$sc#T;TR묕*ૂh1t@: ,: YboU:=mՠ5}\r Rc䚋=#9d1K 5GW&؏Ik2w|5 ;8a%#r0qjݩ֙0<6a(%V#؋w,]+qyX8h6gmY 6 bUA;,|2hNb^dE">~X'N|ҁ"'#LשH4k.܆Nfx5+o*y{85J" ^q R SNamxXP/z-QrG֏\Q*aQ1{tVv*oz_Ask9̨|9츌Gu3vSKJNgE8g2W"1JE,Ltn|U ,`S#EG{u'sYFB}B'|s; lPQG٩Yqߥ.ވ,NoI,=`#᤼'+1\ڙ-Ȼ~.v]e\(xF㏢Z3\ǧq?#{1<8}`%&'rį bڜV;ti"50(ڠd,7js.{kl,EMX WnWMtT11N5` obr%Y"h6XpVܦgMΔ0Hlnts3("sVhdb=ݗŪ[ 2>Y8 ;r,d:4 Iag_pP`+ԾN {-jKwSc+Daҏ1{3"hx0马CBWdaouP݇4J)zɧCJGټjnwOnit7~~zx}Db/V^n`#U1zy]Wl)T 91R3E-v.\(ɜhġihHb ǖ꟣Y(ZYaS.+~jAQ@>=?eR= 7fCƖl.T>vˣuOr ڿ4ui -EV5fZF!O[S,i)[J!8M嶊e0l#/l/IPn73H%rP4}D}])XgشM?;f҆Ѷq6ik^Hcׯ/ڛO9Dۢ..|X;rMwxeһaL&lܒjSJX1VdrDєG U`"\ ı)ױvXF)'n idXgxb8Eк.Zfm)5*xˀឱ'[ 7fYEz337vk8'XɯHL{F-Oz< Wt[o1Q)/ii5B(Oat zꪊ8Gpׯ8U+Rjܺ); ]۳z'{9"9ہ~QU]14$ 2:#]/_Oia| MbŬ-kN _)`h *kH{n,H#-ɨ## ywj( {(-[FDRo0(dXޜiqj+LL+ix--Yjmm43wC;px.sYp jC7FY,VӖ3!&‚il-Xt) sݪIK'ng= cN]@zwSϹLTHəi5@Ì K e£MqbYJ i_DxTa 5EPGRŊSCAr=YI;uV)5N7 \+[TI6I--a҃ꞗ]=f(w?d/.^t#l۪ռz%xS hB'37L3?ACV_9}r?O5$5`y?Sln6leQcJ M5A`YpI #$l>O3u0;C>=Xݔ&}؍}Q[r= TN!Hf[Cj*'5 }9Z+&-]#—;u/Hhý8G5Z?O!+qni581cc!;GaNdE^)Zp)|.d<Ѫ6aݶiP8(x8倕g!<"FZHrll!Q'b ty⍱dt`DwPr1c;.S^ {TfQK٢ZIeXW@@G> ϯ\=#6@%!t&8&j fK  dqc,x1EۧϸNZH5XQ/Wz||}ƾr̨P!fIL79/{mFFȺjV'~*PAG jQaMGD̅8tVpHKbFwΟbթj#ئ m߳z ԣE/=`_!Dx3M t;J<~EZ]"h dԝW`@xfF#P((z$|x+DŸ^PlyU&a&okHr㗻 ǫMbB_aDD;kp}`q{-#T^Vđfre?ыsrX~XjM܏cn f>!H]fEe\f$!.V('n3rƇT>;x:bLYtu5r7S^lZ~3f6՚Kaulݠv+w!Vmc j%{X H5T0a#^hsZ'dPhMX5+2;1/P⊭U8ڞTL4ؚe%DU%Wš+*qb5/3O'Tw瀺.D1Ta&nwKRcRmG>tH s{6 &&d?wҼ2e+c:T0gŢ 94ǽ*x!yU|zv  1T }z~Lcrd}IWzý[SvK*LS$IUJ{<^#m= RaM~ Eg4^* 68DgkN,Ch:Ov+=*3<=[ o´ g \@Хg b|9`W=Y{;-oZ(Ncg@t@+ʫ'b, inGZ0'D`Ql /vzU>&wK aI՜@5BX+]7^B}+Yr-qS?/k0^V QS_xzrb7·O8}WބA\q kjJ,/ _z6ջw*WzyxM+ ry_R]M} բK.+Li^c &Yzq=/ ǀcu-.q=vGe`DT\y햴pLrf7$T.k$8knB+E  C< HֿlG׸! rUB?bcPt]{Vy\/UDd}& y (a {PQbPwnHGh$Xc aݼC A93P >jNXu/aa5-V]1v[Rb!&Չδ:D"6Th}׫`"[Pv8Zǎ|G`>Z%q~`9X([Sfc'5osl0e_q6+9gTXHnQdB5ZSuyovOTxHY {udW047Nۃ:uafDY@ù0W]ޣ$K-d3p گKD-cFl<4yadO#k%PW;x6] &b_yEW14ׇό:_tLG 7sh$7H9%LCqUKX7η!OX^ X>0y`i~S}X1bsjO鮝6T݈*N -"Sm52ž;GeLn/j$GZS/ ",Tpm"²Y%bc/its%I-yϤU/HL S*(,"[邇B54X)`y"y]xU*tz1]~oj62Wŀ O'~luwIt\&ŕ7.͗fdSc !']EŰs-LA&aiNկnP5euZ!Fhbr%wG44D$p6WmEhN^-ova֋JXM0|L砌[=v㩈r? ,]b"+,rk2c}{UM?ע{Rp>C1W{%c)}w>ZiCZ6bŚ]xQ\ rX ry%5]Kw0sdW}9y/ERDc+8bX}r-_[rL3/'205%`|Hkh62z(7XQJAU[H/eȧ7ri:7.\^{fUbE9]R?9&r~9ٖU<~UMdl{h/uvU2~o#;RYmHvy(*H#of@NY+Sj!DV|rJOCӒ3RmrEω)"sA7zW"bA"8PĈ60}L]'AK1`_KC>(HO3U @p HU:X9 .[V>"`ѓ>?uxK͓nNV'̓pCo Ū?˜wި&5 )ѬD&*uy+cH .}6o?PI"7:U]S)ռET8X9q')WOO>̫nVcȷT藱 vstiI*n6dp-p6'nS/m0OaMoGf7w 4˓FWls- IHz.&P9GL&:Y=3g`+3h>۫:\;AmynoH{dyR~2*osQ3k.PM@E2/ u 32XzqҁrQac Y;!2kȊN%~y7QAū;rT ,@7&KnNdyᯇ؝/R'B) A]kzނ5=kx{Q$_dlG:H̡Ȧm9Ӷm*/93dRC9c5Y v Rl9S% gS]P)$a9!LC?z釠+ٶ#=LZO%7n:"w )\"Iu(?#ٓ6l+y1u*.ﷲYqs׳pHDp D'hy](3|x56!X2h?Ҩ{hMpeNةM-"?0[?Cz8 #UPZIKl#t„[6bf]"9aDu9Vdl0|>!p.v;}RY涌h0gobP_g@<M.uD$'#Kicʪ%mTs! /\ƥϳD }Ex7B ^|V-"Ԟ#`9C<7D'\04~识Rm٬4SJYg)* 7t s,|ΜSA/wN5yt-sձj[зgefZ(oR~H ץwKZZTZ; V[4C'>^TrUUH8‚ԗ` Q`2Haݱ ~=':OIn} dyp"y,,w_;gښ$XJ=~w~ãEW/cA $yL\[{љ kăqT ru;{l6sxI8 ǃCmKB׋j1m fx5 8$C#784o|uR) =j-Rb7&8˖?$51%@$*H8R%iJTzQM4<pn|Od^s76+4:5s]s<'R]Õu08/Ə$=ͮq{NNbNʑMgO(K [ho*.d05F}/\qHwKu˭=vUBpop?FY(?NMon/%!s-( ?90u'\_|*g3+&8n>!@IQ*=)EP9QP#^J/MTN(NFU# NΥZF< 9J`8¨p(\ij7!xlZp iYI"t#e-2ES^ױ~`J/eR=Nْ'r!U|m^{nc/)⑥٘C_ " 'Ewx?){T%^_ h ]ĆjNxqe^ KY`^yVidEllLT S< _;)m'bve\IL-(IrGzPo#\U~G^uΗR'sGzDHՊ˞/v{0 c:N`e%*= >+9w+s aDCHэ1W֊鼝ZCPqlpsYsDCN<'ߝ*ͫBT(X ,didq-FJjbcKfdWnۛHo h9~#=82`p2b$Y:ϖV˷SвKO;#pu~QYaN-6wZۯ?WGogrr+Q m',n/\8.Gtą_]FB!#)_A= [tbH|u7P 8Ĥ@t=UIƦT ?6x+*f>QJr&i e*_T8gKmB2 qH X&G|$gi-kB9}rM¦0!T>LD5+)|f5<_GE};D)e.i1A/>cf{VkSo >z" %,Zk$QN.*;N>EuHsI0'"M>y~{~ Z~<8NR 5UϓM>]2pϴ=]ZyO99zkYjMm J[]9O. Z%w?.IYkpϛ 8. iכUl/{v<0*uyFM(nbD6J",?riKMH@aW>w. nT'F+4 /h^ wqDb6piIeتJP8,pzJa)ܷ /h )U`4}`$~ 2}(VYdwhUPnpo/.7JI\PqV-{FAzT)0q{FauH۹ƜȓR~s䗡onͪl\DCEt@w,;?{ lT# " $ldk{1ӦeT!TfV5ww  _h|HpR>a . , % {{[E^馅lKpJD g*_r#aq^ ᧵HмTu@V)m1+EhυTaJܶ0f[.v-GO`-.q6P21vqv?OR$zǚM6|IFUSW5mt9~/zÓ`o8(tB4`!]]R+0$q $LL43s-5YR(hmUK . ;ǗZgK ùgHO=>D|+z oe""1SՊ.ֻOࣛ'NLhfstit߶'+MU0wRZ'BAUQ5-#m8nٕ 1 jy|JXN94=ICI4#")a#>yltTmknU/ɼ~?7L kẄ́5LXnZ3L`(Qy#2&Tc/+:]"Pw: SGte@=$KϠB^;"Z=}dسšTF&~zP Mό43#]<O"7'c%X#p ʢQZo 5G:.9V'к=#6Gֻ O,syt 3HX{὜w '.`d&TR )/d]Tm ~xz:9L0VL?5SWmhslbfMTIGTq43Ld}o+\J3Nĭk `;&!{(uȢ"_S)" O?ASRq805>F>LoJg!ͯKx+GCoL#ź..%HV-V"|2 iKgӽz>/7 jX>YL/76́X}1ma[}$"7}T ?7IknTAE)N`(.~iu-;tfZ_ . <+84b{]H?Ni V/Qm/HXm0iz^D%X,ͧO2F ^Oǜ]{aw1|wA$Dl2ZU 09d$omN&*35W<r?[H" h&Ϭ;g9YTӳ uhtoYCS+o{HxP%/N]PIHPL:զջI%'᳭މ׵)'9{RMhK;s=o2Bjي=OUSe{m,ЭCR孓%z"nhoyLj UW31-X ZUx:X}?7a'y7.sYkh.& aZ2_}nFm,/RAsCH$"Խaٛ< }wWb]]$#U"ֿЂe|Kj@/5+lAe4O$itT@޳`w:o(hi80V;BKp+^_-]Ցb)WT\-$v,Sy´qa$Jb7[f'At)+20M!o;#ܸA`7Us 6~ 7 TwXy孉aYԮsӐWhÖV}cuKk1٠)Դ F:gؤ:ϲUjg.R@"؆(9(b BBؐp\Hr w4]ax}e0Q` |`2 o,ҢV<<N}݁TX`ֲxL(ڜݵ Xփ TS6R $#Ywu~x}<"o}#w`=:.}o:<-o;_kvf%u`&h9^ }1nGZa>! Dᔮf[kG,.w&S>ߨ"GuwX{Hӓ}qƓ׺AZ){UܲkPi> s+d3$qX\ݾ/pmF}/tUԦ,SP5PwBP7V/}2R֟|/ņ֕fjgΕ)7`^/|ڨY%RS 6%'PzWyC?۽&ȗ8QFQKpu⽼wwҋPzѕ2 SLD?5ALecOV.-PLtO0P9]?SF==)|Gt! zńV ѭw]NQ;}#-0ɔGbC+?^94TXw/U`>J[$W-b47G4<[݋Nl>2)V[D9RP5]yDӆѨKa2_2Zc'x!J!_xΰ2ެb$3J|3n񩧌:i9EtMO+/SVA0c&<]opUtܷWzZ+0-pz0kޤ`K56[μj5#Jn=W9]#qF< אp|i-,lcɺʃZIK0,Glll,vyyM0_@rWjpA]{k*mЊ_dkdcEp BHg@|\9`< sR:ǒ4cI{H"4bם| =3}: K;v%ńɟJכcVaq/˨"#4T RuKBśQ+{Qg[(ɵ5nJǮV^IVpm6Gd r :e/EL/Tߨx}sE/m" WW`%e@kgVT`55!1~6sm#9k/icl0FYc:P!)0#@ӆŅGRi{ ;ߧt]12.4^J.1mQ|Y53H@jN4~FaEMq6)?EV0xG Dm `4B»"||LBMϠ / X%M BqjXM_a2Cg+6T,}^ch_cci8D\I3+d ڒacHi6 Y"JVY*^H{6ߢuy`tYA4K 3'@}^Y~buA$VF);c#p#ᗉnW Dv%@R}hv`._[ltlz4B6)jԧ!x(g3B)UZ.WGS싾Ș춹5AQ\ ԖTSSݧwaΡbh\DJ˺zjx}VR|' # If\I(&I=$.]%PԜMf-3:$%F,o6ד 4Np4@]JD1LL^~tݡ tWL'&ikt>g/HP˪b l ;gSt8PgO sbyCP/~kǨ%C)dJv"[.$SS~QW`t&UO7Xe'Y\Q)w"HcTz`>1CE2@֨Z-{`Sha1 G0 %JCzr"N6;$+E MC5?6HUuw`t,Kp fZajj~``کfQW+p)@Hoؕvn+Ju1K7&m" <-cT3(X*\ T• >=Vy kֳ1SF.!n"]c(|D[5$JVӟEvgs"-%=KL!9 ¬^<`}耑dv$$?3!L{6!(%Ke%HvSsQWT3piixX0WD8PKc889c]->Z*Ժ5G ɜ=1-C`_?3qԎ+\>iY7db<r)IF4&]Bw8>$6I#`{_NЍ J5 [ aItSꥑ*|dZQ![+khĎa6J%#z;,Y5U?* O \ %>$"S`n]y?g||AVVk7jB?Eq bѽ154 AÝb`/9]sMOZ'@64t ߍDe8zeM<]@|я)"Ԝ5v2a["1g8wR7k |9]z l.#RMjj)h՝HǼ>΃Ō^j%|r6x'[`f6i/Mt T$37/D~bUyT)0-#-^Ne JTk$. #BMz9dMteRU3.3,O1jp]g]i j)"W[)ECm }@%#h萗VA^2oa\b4)#٢5O%u+(; ϿζmVԍ(9uHXE;RUWS]DT } ]Frv\;AkDэoA@ ` n3:LqeΕQ|p|xA2)̡Gh X$Ku) Xd74{^+YhBO^k/QMsR]j̋u'm>Oc*Lv8_s*sʾ9Kvwc uU$]Ԙ݆Kw:& @o G7IZG=ھFV/pT^\1dZUU d}׸rS'{޾ |J ܞd)ѥbntH)TgCpx2H>{q@%PiXG^p \=5ɤӜ/f6]8f5Yfft֭4.1.oXK.+jyC 81w>4_E0;uPu[0Gso Sg=O8{U:SZxZRnb^GO LaFMݨH# R'"x$d\GU# KVrzȺZ$hD;P]rQu8hc^AtǏ5=bsY"=\@f?њh)씣^\l e87h ©y}Fps5̕s*鶧'zYO:m8v3 Rc_b:y/mW$O-6n ZyIj\rha>B* ǚ^qCX馅fezC#v2'6rf[BR΀*J}H<?]0&L~ygE̓&atGXS-~ ]&qf?$lM;l.f 5}Kڬ 7L+0v$CCۨC;dI ~*+rIg#ݛUɭ"݄Hwu@W17uZ::ipυy㸔'%3S"P26f1Vo\ri 1|纓O RDk`mǐ (<[0scE Fvi]2Ő!B_I(?XL86= <3η䋣 @J64c QQ*" 2yIG^7o$3<(AYT`6XUxEK_H:Q[-&mcF z*z4ũ@H'_xծ/' L3g-J^5ơ, =K!@Μ4P(wOC\a~]5FEIl~MƸ.HQ: @5]aO2XwN2ȝIXSJ &)v DJ>pt$@_>h:G$=,e-N]z?3z\Mm&]đh̓ T:aS~XPp$uq;A#ZX}X Q=pX_b4_f$8^?e8s{'myMO9us }V*zMkF+ƪ2Je* 3%:Ѭ|IY%M2Nb.c\un&BRW Xo>@a-YYsT X_|}B>iћp_Oힰ'nz$fenkOury L9 ¸e~. `B=V ?!VY]@'VMiuq ``3>ApE> 6^<ϥXϻY:YecYEi3xq4n&[P$ًte` f){8KEoȁm *B4=$t>+`&T5+!f'T|ȰYm6zE4xҰe_U16ǞT`!ja#p.RWtR!Of{qt&€A%_p|` "$dqzӋ)>ؕZ+e,) ߞ9K'#O:`U/Mw _X/00/f)K\ڢ37ICz" &VO=`柊Bfy 7_%٭qQ:BcG? :_W$*p.I;M 9KI":c+i޾ f 82!jPʵi==qQ̯Ĕs埂xd^WnEmW3&P=h懢tE*sl8'p6H0 _."!ImR&vKj+U)5lw b  nI\L Cğ .Je4aӳPaVӔ>׆A狙duu#9̘) $"\أ+ ZPGY{|`Nz ,_Z %x <8Lk$cG6- H8+ўA`b3:Y=O4Do J:\e&)C\L,tY#DP]ܲNeϕqP<õr*|W<\e7]bs 0ZxkYESO쩮Qc z"$oR>kxSPҞ/H;UXڒbιH3́w-pN)"QUrP0j |VzDW2kGB-XE 8_hl e l((ˁ ղI=ҡ*-Xo} ໹/XZ1V`Hhyn~*|-gٱ֩ξQٗc5vd T3 *J{'&4O!wT zqCݞ@A:|xBZ"Y=DP"}ۚxk|OB߃kK.j#(>oG{LnkԎiK}C@㤔d͑2g?Q/I%_ylO Rag,4|csaD50 \/sẽ@ 3vSYB۟c|;WZiȌ)}q .o;: TE#T3ڎV7>_i?1z+QҨrӣ@D,%۸6쐏mԃoQydT:LG ҍӗ2J|ݥ,Z rW6vzQxyPI@|'dGuoDz s2SMR:{xeǤ?s(I8e+J V^^X*~?ڀ?2Q|#bygDaV}dδY!?#)%Tǎ8u^r>'IHlիFx'(at2qq?פ2ǘ̇2ƊL-eL su7Mg| ,VZM>MV$-*2 S AoHlnMJAA^n[SnOg)XWT9~PCmZ*}&})H];PYmyC*v֫PJFr^ eUdu2յSD=S+l.ibd} HoqkWj0؆_GOr~|ĩbTSeF*uXR#m]R័gv K'p,Ά8Tc2#~>bO-d'R/v 36K-"p]JkHbİ{p#F>3\f7a;6Tƾ᣻}]:+:-Z3 5ӯמEf5ȵ|P!~I) +?%+QόDqsʢjތ*'1 {o'vܦ(j Tizčk&eehAs08\+OVgĒf_N=[vfK0/=q2[A(uha,@^p a8g$TQ&>$ A.ሮa ]`9t@9]!Dl,Tnيb$nkk"5G?s>2x:lXLl$t1Ψa9# [YV WJ87x;_&':dvj'5_m :f76f( x5~6VY6k='ٓa6us[ :v~x1k> `\څ0ڷV#Q X}Qe&QSS 8K){6k?BV~h|8(;g]t*u?AT/>ط<-Q7Y1&X)~6'i# &RpIsCSoVPQ<, U.nSsp4zhADc\#H1!+pw+(KVi>'Uĺ4k:۫I+@{q1066- M-3Rμ;zdS OI;x"*G)'a>XٵؼrHlYƜ,_/${rw{F2' j6^ⲏ0T zu T<<.‡䷍ޑ_UՄn*ߜ/ Y<C9xU1֓Ow h;HTϲ0ϕr=EBQ8΂k:f5g-[ ٿXɎѮ~ݭx,$qH>s5f}kDq*(RlT,xQʓPɑd[$,6&tW,(wKMoPvٞ+D`r3F!;'I7wZo^ڲ8v0nOTUZRo;oiR9x:h|jZwoZ F*g( r NLuuZG|uo6o',R|u\]~}NZ8R)^#Qdx΁ 4 k:s/]P6wm{{zLn#6I6A;ڧg nfWX=HəZ6 b"`a!RH]1ymmb0nV'H4cv;D/C~e:4-/Mf2*J!t5cG܂ -5dL`p5HtM]w7=g]8N6Z VW(Nڍ)y\EL?;^£& *bءҸ#۔'" v;eVZHjlJq+^q8"P@bdĆzUM@l%$Ό~ g1[utk~p,} 1P e=i8nƙYN:ߠ΁8h܇LM>YfL_` @@s.m9IvrKMHJ,`,9uJJ_g}9}9Xbӟ89 %uY/]:V,) (|ij,f[O 6ѥ /Se0ֽ;Eic77H E@h{(H.YwDIE:ٓ$+̺_uTzrKCv;YVY搜<ڎit "8f !F*||Dj4P:J`d_ITE2%`l'یU|OeVO_z%)p)A.czGhuߞ~,. p[ S9x‹%?JK_c\2>>?:s۝{< U32Sy\1ZG۞%CcP>* a\`!@AܱOFV%OHv/^VQ[$U 곖jo΢l߾1 Բ3+\-?}Xpp݄9g}[Z0-8ƚ+_z`Ҹ|*#Fy85jFs_?KVJxٚ-[[ s78ԥ]2E7KX ›c-9a2#LG9=xMQz&+–s~Pa׸lQI0b8kAs?_PT}~iꮝx?OH=, q+q ԁ1dژ&U6◽zyu|3@/ݽbfC̺[w%{Zj84VҹkQ󶊹afX"^^|*#U4nrɷjvdG5f` ?·c(Bצ۸4O4Vssبq͗S{I}ټ *sᦱה8#`^ć3˸ &|Y8B19IIU^OI&ڗdN]P8HVqq|g?JVpl+v`"-d~scxՀOV>J6pvJ@B)1H4?@>$ VԣkTHp I5"k4*PHM쬳MClAۭ҇r-fR" $TW ( X[^)9 d's oXP "9Zq1@P|c<AZ/+am5Eɑht$Eٌb'dtOO+|v2;'I1`cP#Q$wJ,iwy F dx8g͇fS0ˊ{ҦzGf>5[Gc`صFGY=MgPذz}a)8dq{lBlk ]6&,e.@;TIzSZn;S;`!EkUlϒ:VǦwDPR@=g~P3ON t$@tr">Kk ͋u8Yۗd,Ҍ2NEڂEy[ک^h>:Y&Dd#FqصуhՌG̍vҲ?+ɁNioʨ($pN/qk@@L}21L[9i<1$"a/J|72f)b´%f~3۴(ȬWg!0CM>t֐/PptdhA(I.ʑ7eҤj`p?<6?H#-ZE^>N0n&6ւh4>7$jƢXeqv e=XZ̞#`֌xwlGVt qdj^ݣ |u|+o7= Gqڋt[L dF9J֣ש_hZ`vL,K\]֯tsD&QeSz}nycn뭞pƧ)'yZ.~_7{pגNt2sGR}Ix v(|Qg;lWS!2z#K,0 x{-嫘u"H~@)VK^2ޒ zUU=VMҢՕ*%L8nI}8 qD3ggff.h/i>餻̜f1Y}L~w@w3 ĭq ǫf}țU@fkO;l-/p.i_6uzoKAȣemqhXvJK(h"B%_1g;2X!1-YX6gbR8!o<4 qWGxTaƉm \7 ]9͍E02 :r_u`q"$]E:4ML& Wop/״\ڿ ~*ye'UBk| (> (A`Z/ܐΣ { 1&uZdfX@Y=+>3 oM c$78(`';,/Xd-vK(Uz%n KY|9 ,MW>¡Nf5L 1ED28ψ}tQK&A9!^C$J~|yrEaFC7XO=CrkK:]iˑZ =ȫ`{>^%ԛ]LXّ{v#(o&)'xUiJSH!I[鉚zvN /?Gx ~ <0msyJg}Q*ךq82nMkI;{"TОRu՝]D. %M/L]8 .ieHFhӪ'3ER^UP*=uZMZO"p\Qg d{xyiCwKޚ8ErshݿH$ji%"Fz,XMXoU!O%_ $J6t"4]4e;S;|Ŷ$~Ϋ=$(=tLnF(?lqb[ڻ2| " _YDԈiWBq7?.Wg6\ Ա=V0VE@8\`ʶKi {AV6jDCbqsućTn8\hx6=[v *\V|ZRj[ֵЀ09f Nn! 0pOUgo2^Askt"뛶n]mؼ/^,>Sn4c۴vW,_p3:G]vq12SS0@5,5UZA8f3J-qu؛[>p9?CW^,ʆ(t;#XkpfĎS}iXY;TOMF7+RLٔvBIԂ'+x}M JeH ^^z`6pS]A@F3ri nYMM R7ETHr q E{^ *K\ " TJeX^ dAj.u/~ gp0& )'$qB geنX/J"?^vN#K|whP6ta7U) k@[pɘҰA.ٝh<ug.w9|5s*5[Ƽ/1y5ڼQhMDD;Z/錶4?b|3v5VCڹeB1^vW'NJ>.RodG^rWA7aeG|$hCO:TdfhqI PC.Un$MNfP{ 戧-!Awkf!~E?@ eȑ8snP}1-JECg*bȋ@`8GL"6srLExzfDWS"F1WϦ?y(ے('فI[ƋNQLHߞܔ &U\-#'\'i7ePfX/4)^xnsʯB\rDRJn5Q0KVʔLc WSar+X/iX˿ˬRk$eJ]f^77i/|@`ٹ@z?HZC\T9 3$Z}tᆟ:nm"5d_r=~^8 ?XjʐxN~橮|0֬z'1s]K_ѕ}L]@߰dMto|TmGq(̕ fWFƖ=vUZQz,!AS|?PtmQ8?hEyi@meN4/22A%)aCو?:­o4 JaZ>Y6k#*czz䴌w&|FBRZZᤡ[,_$zSe܈,;x ζHa}+V:/+wSna5>WfHp (<@t&0fI%lAAQhx%rU&uIȚQoGi+O(w% }U{5:Mm~j\?j4∻pk[,H_(&d]a&uԍa~Rw}$)4/MՁ$juM'"m 9!2+9HbBYLq;/NfWM'~=>P9ݐ<}J70a/ YKT *`4œ$>NO89-'(Բ$67z.B7@͕^[&6vND.'_ LQmՙ_8gRHCֲ5AdG!@mwTd$8I;k1|7>Qa@Ӛ$D:Q` y*#2CRԸEjp-d}Y0owc'EA_ˢm }7AG+91BHR5 ՅH :ykjj@(1W#۩ A_s$wzq}-!aTbZ&v?eeԉɛ.fsinT!8:l 蟽]΍'}T@y.[{k:ݮ 4F o >wK{d6T}K=&8B?8&m^C~rCKxȬ6+LHYSËx>x52(Ā@ j&y6*OR4S.!2x~$4Es|~Q0;|_)X7jod|QRק H(,] wC}v\P{I26l^-u;C3a!r4Og&_,ZҀ8H)1vhaJƞQ9!3ic/@B%5X kbIf)uA<,]A #"Ȝ1T3Ut 5_T(T n 7h n=sw1N/ (I;x63ɿ8x, ܔH!*0o8 -,8bfqnm(Ԃ&oq f6y_)>ڡ)9N rh3nzb8 ٲW:߻>.m.dcRG4YHءy'/XrZ*S4s諭Fw$쪙 ;X5`1ߴЇ-n(&bo)Dx,ԶG6U,~s2늶<2ۮ' qޞЛ %܋b[xsVL mh#VF<~FJLrU5[Mulq <`f{G#$'wm`\MkEv HZ`"sˁ\Ĺx,.\*'Q4΅{j=R"X= #xZN{Y1-&>v6ymqg:˱ajN./~*# gZ]Z+<5Ԅm`_J~_+a0vM00ƹ@Z-Y;Cjr2ֽ ɷ?I`]m  h\mcA(8$yC)8{ӶC[f)1 ^zԆKaʱ9u^w q{0O.ѣF$Le {7Xsl(g zPOMeX!i 4e6>`׬ 4+d 4zSX/7j.C8B@7fǬ{CVklB,ĬEOi lX0鈖mѫ7kU Qk'un).Y-,\ اAX'2yZbwB+:WYh w6R7sMܥ܌?@,X?aX%>A̤ef zUŸGp6#%!jU2 :t%[ AY{hZM`xY˝ ~GmXd دJ&-qvXm]D=8iY3õLMwv⢘:tߧu={hNY}Lr',=O!; WfW(JK"E"v9NLd6`BvdY~o<)iB5<1si>:GBү{bi8' -%ʆb'f|@F"xBL/*{:MR-B[F칤Wτd+O9IJIcglm8To,;vlBbg0(,݄TR~A9ʷi#|L>;R꡿Yk'}Яlh*ID; IHt!nS7Z!4D ;cd\lj%ϝn\v0n$=P@mp*d&"Y *WX}V4\w]|8Ǖ0^wثflFnMwr80@Ԧ aKɫM*dЦx 3?3VW0q=zK!=!Ja+~c7{)P?r"}|ּzhx$PqUXKMy_ypN2ӔVő08n,? KTgjf&!;6cֵaPs 6O#flb&nK,6Uk!¤~JTVb'ɕrҪ w+Qjfwd믧Ԥ%ȝdHdqH zH/b}LFm<f7C9p贁<@rPb;qΩ75'VRBЙ\s=uu41ip98z_xb;7YEFD=9ѳ8n4,<ϵ7Uu$`BC>uBrM̈́ ™^(lYLw[.osqhNjnw`-IaAvRhQ8惁~AT݄,"*vC^SţЌ]F)UE& |ˇe2(Te K99Sw 2iGԴOMV/MPIaaykBCݺ؊lyUOqDq:3~TS˽@O,pR}Mb7tOjA+^݅V4$1pPJf>5zy^(?f;hb piX? ilvt#VAs.?'|K%@Ƀ~R҆%KJz.?ۻ (Ee=-ނ}a+D/*$BVo OE(SRUnY pQN%JfiAG.6Š.V3򠪺0g0)ʧxKt @d?d@kVF1ä6m S!Ӛ+~"Eg/)ɦ; EGU~4W6P01GI7x}KQF@xN4.:Dfa,>'s+Qg4j&%b֐,I[ևǁcFK'`mp\] ˊXg1) O-sK:h j"2#fF2ٱwv$^ɓə2 wK#VD`L|9ػ, i и r}psf󲫦&6([dymzfDk-BB_iٺq`z8Sj%#ІpGc&T;!v1y34jࠍ BR\u4q{A |xEpo-x^i~‚£qlN /lmpCuzY*`BH.@;~'P3+~k ݋?Nx Ln@{y­Tً.k% K|zzfU:+gf4 8%q5|"Bㅿӹ/zlegrVB>iPwu *D9WzRBG[+MQHhF{bZڮӻYxib߆<TjJ. QWIFlp3ѝ;l+p/]#@m곱.})L_ކ`X:i,阞1=mCxMc4 4 q!\ʂEO쪑`{4xЉ`5/cLqɚU~VCgX(d. b%h>3ʘ|Bkw#8mu+K(xox*ī=$ٍH%(z^k}vʛFU*M~T-E %Fѫc)^,L ",:k2LYfQ5m^j+?ɂBׂ12JsNZZ\3(̥UIaԪtRKIX#P0_<;'>|ҡ&sHE(GH-m_b2 8hx͜Yu0iCdWWa4zQtsU]qHp x%(\pf蜥s(//f ³#yȴ0 G]\Qi/L?'pHkR5O8hmR z>)AaMeĆC/;ҏ2>R1/rF֒Wwږ %3g\#v Q"srҔm5nKԓ9P!ٰ1m8mcȘQwt#&0.wi]b &NZQW儘2p6Fds.sByi3ya4*;2L: |Dc8[brrdU06a`iGsyBf#*k'Ў'f+Ga,`Gq.ծd5]!h)%[(yy1Nut7T;*xܵA#^ t3bK74)XO H-P.jח0]r٫:$~zy?a|٥o['؏zLK"H09Ncv8ҳCa+K\4UQQ>6:6({w$Fݪ ބ=hRiPafk:IaK*m`@f[$^ 23q8yG005(KYGמh8Թ;0IӢwJ.IaЎE;}w3/g~3QCtU^6[< Pa`AۿIM\ܭQ#a hx/G,$=ŝ},M l%d e+ⱭbA MX&=D֊]ShXz6 k[\|IT(?N݂N3ۊDQܜ\qqP\Mx+52sOC| 04=7T.Z{*@]z/9E3wo [>NNk_kJ% pWt|:G)݁'-"Dq'O^嶇nA|Pta~{Pwې_"~|{/&NMQvߣ(7yx%Zqf>I77M)`p*AԴ;lf#Bhϛ`M* S eT 0Υ+Ad^'*!Ht=4s1Prm|U{ ,}no+H 7Џ ,uG5ls+' \ٖ" wQTytJ?: ^i+hfM"}7MoGā{*$Nl'!}rI !0鬖Hw^$R`'j2Y'GdEǶuA t_as. ocoop!S#+p5Q%ܼTWQzջ_x+QGg(]>R&0"*)t1i[! o>g^وzgBQ\ąoF4q#2mgq_rf7Z9T>**Pڴޣ I[-6D=zD>tRԛ@%pZ;%P3 LT /c^TM Z$کI\{x3 ʑr343ϥH;gPzH6K6>B'TGat`wN}6<^c%MKs+ByэrΥ/1q3)?}KRRȗ7I&~[: wd8!ByY' RSָR/́#8Vwt݀XA^sG ($-iQ]I8;r_~aimE|#V{1LYet3V@MiW*vYm/՛P3R]h>H %Qs-P}FfYmK6$we~odT5{qfuԮ9Yu wj)8咃F]N182B71P‡5SF_IZҌ._vjkcG\hyMS27_naҠb4 cFkI<ޞN&OhڭCju[gU^Nw6ڎi7$傓fK|e2 nʎՍ4WQl#7y@6-#x `1v-S k71ʘPqDdJ;0I߭W7m2g&їg({ib9-';TɈ>b^w5z,H L L&5Vo.{ξkZi^X0L`_(I)1(+YyHH[hPۯdj%0zM$:S&!*DCHVЎ94i[v6)5I9X $rTnagsMWzx$2>%~Y$w +x<(9ov!o$*Z#Ads : ȵ~(W%?iuE6k6O1N⁦!d_e+~_a^:K/&F AK,m' hxƠygS2YJ }D[3ƜYPWJq'w+hA~8EzmZ`CVM|A@mIAx̡)J˛)кe "ɍ޸"`t=6hUz zeN_%'*Vď'/ukJFJ%D"Sd #{HGJe[ƈeX]â,*{xd3:>Q2.ZWxEhm1!-젆]Bhn$bGѯ#8T7X/q]ZA3 4Sy ?mM_v}lRxz}*VC%-NUCAʟK6ΐ>:T:4yD1 Z+hc<.\/Hē&a݊gV@x7La wa91+TΠ nFLcܬ{O³.jJyipA"o 3Z86}D ;+&#KV:銭;wĻbDLt"MӃ`QȬw6- \`n$|D4!OTA2L0i#* wDB8R 0H0Jr5I ,zv{Ufc<OcHb=;etb=*gU;MJ%a̹1#+f~˯2-˯џ`!h'LZ,߬n YF'n52^;U*i%uP!9]gWD@qbFRAne dmKp&]M:JKHvp|i J9`|i m;RQr44tDwe !'jĿ'GOP0[KCɾKC| AECJT6#> ,,3Rq":^2A4daR {PKXyC z:T 1aܖR%9܅7Kp)u JzF %P _W8OO(}:ľRfqCv{z}E" $t:<Rb0% xEɻg`4633sz:|I8]B/Xߋ4, O F5kgdUZe li,[dQrUKI*9Z̉#>) ȫMSU %lóPeM$JxFI֓1U/zNNؾ6,(,: ]ACPI߰̄M%q ȳVslo6,ѢԸ/Q 4ZهDhjCJ#8oQLb.ṿK1P5&qښ$D|bv63,`+?'5n!tba1W*o_sz-|!f\-S9 1x N:M@BYK9y+R\EdB6&y3YҸnfD۲D յBkBw_Z{Oڃh2‹*[s2uĖxQiXa{]a)ك({ILUq߽揶9c)4ѱibrBB ou$#ؗ-9>u2'0(AP;ccMo׹ B%=c;1YF_P=aUudC;PI^ϔn]VL@mȬ]OPҼ4SGHn:M'2Hi)*Є5,%ft]ݨe2fQlB7xN@ j& : xP_V AěLr..]Ϣc ~r<Ƴ|w;;jQ{1Wqu5r=a ?v4:Gk˼=q+O;1t--|6պ c AQo7B:|By|inX+~PC_sJ^Agv&г^蜎?-]:>vtZΙ= (l1>tw1=>Y?Υn+C@軈Pf6* r%?kI]2D%0+6Py,wDZd=Mv'էXWR͙/Nl`vA)cnl"Mvo呶 ح`E>n8b)@ㅱ'(fcU7$Ѓ6k5%?ap?B[PPٍ+^BqEE>'=ϟo眿%F;-x J@cR"s:{_-:˹3< zF)-W+E_PQb`Od9bϐrFvsb`:՟䆍n $Xd98ay~@E:b)[ؖvD>R;kh-eI;Ju2oKזƖG^~鿱H5ThZSл13#YMr RA‰O00&o;ǜ8 l˜-˙<xE =|ˤbҦ]&pA9[jJkw_3Ip(%x c ^ k?Ihh泩+d) cb1:!XA_Rܽ5{h08OyGbdKr؏d%b/\:Ȕ_ഈ{6'y% J8B0w_v yYf],DxngO wjϞLv;x Pn}ȍ]{ 26vU`&z۲˅>'K unVv3 t#M yz;%0P]Fk3!$M"ladiE*bQ\-z)P{VU6V!MVAnvQ:l"%lHxq 񟨧:e (> et?Q1V_ YY1d,lV?w`^38-F4f𰈮ͪ-xFhBEO`SXx`*vQ~x U'5+l:ZV[Ic_J- k'eNH;nNX Mz]1"xx(Sb7~c]7sk~Ake0{h[Dƣ徃O`޸@Vөd38[SCv6;YDcфp+*pJ驒K8ƽ:ͦBT\"视R|.`':փ`5.(Hes4O_~~>Mh(ޗ̯WZ1ZiHR\" l5iREٙz_r(2ewѩ%>4fK>luO$Bm̐mXWYoOBi`2)1i ID"&I'cq"pnCpMu%b:D].|4g9QѤyZJT0h›KҸS/lF/H0PND;"*S(&#R0/jš\cL!]fY7)] >*RHa:;Ciuu}E,\M'E(Q5]'Nx4͒l S#sLHk4Fr,h/1dŸmo.6ꉷ*҆WrNP`A!]"=Cll= ֞Cr݋˜41aNʸ!s{Mӎa0. D3PK o;?c%Cz8x. +,ZbSA]ArEoDk:1)8MSYf$'P6nUsExŅܿJZjִ U`4J%MqX9g>6(e҈ `nXY/cC^)˱gfuR֓6J`$C2<B>MԤ]zrr"˒ΗܰFfpK# )UC^L—n{"+e׆pLTq"e $:P}.հ<\X⊲yn*lc4]EoY`PUT5}s~TT7Z3 q}>;KS$?Q ੤jrA+{je6.1_4xꪞ+oq菳Pv1OK9xOד:s~u`Dț° 3c1u+B9 k]`;S~43h >hRȶ?-h7Ypr#L *b,(]A#a;do Y1n]dJ_n tlp3ĭNlRрo򺱃(#`H)yXmΜZm8%-Gz|&C*&8UGIKr}G"p-PH8-p.ҦH3H& ֐gK-? $}#L &xOY箃-%:vUyvŷe=d[r<IDZ\\}FH[-j8VpC.ȐLD&Z9Wgw+Rǃ"Zʗ!L%Gߏ٩EY.--e5ihm(ȆO9EЊި@4-'eC0#`5gý5wx7Ju,)P"b3 5{GJ9IQ$ !{+~T JE8-8S8# T^rvܧ;րYŪkƋ8ih#9{D75Ovo(a#:V? !R/h1*܈d[}rJR*h=A Cn[X  ĞÇ<OF/ŧkИ(CK``HkVA뀗4vm=p!n`~v=׼|N:>2)k-&nFTyUbe[$irpD'1&XL~$ `P3Gû"l11d /`멹%V)NHe{y`3eՐ%T,͞wJNqyDBfwf+'1+s?>bM$^R2AʝPέJM0_|U#aX] 4>4IC̠/_'YV 8o;I)猻DKtVmObE 'qW!]s tB'SЛW(y?^DMQSհ{\ۿ>VX Y5@X"٩UPCZY3R͍[`$wM/ 'O,8N-]}lSza<[ZG]Lěj=IƗ>hM9?+- \)2f..]vV:jf*ʙjp :m<@[!6w>#8Fe `˔Q1!U3ΰ1~/uT3,[|x*qd.yO1ossPK %ٮp-/# G:>U{ .sRz䓇33J.EaX;E2{կ`YͰswё(>褛aK֔juΫlʁ3i^+75%Sap&\H[(|5:s\/d̴SeI%:YfFt  ;T.K/vF?wI:Z m$%1"kTiYNʻ3wUwe_sHy;GP24\- r ()P"[&8;1 ;' 8`hT }Eat-k|l{yR0ޔ},8@]TN i4yRSq}^Em+؆,~#tG Lrx9ftb"s-`($j >,BV bz'Q0vez+ Am=, 1 qW5SeM]dO`8E`<<}эxX,䤥ʽ;XqBKGM[ϸݞ=w=n_fgX]"VF3?7h8-M[F%Mֲɼ/l|&juciNnUCp{!O!P}>zn*C9MHrT|RXk(bböpb:f4|(S/IK$,_ǘ5|Kheal_6\.Q8mŲN)-viD{s4>=j bk%O!43qDz@g"I 9!Zn .HrK 1d=**hVz2q/u\a(j\T݁RlM@|} ֊LkcEݨS{|^VXq Qor|\nB "%EiD8W~37̜6wt $Su{Xi`e/6`Mn}0L7gcݼ!<@z<؞+>|UDCg@ F>%h'd:<*3rn`z/"rGH\U3 3'ᦙ~М\pQS4 38tiN4$ul>& jXWYSVEI"/ĘR\łZx#.O@yA1 zt3 )J^,̰EH^ӧ-uj)HOY5#?a =y@YPnXer=BL0pVE7>51p[!l[C75D133̽4 }6)3?;Y5 93Vߍ $B  M~ӀUi*_==ӆ|"*8 &#H%׼2'w9jyk`c)vU.uecxs4l?O Å7 z%R%sM4+j{g _rL|֎;XJAɂk̟MVƫP^:jsSp>k`Xm p &pq= )L!:1WWǽ4>Ɨ/tO/< 7\%hZoWU{M|;jPs- lӐ ,d5'\Bv]t:Bw5T?%o~3E)9%bp(_WEˍ<8XzH*O:85"A 7E}`*yyVSPmi)#\ٖpϮunLRӖ(G Ttd<qCO?cMMVRA1EjAY" )k8E_?QFHả~Kӻlڕֈvof԰Ċ>y yiZMf DTL]G5ttpaI^?70Πn$ u0>vxki/LNh '7yF4?^,iU7q2b:|ӴrNO!+,\G _QʍNj,|A`YMz"hV %z:@;TXzb~ ~*Nf@z}i(;oVPXI{O- YIm'8s=94tAߞ@ NqP@CѰv[28eL_| bj?@Ѭl)h )؎\yH372By Yv(zWMf\,CGg개.1eHI/'*R6O@OW$pN䭂U\b5 ԅгQBDP;87pwb*.鮨Y5d}Rpj_8mda,Z;)s+mP98Aw0umt 79Lnu歵bj% 1*-h"ɻClcU0W ޹to=p$qw ;o`#ƀ,Ih 0}i[js*t~P3i jqI1*{-2%/.ѿKOxaLx TI[SH2@<ft9`C?̩g6:oC񊜼@&wD0GQܨo0K(a:8bhW0;4嚋E*>LD+M\"&*b5hpWe=Q?sIjnn7# ߥ|&T|aH^+z%q ?xh{۔N|w5X1݆3?a BcQA1#?AؚThE qg0.)+EcRnl{_>m#fN}_]A,c?'VTs#M[TWjFr-$ѾyĆЏ=>WT39K"SfD]7]jK:ACbh8'8/j/1nzR0^гMU?^RAoeJ-+|&8y g-+.)H&'KɬzblR%5S<@sʣZ![7(5ax|;9CSEn6q%j?Y1;*PS#'U!%d f(+jWeWC`MGE- he(Kmcg$y [3> <Ѫ:J]3 cϧ2orEVU}^tGO  GxJyr}qY/VaOj jlGBEq\LI5қ;!DLYƳqI.xcL@QN/يhJ,8M򧲓Z[~I~ؙm{!.;b7Kzi(17/u$gFD#3fos亊z0(bpvu)J(`Ͼ쫜dЌ4L;nf80f ̫ŝX`oy$g.ITf/O/`gjނPT*Q.#5Nyax]N>F+[ס"E dT2*Ÿù--(k܁YseCc,6J N&ԾX8 .c:s^w)=~kq߭7d|vK\įm὏Ʊlpx%]Bvצ]=cN&O{xy)㵛eOzg[f;9Mߣ,VջXМNZc3K'mԑ prWAX=@/~f~z0Et.PNZL_Q.@S&`I-kNG+{gТ+9o9)$Roa>`t_n 2S0EmE.yoA˘|-v_c~dLccSl"…mI mޘ3|t?uOĝUtzmMaU 9wcP1Nd-=/fPnb"0:ڕ0xgZ;9,",>!fj!]l{~b>XH W 7.B4ǐ<эiPpSQ4"%07Cuj=ۡK:{E#ѦZ@"GkV/B'0O@S[0}:ԍSvzpWz3CS]͋ )4='Nd~m }`_lyiR^D,Ly^dgqq/$o# Oƒ7  x |SM}#,#*3=X4U8#d[rxĹZU0E r%JYMjS-"*{Y] /+Zt1|#ܘ4)4xU#1;vS/P?'_e8: Dž6y%+hax(Yz~#T xeÇ1 -t$\ZkɺI)bm/ )L*\IH( iю9P 7t+=}dYi] +#7_YС+&M贆)#RKLȪ*aOkUG-3{9#Ptm i :FGZl]tHܫ<ylҜ DjW9D"`I#IZwSm^w| 2"/};{uü8QŤ@N`^Rx*FČP}j2P+,uOL3 Ĕg"m]3TŒZq&)a PO[O6DOR_:#)<찇 ʰ)46-*N/].'+mBEW>:Ob4FV$XbNVSy''_&B -EʀYS55\`u6{B;-Ş98j^P\r ؔz*3t S0հLrM':C`x`mEi>ŤU")CGoZL;CߝXcʓ {(/Gl 1B܌F!/|=WBGGpk^$`n'Pެw dJ7~qS ɵqac@V1ׄBtLn47M"M0ʠA{ ےeD>EԠ`؜=.Dg7$a'm#41&>ųyDLV?ˬQ> ?A0 zl+aI Uن=<"}$jX{RXR5I`Tzx*lQ`򗍨V:Jj[ 2K5 {a@D;ڟǦ`rgL(iTߤ')J ?*2h\\+ ʧ1m? d&czuPwyE;6巋{iA}Dؓ%[uę ob9PdTý)n>G}эkP 6vp! \ֿ =?rr8Lt'܋]G=<EEҲWx.C{NZ[*7h4۱Dw%BySZ1^@Rm-k҃ i'{Dߒ'Se@#mP]7|q%ᖐuL%t;?>|f12E@KX>,pz6i^ fZT x MZd])O9ƿwxZꋧ^~l| n;\һ:+fKKC!ʺRL#XO^D92n͠[#"W: ~.[p49נ/[A[[w q.Rى3MČnATbty,/I',O`7pt]Xj|ȿ]/ֿݡp*M\pR579WVg@ɘ>'jZ2ǵƷDBEt֊Ğhoςd*;䔝1EKcM jB& Yf8H1I] :j$tdMc%r ^+(Pj$;eI@E̘K~`o4~ͪ.طB*FjgbSHDJ,ঁ;>.Bjcn`Z6lL;J>K6fP$*Abd=>]k>nbD< vc.-_txCwJbx=OPDdxn{Qw~:5%g^ -s>g+FqŜ_Xr:a ;Ví_[qS[m0<06*ln f­{7sLq2F3C7= D?G@P-emc}g +;FcDKv!Q;nJ6(^5bWmK xuк N~&JrJ Il01B}q\msՓqb o;!v'nydtݓo%db开D^T>1\)jrwĮ]7ix0#GMn*D?FGIzM擷G=[&$ :eGNMpܴRK7쭎;w%CiHX`NXo%^zJiGwFAّk_x!W铳j*PS ]lMEӓm\ OwH}wC?Y?QE]O9} p$@ʞR9K{;!gP:UO\Ք5EqAȓ1, U h:xaL^85HvFf[Gl659#jK@@̽ZJmKO^Abx̌??Ǩ\a(&ߙp g>7=ls^<\H@L'$V+OɱA{zz%b!ڻ/5KĽ1H<µ\qn"UiA,PrPIR(rˬW8Sr Y Xy4(cLza)p$*?~}HrR)yP٨v?Q\Bd@1i,8ǸCX(3O?ءۘ~5}TGLdijrOK.u{T907qg l %$0{V1;F@nQt5ЖNjn?ڕԑ k&GjtUq~d[{D;˦0:I|pN\\)(?6~s2lMq-@g UrrZ~̵1hglX9c(E!xy^Cu9ܚ&GƂd)V>^$߃sXe%As}Y ΈwaϏp uֻ'u,Ib|z&vLӪ!IJ "%řWO/~&Dn%L|:Z0 S#ʏWIRᬱ9 ]-tj4Sa 9%A#{B@TG.Ŋ1 ֎@;AJ|YLE:ӒtO]2FU_8輔hѠ8aNæ#5\(q"ђz+nh׺֝hi/<xI#PI?{?<*dC% ?|*2BP"ǼE$AjHnêkgkixBrBn;y_vg^Mg!C_@' cB&nq?x%\*>[BAg,Al/+8wom+r{owE1SnihsN#'7sOlٿ*[и̞{4?Z ,\g,TT?kk9|+ `&X5ӠY~v &_1G\Հ`Ro0Z ֩~|/n mQ4p"E.yQT8RBjB`[E^nw|pmGROk#In^"߆]GηŝО^AvUMy5IͦPZ@koqX5=9#rPAW]Ënm0i4pG6Aɸuy)x6ౣ &3$~dn $hM|#"`rzX?Ԯ#YYq rB3EcP/ nC]c owcv~e2Lޭ<$/k\?zv_ǣkFEd&ʵ>zypvXb/NF{ŵ~T>d$^k*j|P|x֧;g3Q?,0VϽj~O6Bz 4M}vmũff2cmHp&\'>)$O]S#b4[]*)w4M󲗥Q(9q=޺ι*y;3xW͈|tN 'n"W(O;/x6Q㋛!/ڦ[[8@+4Z`2pg2eVvk!x&g;Չ" }ۿR΅V'MCS2]s\1;_aɃ ~<9gDlA^"P ?t)Nx&4OPE/uj,"޼=/Ϫ?)`.4C ${)<_}3'J1@Ҝ<[6_)/ 5\+AHiSV fI_(3wӈ Ky24v훖Wl"gѽ=8̬-0sz<T 5raHy5fjƅhh5Q-y!E+;9swIzl'[<ӥ$7n]cU8䜔9׀iZ'/65l!L;!s^vJ0tvsP^EYi'$֯́hhz[SشȔ̴7X1+Ӝ&_n62K)g(1X[OJuT׭Faz9|6/U'P'Y1/`Tid&a*9"-ơo'`(h'N#"!H.]SJAQ>l#2-WneT(gƪkT"H:_gc?xjmndeNQ;؁+; Fs&bC0WeHH)B 9d]SYgw2q!T tqAl~zdT[9'%! KyqJx~As6SV ?u#N|d(}X=7CEਊcwR(+J'PJ*LZ V~U͘tTu]3j|Eu8 uc L h_|TZ 䶸?v*-0:Ck?z% A [SMi +ܦE瘸'\7X$M_(Ow[ EDx Xowe\Y}x\D g  azؔ 3~u@ԡ7ULC%+h 6A/gCu33C{%D``I[zrU} PB|$*fLD_L >3Lc6ꇍ:R[)F\ogtV+ڦ~A@-N;]PdO7 ChU qEWn+xdm 'J%%3Sr9&Fl5=nխH ƹ=S^|vGjQ%K)kQX/)ydkE2CC &$KbfhBieaoBF^ceC5[%|[Dg{fKk )dbW]YWM%wÞئ꘠3$HܴSEq\w栩 m )gѩ'K"s>();by;'7x|^΃0ɧēVr^t?b3߂Yy.p-QW6 S!:钄>@}^CcwKhѯ3pGDfm&2a -ϖHh%jA`HLqD~8R~TiB;z(ǻN$ "50xלv.|NT8]ð_f6!ÁLHKIhfL/?\d@wI/@굨fX~2í 0xy?_t*7L&D4 zsE0͡lm18Cf.㵦L1ꜳ5М>H7L8Fķ"3WA8|S #Hm'VGLjV190U2ڻV| 9u1wy.,MM<%SZF$T6]2ػ: aE}=z_g)٥?l' ۍքBUV@?oO ϰ<)]}︹L%]&[LPZ=@?8 4 b=#![j?[r0vڱk mou)c䷕"L zAYgl𡧣p`:,\n~:[YKLDO˛3;a:Wo ev>EQ*r75KVt/f 5:1EAe5z-%~;v56@!u,+|bD"jo("N@Y/K6]K^Vhmϗt1[~ŷg w?IOd^qIsBQ]a3Ru#oձjw9t [g7Db? RH˛!Tˡ|yev (:LD%*J" xycBڃ4_75Oo38hNsa[{$8$: %UynG4)o(I%ˤO =6 *N/Jv*GY B8s =|-o U1ۭPGM(FzҷFoYuO6eOQލv(|>󙑪 btl玛?^x9k6{3<Hs 3pY$y¥a_+=+ 4Lt1JPO6蘸J y2ozNȆHq$!bP9A|xV0|CԔt(F>Zsk[ա3h^r8N<>؅B&v07nbaſAfgֹg=Sn!ޗ5(>^zGCB–K΍G"GHiËAde--voS-ܛ[R[Y䮐7|S3nd^;^e I֡y$@'YBlJċ~Z/x NSlNٜ[\F؂#m;JR]v<".dt0绵1 v̴idA;z${f (X ]4m l]Fqd kYOa{֞t9i%fn+(ZAqI@=k;/U`bzXF-W,DkoqiMb &hӅE>G=^ՙ ƒ8_Ԃ{|&g-4'Ln'T<=0i (mq|UJr4s*ȃV6\uiW'"!5 !D{aEJ ĝL2jQ5kZù"y M'Wd.u^N;z)6X~h6F,4#Hp 7oi}NNU0:9O~(,NȢ{@'-ԓ SpSVeȂ9Gf䅃RhM'~5 %[XC=J1Q 2I"}ΥZsvț4廊*^ ^on?i(c0ec C]eYtsԠ\f)n:[ UN GGMCἁ> > <1yM&TBm=# (kʊ'pE7xmzDLzx[M*'AT+n ܟ%8,36m3f aK ڝccJ֮lk?x>UN.?W~Š@@d7zL:%P RqbP)@Ӆ}9T/;P:)[M["^}ϴ6{Uo^\ =qzB,B`ݼoxє}#ڃ(cd϶P&`[)8ʨsLQPI &ץ0D,_b~I)?xJ P%XBěG[g {H89/P1+4*:SG@*Ge7Ju9 Rgu U:NЊ.+6_AQeX;y:rvP"5=ML2++bIj%r|xTÊLg$DwNRvv?"hwg`,؍t .Cm]N_UGiXm:L9 3D2t.Ja_&j6xg_á/s<"m'=t˷Mlju~8/6d16=m[6:zx]ʞCG /tc|iJ{'1s)@OT珖zsz# ?Jo *[]UX 5I;֋4$ Gc]8{NELvB 4h$G.dث|O:o+R5,}13GoP}DdeNǴ3Y_c d [, !cBpE**6Ɖ<Ԏi e-Xu׭\)+4@>i8Ũ1gHe2(OKT^#[ >p1X/2ri%Й HT{/2N%%;D4f qp|nVEVo4ݙ(x߹-ǁ&Gm<B_Da e:Qbpr0};;muCT\j5Ǩv!0xM} Wքd|$XisnnC̜MNq G6$? zӣ[l:'Xc(QC}c=!9^yzHc)څЌH$!p|TE!C'w&T'0^S Bz\H.;Ү2{0KYq߉N 0ښ[0| `N"ޒ,Rz;1u^rQ{N6@HtRLį Fw)HbX6KfM*쀿-`:f*Ě%L e,WKټ6æ(4~ĥ.3Ѡ8:N R͗cBH)z|aí*aH9Ʃ<ڒipEU7՗Ee%锬Id츷?HyJX?]*B Z,8p"Aa$Yjl_ha6d4Y/>4=  Ŭ`{Ff'Ie<_LJ"I(/ 4\oYKYܧfPw$BwE'cf) PC-;7Gjd ~1x y0~-=2.ƴ^2Yy[+u7ڛunX4ک(P{sǏ kz)-San/Vr"qt)nHs 8$6z0$RU] ED(ݮt;^AIaz:sf* QB:8 E -}C4xCqЏeJKKJyՉ݋ u!1> F:qW*'ϫ;,\/?#驄oMpIlK| 77Ab< E0 G"hxb1VCcH390k%iOeGg EV.yͥNakB΂y(VvC59AXyvgt@H1|U&jC{LseX 39 ?7g".Oo.?0*JXSֵ#՘gqæ%F K[A ,7FΞo .Dd|lsWdzX}q^,7Ѷsg-TQ˵/OyKai(dM2moV3- 7Ԩ 2JI|=ɪMSH]1JrOXI1# Xc0s*edE `bpa\H %SVZ(fB |ۗqu >Ah9jɆ PSOvqϳ2 {]jAG"/gCơS!sP{ EHO/ ZI ?&9)&ҽ"p>~pmInH# b~j*:fS D8CrJhYZr|$qT66p(\a*!u?"IL%lb}i :C ź#I:nFFGuS}lhHϬN ׽~ó:)_O1\׫@jWB* XWz![PsMmyc.%7|ž 8K ɀ `\j+ {T67Ċw8TY<J7[:LQ ~ Qjosz\g2ŕ?2rǧoӏzA[d.)77\zo|Ms/38klaN&OsEA3 CW3~yVթP`NE&-Nִ2LDEnDW,,SP5(+$XL5E hTPIv-*cXKlGB^$ŋ< ~=3$-A+}SIJLIz?6S.:Q(k:g/DI:>NPM_ |`I졥NT6SSCfϺe p=avT;'R Ҳn r<.3Eu)HgP y [|2W-4ٍ[aW(YV=gJ`/5E8,֗&b0 Y+y)4;/M-*̘&сnPBu $kg\ =?Ly XQiˮDQm].Mǥkwe^N”))h!g|_K3F1g z^w|W0 7Y|IĪ`_=Kɾѷ`bw$`n059yGxN.1b g̫n, |vg zE5m%J|Ph8!bx33Y曰B;oq=Ħ^+qgUQ6]O;vLb㎸pGۮ~q*߃pTUzuljoNB CAwzcgxN";k6-ؚ"~-7uʉJÕ.5d# -@uQH>X@$"@ X!cϰM?/kZ@y`^1fR<޵y {\hCɾ#zCE@&٧T+ ꫫ3'ȮmS[8uk # sH1ߦ`~o:RUg(;76qT>Ry~Qvh5HbL.&D@j<4iO˶(KXȘq:'ɯgNL\ŐM˫iG׈sfsRCQba~FJzCB)nfĶ~}".:_Ay r@fן n2"ИËr~!Xf`ِZl5 9y3H&Pߝ ?ϑ}essJ,.oC&nEuU=+wNy#/NVAChXzxx}h';;j#Yw%}׽ 5n#<6K9k?oO#hlHP,5Lt0T엤&Ff'='heKp1cHoumxz6glFz&Kh`30$4=2ܙ1?ov]TBt)hy7{8o:g\C}gܸN7K{Ap{+D֧J$80"k(LPA}}%p>K,Q)g MGL*8`NaAd3[v;4AZQ3Yǭ^v=6)cuKG2OuRDXZэq.,"W}>N<")FHNGhz228,邓[S̠liG\ꊷw/Zǹ__Xc[JQ֋|'] ?uxXt:o@ZvJqJ%k0CJ=Qq-S"&b{XounlP>΂pYwի@XwzB,ہ6gm 5D$Qn{7{k nz8Rʨ9^ebe] kU+T&uy,p^3]' [O}~ BrFO;VisMb86څuBqU_o}oI,bmQ6|3NUGC,0Kn#V7H"fq'4c !KA?a&1(,&rIvp;i5BlRN2yy}]yg{C~"<B.OieG]]%1׷uj0x<*iO#iPH+נj9} 󷥚^otfݩ(}ZalR~,/dIݐTitߡaG;%~6[.-(7~ Rs|mbpDQ:yx„]`Mk+oK4ٚU6f(K y0 @ۡ ӓCG]34(c͗_Uu^X}h^0l{>SJ ip*AhӅ:<d9XVwo {}x?x65W\Pmat`wKIʳLZdiSPi+a #&™;X]PQŇt)'7Y 纋>9ò CعG8M&):Ov҇}!nv›R(`|S[Ρ.sl=vtDB;bMz<ӗCnq ܈; Z;%Nf1i6j< l?ʼn}f'Z DqKw;ă.2Sa^ kl^TMEKY}lXq֜nŖy%녴r*6% *>MM_l^gyqpI7䢐ā9Ao(N)q #yCXtdu(vSxb$ [%X=/zR;P@xbS\z)kͭI wJ`@n7wqf4x5c( onRޓ\cуrtfc}qJ*pW|uFt.E~{Gկ`FiQ)j͌7BMswtlz%gF uRR.m"fscp n}VW@Py`eMCa/Esfܯr4 BTQ+ډZPIaiSԵ]3G| V6OJF/`i~ ?Us-wt}g< rA䘕qՉ %jw[&Nrr.=O(83TƮ Ok=3C67+qҨECf$fϬAq%¾9\&{}:kI<.1D s4|6_":n T%ge#L q+#I>@tŝ2C24w /+-ABUUO>/Qx%0J6Z>n0) ӌޔ֑96FCʃvX.9)nu vq*Œ\B})+DxbfUZ֘KZ;;5ԢY)07ߨb0{Vؕ&Ė:Ǵ3O.|/Qàڔ]1QWxDkw¤:5 ` 4y$)f߄=<9X 0uq%[ۙ~jlC7 YR /;Nr.vU㼠51\4$PiZo]ɯ ¦ $l\G&E*)ՙ$#Tl U;sovڢXucjK!<~r !7~[~3dOLg%݃!eqX|=,=YʹerS)V5эt%0w(&tV l- ۏl%7|\ YQبKezt9> *l~pnֲI2NG֌HbArӽ{NL37$0N ma 8|nr|F1[ ُ-5gYLR 4SwD! ZN&*# B &ƕ'Q,/Y$F|Ed/; \.+ N|tlpb jzW$#*(1&;m(*ʷa'ld?2R} %4ADѴL8ۿW# dg@S/_MN'!9z_׳^ @ϹCƖѮT31CCTPW+4l*,< aQ:կv*=lFj^=Y'eX) Y"J\it0mrTދ=ɖ{&aJz~ׇ6((5˛ *E%["07}ZY PSB}Bs#1L[l?޵S<̀!Oc+KؒX1AО6MO K.ꔭ;b;O*s/[9\(e;7Ew)ڕ#>: VTPS'cLg[=y9Wj*:ߵAVx♡stM:J ;,ژ`i"'g="; {ß,G{V qGgG\ɇ":UB3L{ѡn0e-kBa[3)W>:ũ uKK\z OTAWC3F­4ւ :̘jnQ9V{WlոY^+atzN'L)zHY(h3s͊ Zoi?KA'tD͓B٫+\9 Y[[-wTTCGXOb6F::ڇ2~h^8gjQev%T̫{#%Xkr&܎NЪ\}ꇢ_T%4$0W\a0G fC yvgSCq٫ rrD%Jw<8}V8 Έwy"t<#d:Ů7v_3-/:G|[V)Ng~zQ  zL{? ;Tv5Kٛ'V~5ջ8) s tbQb)!ԡc8ȧmjV׬8BVWV8!Ӛ&O+%^O~Z&c"JV+&ss#\j4:2@ A>ЩIo[j~X=F(ƁoC輊;XbHrgQuIɂ)&ǝqYr*>{?_1+ԫmQKr@O#}z[s"x9S!yhCiyӋ%w_W3?qm]0j1xO[&*O-gtRN-7-kg0RqIn:n JubޚS1hȯo{5c Z;`wI#{l瞫/2+8a]3]P[p2,utDOf[;h`ufڶkFcU&ʛ6r}qט[4a'Sqr64ؓ Y|-e{ZĐ4Q\$ 6X̶į5|7?P 5jxB|H)2p{&7oP:4줅Ԝ0l$x*}rt&ȣpazפgv$dC pC[Rl, =T4ϴqUFOS0pDPų-Ήh:^^<,(SoT1cxڰw&#)7&\?gEmɃwk8oa4)iDh|Zw @̕ꆣ{Srҷ@{JA(zG]/ |4G Ė 7 ۄ3L 2sOfTǒ%! :S6+jnw{Sڿ|`2ܦLV|?=l}Zg-{2a5 IcS jZDINY(Xρ VºC@0 >>]Y)13[ ^Q[n(ߏO+rny/9#CڵT}.8igc$cgSH BY@e'w@_#<_akiF6싻胡CVZ)SPZξ6t\K ]oOaE'.'9'Q!?4 <괿N1[[(F_x3K elnQ31>ڰI;\:Q>V(3zS,F3xJO.l뽫69]O*10 &r/1|߇@"@]v^(nT(VI* R; ^|&VANJi;".;Ȉ0j^\bZҮqGFa][:NDkB {)U@r`v^%ف ߦ҆'f DE329Nw 7OW `9tX5pX\Gs<09t?-E)0c%)o>v~*D~})vvٔ;9K3sTn=^|9MlLZFv6l-{ e$AR+tk7:/%e2XK( "3ڍ$e~u*Nj7ten"BRL߯?v})fVy5lrf2T[Ƕ x1R#`^A;=xgŋA`H0/hTzT!HT4!=7p'pz-ouO]5X%{^- 6?rO|h $ XcȘ &@/CTe`r%y8wOƿa@Ҋ|t*qi^$a¬P*9_@ 3K2)O$ *_|>?Q.$%@V'֭=$@EϏp^x JpuEeɂ7HEj!*u,[|j3FO {J qkgxߗػ5APO{x~s nm!|ۓaw=aϷ..om Onlw=:DɊOKwu%Ӛ7h5Ȟ;b'qdrƢ;MIC!!g7IThfި֧YhVYǰ2oY>^ӼUƑ~uPh:CW2<ˡ"*͊TY$Dh[^_R)yήYRzkd'QS{ { v"O1UKbMH!-a6$_LF*bdx-c7߃D$fl6d3]>N~iPO<&S@nlGtv r~&㤻 }s@p5Sk\C дhK8ZaBMٳ{nU٤rtZןCZ)'SQO3֞lpX G_Wˆ]D9l$% ^ /u܍a*AӧR|9L~$7 \j+D!'^60:gn[ʢkjP'vZȍi\)^) lGױ"AXȿ3|C7VvWXN{.%rMJ>2yf>tYxW:j `*czem Az l0D\|],0blvl̅ |Qȋ"4}S."Iz_X mbcTCg0f]L_zV)c>u @ ӈp# lHaSߴ{Dl[ 8j- Ch[L6;nUP҃ϻ\] _'\)Ae,MLԦ⨳gTݣg [2xSԧ2a\8Z`zlP]pdk3[jZɟl=4go{yUeǡ2^8_ z "cAqr*QY0+t C2QBRw[ڪ!@%{G2W*yK+E'e|YsBG8AC0ɋVLDz$T =x8,ܴ0]H" H zyɥB-(^楗jW(iM! 9SkB`dc2;dίL :v[V\:l4Tב:=Hyut6g$`pΛTW7ݗ3ֈs }ۆv)~!s NYWppo|&1J gn9_ڈR$9 AYПQItnͦ^_f-D@*qÒ]FJ.S_$P'\,+Z6hغϐt@o]9/?Xh{@CӥQ+>bW-=J^DksS\eO&eu ɾQUh? 4)m+I1`YD-$ >WkKVJlBKDY (2^榰fJV6E?ߵ3"z0_ͤ0bnw Q\{/Zƭ4E_)?Պ|0y##_JϢK A>Sw sXZݻc0SBۨcN-[Ə (gj\ 2psAdRSa"Z q1N|\Y5&mK%-0rҢ}-R;D޴j3}aSjRfY>Nv٣qކsr6<3%/E`KJ̐<`o4FQ>4 6L%--Hn SjvȝM=&W_<4wL 6]3_O(G>L;"[Y4E< S/U* sP>->FkW|(b˭$EkNv8p4A]Xqr۳$]Y6@AST3D<,FM)@B@^ 14HH>](ic>zI3^cXY_׎lJcl$.\Y sY7-<+ʘc;h'Q8+.Q".n/M Vj^تoW lruxmf\|y|ڗWIhl؄[.#|..:@( :ufvP6!:L(A2S!2mlK_5YxSF`)`.COgB$ͧշѠ'x/^ɥ}:_z`d mC|;Y_;QKKj,j3Ɯ ${fV35Izp9L D-]#5}k*b]d\ZYXa,ײ㏒yssmg=)DK' @(U6>I _cړn&4pڣKN_/5"5 KC\:6Dezrn4}m1ӑ4Xk1zxyjg}[=)pGqpٮtGȉlWXŢ]w|MY}P2]0?Vwl땪yh(- L]#O؃/cy`|nWf#HCIH1FJ)6u; pQ<ȦxgR4 O<`*~a|Cy˔rV ]LQNVpm&yL9jކ6EsVd."jyBܫ #г "MuUL W-8SSW z/6R/=,T3,/#“`lES/=g5U~(V"o2Wþدl\ {VFpmɶ;xf/0t㮓=_8r/OZ8Մ*$ bI~ ֺh&7:wD%59To@-: 5/DMW'(=bjdqW59GNO"JfhYcDpV.a5הMTS *B|j'|CC{R<)QC6X[/>͏B穔Wf7r Zu|jڄ2?qdJ4]EuB ֏&h+̒Jq~W >۳" X#-twP[Q(,eSΜ!#D>՞yS.صKRߦQLCA@yuICy'Y#$2CV A[܇-^ 25dG(VKyJL[ p.-!,w2empYg[`Yz=[koe_DZ,'N`ٖ`b`͐(*:-Wf7wA $mM׎yElֈkZ܄%^+/CrkHo`HC}QfL~Cc4H2uR=?P >c8 "UD;f&3 a`gzӡhĆ,kR2btMDžߘ-O~Xwc[Lq`uznBZkk-kqAbRmvhMmU*>\\xHWߜwrbҠ)GTA& ؟akkryrtKz9ȰlgĚoӧl MBגWtOQhίF>"p| )(M Sa$@Zh}.5"_G=݉۱~6dPb׀tcI|ud=j'zU\D\8#nA] R{5XE=m Cv 8v3 o{R/7G' KL~RTnUqG436nьx 6)mA gb_} {1'c/{7r uǔK?8UиϏ< ҍqfx7Guʇv<6a,+'\Ά[m*;'`4l'֣|rWO߁#%!Pm!禒FWJN`Ag\# hS|hulpf[9@sr)x 4kWܑZz0xͳT ڞ2S#O'-e_xݛbE{j)ۅ*|뉧Zث7GǦSiӥWKW<.R5"MV`BW*z:Lo$P!q#ؿ?P"KgZeWo}Lb(r%QH%Y%'40>8{y|%dNqX;ےK,DMF uk4@A;Uܻ<'*m./eXs6&vt N竇VpF8J"P`8k]H7F/f]uGQmoWVǏL$Q2⋼`A|=IdO7hR}(_0kn8YKcҤ =.GF37˩Q X 1}8`׋艟ESJ}|㴴/t}[,n1*nw}fe]2s!(uT,[} RK)笮T9:Ef+ `U})5}c4^zO9DN]dUGM51!nx"= )U$v DĐX1EZc_~d&mfH2%jJ!fW ֆ P~ba3}Ėwebx8η{ႡcN#kWXjLͬLt[znZDph. L-Nb(nRduґ$3۹QKt1L7|>R*MeL >H# Y R}/Aq/xi+6bܱGYC^ U4kCj$O*fˍt,UCbVUWM]g <ҪضGȝ&l V25po8,y7}UUĆD;미Ii|Ə/fJ|&DEzA:Xǻݱ-+wZ^ɘn`9QDwspewbfJ6PsgfI"qK  ;n:ʸj )Tz7^_Lw=4G3\|n=˕4e;[p}/Pr {nꡂVwUO|S f,K۳O~~Z~q,doˎ` Xۗ3:yLu¤Wropc]gbä}HqD6{)FTsqI L1hW#9¹A6w뜺m. Q5TrL8ar-V6ϱ ; ewdw8uҲQ)yAȾC P#,p+7ysbxYoW슐pfUSmP}Epcq>MʎSO$:`6nTw (HhRrV99Q,@zX%K inm} ޅd2$qu_߄\pM+h)Vq%`jooGS*H zo=@ӃtT;ySS0N yf;R Lتh C{ dsKx׍gz D;(X)khJ Pqe9jUь0 9(2Uk> [ZYgk:a\h#VN!G`e{i[(,U>4IetO-n: Tb5r7HGɝUa(*P Ex*0h\vηY˕6G$x,zΘ/{ b)G7$BҴl=ǟ~@u~?QئeIF-,|6UQ__׶ښen]O5(Z+nO Ug>` {;0Q'ybX'u e?iJKz3 ̈́b:CI㜇FQBWzصiyB{DYv I6{括}䍜p![[WUsAγu9JwgӬy7aj">2^+0YhdUcf1}%ǕT迆Ol@BZߒv𮡢Or<\ǩCOcB]qI=s0@6aJwmkKcȃY~q.O8'͢9=^S+A~s:S|c:`s5.<*e!!T@%A_À4cuCF.~{IU)'R֧h:(g7OJ7;|'xµ\8)}}řN|Cezœ0~&Ai>2βH/ggS4fpC#[[X#z4Vlh,n}d^6w^ U)3m%:ay++dC(6i1(K5k,]˿t4&b'rOJ?k(Keb B! KGa $Vȥ'AnIm' W4-ld3 d-~VΔFoSg8 :.л?)hZ?IaK9J+>t{2U$["]Pȕ4$Ol [؇S7n1.^+&xzX02-78o\,ñ1Gh@Y]r̢/EǕQ[6fPKSRwcNbUm-E<ӯwH3:YcQ`.:[W䵹et{/-oʚX`Q&ik eu&4t6/d6𽶸$)[jL_^Χn0sxj SaYhWX:vcPm( L&f&l?6 Κ`%  >" DMa;Jnk02h>d-t0< u{wov?MY+Llf/CM;Yb¹1;~ըYDBHAny7cQt>Ll 3넢J ̄mWC j]ixN pee-,7TM^hp•uХ3hW)I075g1o{8*1\R:3%B]־`x䚣ц"i/Fb~ _xX;Ȼ s7ؽt -"<>%YW=QnʵNI(.oze}M}?.{O&2:kTZ{>z^״kxڱy:Yeb==^oKr9Is^HbnkFHrLHԵ2jV݀hn{&J&zEw},="Qeje}:^$ӟ i0&>m'&d<6ܷ WY ~r,%;);_,hx]JY(n7[k`GMY+*Q(19D9|z ^v+ᡐF(Ӭܰz5B(Jw0q9 ,9#QVmp )2ig2j(ePC7wM]k4 [2%E%ü$z6Tc:9'Fdf6TȕWG"|"( hc۵뭉fX`u9jV' W8bZ8h\ bX)X';>n1>KߤGzV22?Ar4n1*C UH~j*f)NNQ0.G7k  %6F ]e%%ߓi*|DYC="x-E2c5lUYʑ%a1Ƣ^t ۫0UBZ8nje`zdQG|!HO˕Fs h6yGƋUZ_Ux -$l,SNEnͮަnK!XKwW7 3O=Mj1((UL:#dcS_wbkFeO)%g6r$I޶|Bj8 -Ƀ@PՓ6<XvuT/4 ,==Ic lx-2A1Y˳晎Z?{09f5#Sߪ ӡns0FCϫjkq6o(Pm2>0 @e3yt܄h@\{Za)Q4| $ݬ*61,BQ1~`JM#X""JW;݋~rP"$;1\|Y 35 򧭂 S](K͙ݼ/W q,7H܁(VM=m3^+)H ~u $Z0u}&Wr46Y 6)N$ϑaNi:={')f{3h_\2|994uPjd6';8Ҕe l!ŸgȔ|K`M .ZASof%> ]HI"?ȑRʑ$buIP!r;P(pKޅ1s"4?!;$Rs`nde 16"m Jܽ7U~-yPd0izQhU.,Ygp8᳎÷MQSs5 "ZoW$T&V7ɓRa 4Oz}zGN My@Xw?D. Dp>enm|VѲ$ H*=]Z[`azqV#b 6Nd t}S2Hv\kԊ2L QG\wg!Uᬺs>.xgjHB_l1ſn;{ܑ3}|<ݞgQXdEYtV5j; ᣯc?Җ,^b]x")C)7g|zv ٍ4/NGg m%> 1TTbOm6A]}v+ِO7"3Wz zbhO#?`T%PtPfۢZ:`'4 h5駑>ISAvx=m-\"] xuj7&V=7 5v! |`g¿R=z(@{p\>5>*Qi{z\Zbɥ EiT6=H[H:`7f#UnuDLc"Kw*%RXWA1B= $hw =k%p0dHNNEZ6LL#꾑tkH/[;{ %X3@9Hr7@XwFyztVi1\z8\N1 @:!<Ƌ]"`P'KEuD=Y~. ~v=b|ٛC (mb^þ WDg Uq;ucKvsD7tb!1r;u}PYw]Q˰IX&}={^\ao*W I@<2: P%zPQHm31 `>U7̈́,rFvxųU$7b+eӏugv$- r鳌V|m_ZPVz^Ц=n8\^}60HGC4߻.k+@1DhL$EFFAau4Z .[n[xe40@u"hH/h-f XyUCĜψHƯQɭSF'4߂uf^j%sD#׃H@-E'i&X( FK:/S,|{?F O&)gH?jUE3] -c5}eI[ӹz[HgOMxhR:#ǂ{eiԊsyK_B7JƔ3T75O8&meri]aϗd(VpշU4`SBv<'';#HF´u' +-˖qK?Id^gFHVʏx|U ȱ n [S~ld:=j[-7:+;q>#"7RĸZJ fu׮8ڥOd+Tt@&xx4Xs!8u/LO?dz;{5י) wDobēr56vYW02 Lĥ9R5[7Td_Svdl9}.B0~a%O=$]KUؽE_혵̀i &P\Ui>x^^k}ϸwYE[ZK-,i-f4"@ ?+{$`ӳcbu+Zr=!24ͫR Ұ.(_US)6>MMT.ho'K*$̈p{G;S²L_m4CLy(=4[Af 3ż/HLc h@A ʜG[)LpG9G5PTl'< i,txdq:w2)7thx2,QEDw ;&8jsfCC=R9͏37zHq*FF4D+oO5Yk#0aƧ0QbR :Vy iH6H $j$/k( =Ikr0R\rHgөkH=5g2 [3Z I lh6=2:KJ)~܍ ]%ͨĦdsi:ޅ q|UrHS3N `P FR4 |"y+x@_’J~<&r64ztx& NzӪGq}}l3W}( EffЏAsÕ 73\lE$INR aKثYhM UO3Go\^Ԡc*o"/ Qdgep#>lXeOE 2yt\\5MRk_+62@[`4'Npu>"nEn.J k1G& u)HBȟ23\@H=}o֙-n1? NqDibр?/kss=HB&{M(DR ;aF54ƧLڶ.(ݳÍ%0hAvE?5cyI!e\PI%>FU4%Wpw_b2e=Xln$MY?8:l&H3ƠfJ^ oHct@MTt~UuGS"Dk>V+X8 [77ScB(9!j6Iǚ~§EWt>][#Q= l:$׳ mM%ۂgy?w]RQH_z,.1L#2­!9{_,K|#&`8y