## ----echo = FALSE,hide=TRUE, message=FALSE, warning=FALSE---------------------
library(ELMER.data)
library(ELMER)
library(DT)
library(dplyr)
library(BiocStyle)

## ----eval = TRUE, message = FALSE, warning = FALSE, results = "hide"----------
# Load results from previous sections
mae <- get(load("mae.rda"))
sig.diff <- read.csv("result/getMethdiff.hypo.probes.significant.csv")


nearGenes <- GetNearGenes(
  data = mae, 
  probes = sig.diff$probe, 
  numFlankingGenes = 20
) # 10 upstream and 10 dowstream genes

Hypo.pair <- get.pair(
  data = mae,
  group.col = "definition",
  group1 =  "Primary solid Tumor",
  group2 = "Solid Tissue Normal",
  nearGenes = nearGenes,
  mode = "unsupervised",
  permu.dir = "result/permu",
  permu.size = 100, # Please set to 100000 to get significant results
  raw.pvalue = 0.05,   
  Pe = 0.01, # Please set to 0.001 to get significant results
  filter.probes = TRUE, # See preAssociationProbeFiltering function
  filter.percentage = 0.05,
  filter.portion = 0.3,
  dir.out = "result",
  cores = 1,
  label = "hypo"
)

## ----eval = TRUE, message = FALSE, warning = FALSE----------------------------
Hypo.pair %>% datatable(options = list(scrollX = TRUE))
# get.pair automatically save output files. 
# getPair.hypo.all.pairs.statistic.csv contains statistics for all the probe-gene pairs.
# getPair.hypo.pairs.significant.csv contains only the significant probes which is 
# same with Hypo.pair.
dir(path = "result", pattern = "getPair")