## ----setup, include = FALSE--------------------------------------------------- options(rmarkdown.html_vignette.check_title = FALSE) knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----loadLibs----------------------------------------------------------------- library(Lheuristic) # library(kableExtra) # library(VennDiagram) data("TCGAexpression") data("TCGAmethylation") ## ----createMAE, warning=FALSE, message=FALSE---------------------------------- library(MultiAssayExperiment) colDat <- DataFrame(sampleID = colnames(TCGAmethylation)) rownames(colDat) <- colDat$sampleID # Construct MultiAssayExperiment mae1 <- lhCreateMAE(xDat = TCGAmethylation, yDat = TCGAexpression, xName = "methylation", yName = "expression", colData = colDat) # Display dataset names print(names(experiments(mae1))) ## ----corMethod---------------------------------------------------------------- cl <- correlationSelection(mae1, type = "Spearman", pValCutoff = 0.25, rCutoff = -0.5, adj = TRUE) correlationL <- cl[!is.na(cl$SigNegCorr) & cl$SigNegCorr, ] correlationNoL <- cl[!is.na(cl$SigNegCorr)& !cl$SigNegCorr, ] message( "The number of genes selected with the correlation method is: ", sum(correlationL$SigNegCorr), "\n" ) ## ----corrDistri,fig.width = 6, fig.height=4----------------------------------- d <- density(correlationL[, 1]) x2 <- data.frame(x = d$x, y = d$y) library(ggplot2) ggplot(x2, aes(x,y)) + geom_line() + labs( title = "Significant correlations in the TCGA dataset", x = "Correlation", y = "Density" )+ theme_minimal() ## ----showCorrs---------------------------------------------------------------- head(correlationL) ## ----plotGenesFromCorr1, fig.height=6, fig.width=6---------------------------- genes2plot <- rownames(correlationL)[1:3] plotGenesMat(mae1, geneNames = genes2plot, text4Title = correlationL[rownames(correlationL), ""], saveToPDF = FALSE ) ## ----setWeights--------------------------------------------------------------- sampleSize <- dim(mae1[[2]])[2] numGenes <- dim(mae1[[2]])[1] reqPercentages <- matrix(c(2, 20, 5, 5, 40, 20, 3, 3, 2), nrow = 3, byrow = TRUE) sum(reqPercentages) (maxminCounts <- toReqMat(sampleSize, reqPercentages)) (theWeightMifL <- matrix(c(2, -2, -sampleSize / 5, 1, 0, -2, 1, 1, 2), nrow = 3, byrow = TRUE)) (theWeightMifNonL <- matrix(c(0, -2, -sampleSize / 5, 0, 0, -2, 0, 0, 0), nrow = 3, byrow = TRUE )) heur <- scoreGenesMat(mae1, aReqPercentsMat = reqPercentages, aWeightMifL = theWeightMifL, aWeightMifNonL = theWeightMifNonL ) message("Number of scatterplots scored : ", dim(heur)[1], "\n") message("Number of L-shape scatterplots : ", sum(heur[, 1]), "\n") heurL <- heur[heur$logicSc, ] heurNoL <- heur[!heur$logicSc, ] ## ----showTrueLs--------------------------------------------------------------- knitr::kable(heurL) ## ----plotTrueLs, fig.height=6, fig.width=6------------------------------------ genes2plot2 <- rownames(heurL)[1:4] # plotGenesMat(mae1, geneNames = genes2plot2, fileName = NULL, text4Title = heurL[genes2plot2, "numeriSc"], saveToPDF = FALSE ) ## ----checkCommon-------------------------------------------------------------- inCommonL <- intersect(rownames(correlationL), rownames(heurL)) inCorrelationLOnly <- setdiff(rownames(correlationL), inCommonL) inheurLLOnly <- setdiff(rownames(heurL), inCommonL) ## ----plotSelected, fig.height=6, fig.width=6---------------------------------- par(mfrow = c(2, 2)) myGene1 <- inCommonL[1] titleT <- paste(myGene1, "(May be GRM)") plotGeneSel(mae1,myGene1, titleText = titleT, x1 = 1/3, x2 = 2/3) myGene2 <- inCommonL[2] titleT <- paste(myGene2, "(May be GRM)") plotGeneSel(mae1, myGene2, titleText = titleT, x1 = 1/3, x2 = 2/3) myGene3 <- inCommonL[3] titleT <- paste(myGene3, "(May be GRM)") plotGeneSel(mae1,myGene3, titleText = titleT, x1 = 1/3, x2 = 2/3) myGene5 <- inCommonL[5] titleT <- paste(myGene5, "(May be GRM)") plotGeneSel(mae1, myGene5, titleText = titleT, x1 = 1/3, x2 = 2/3) ## ----------------------------------------------------------------------------- sessionInfo()