
Package ‘snpStats’
April 8, 2025

Title SnpMatrix and XSnpMatrix classes and methods

Version 1.57.1

Date 2022-07-27

Author David Clayton <dc208@cam.ac.uk>

Description Classes and statistical methods for large SNP association studies. This extends the ear-
lier snpMatrix package, allowing for uncertainty in genotypes.

Maintainer David Clayton <dc208@cam.ac.uk>

Depends R(>= 2.10.0), survival, Matrix, methods

Imports graphics, grDevices, stats, utils, BiocGenerics, zlibbioc

Suggests hexbin

License GPL-3

Collate ss.R contingency.table.R convert.R compare.R glm-test.R
imputation.R indata.R long.R misc.R ld.R mvtests.R pedfile.R
outdata.R plink.R qc.R qq-chisq.R single.R tdt-single.R
structure.R xstuff.R

LazyLoad yes

biocViews Microarray, SNP, GeneticVariability

git_url https://git.bioconductor.org/packages/snpStats

git_branch devel

git_last_commit c8d8719

git_last_commit_date 2025-03-27

Repository Bioconductor 3.21

Date/Publication 2025-04-07

Contents
snpStats-package . 3
chi.squared . 3
convert.snpMatrix . 5
example-new . 5

1

2 Contents

families . 6
filter.rules . 7
for.exercise . 8
Fst . 9
glm.test.control . 10
GlmEstimates-class . 11
GlmTests-class . 12
ibsCount . 13
ibsDist . 14
imputation.maf . 15
ImputationRules-class . 16
impute.snps . 17
ld . 18
ld.example . 19
mean2g . 20
misinherits . 21
mvtests . 22
plotUncertainty . 23
pool . 24
pool2 . 25
pp . 26
qq.chisq . 26
random.snps . 28
read.beagle . 29
read.impute . 30
read.long . 31
read.mach . 33
read.pedfile . 34
read.plink . 35
read.snps.long . 37
row.summary . 39
sample.ped.gz . 41
single.snp.tests . 42
SingleSnpTests-class . 44
sm.compare . 45
snp.cor . 46
snp.imputation . 48
snp.lhs.estimates . 50
snp.lhs.tests . 52
snp.pre.multiply . 54
snp.rhs.estimates . 55
snp.rhs.tests . 57
SnpMatrix-class . 59
switch.alleles . 61
tdt.snp . 62
test.allele.switch . 64
testdata . 66
write.plink . 67

snpStats-package 3

write.SnpMatrix . 69
XSnpMatrix-class . 70
xxt . 71

Index 74

snpStats-package SnpMatrix and XSnpMatrix classes and methods

Description

Classes and statistical methods for large SNP association studies. This extends the earlier snpMatrix
package, allowing for uncertainty in genotypes.

Details

The DESCRIPTION file: This package was not yet installed at build time.

Index: This package was not yet installed at build time.

Author(s)

David Clayton <dc208@cam.ac.uk>

Maintainer: David Clayton <dc208@cam.ac.uk>

chi.squared Extract test statistics and p-values

Description

Generic functions to extract values from the SNP association test objects returned by various testing
functions

Usage

chi.squared(x, df)
deg.freedom(x)
effect.sign(x, simplify)
p.value(x, df)
sample.size(x)
effective.sample.size(x)

4 chi.squared

Arguments

x An object of class "SingleSnpTests", "SingleSnpTestsScore", or "GlmTests"
df Either the numeric value 1 or 2 (not used when x is of class "GlmTests")
simplify This switch is relevant when x is of class "GlmTests" and plays the same role

as it does in sapply. If simplify=TRUE, where possible the output is returned
as a simple numeric vector rather than as a list

Details

These functions operate on objects created by single.snp.tests, snp.lhs.tests, and snp.lhs.tests.

The functions chi.squared and p.value return the chi-squared statistic and the corresponding
p-value. The argument df is only used for output from single.snp.tests, since this function
calculates both 1 df and 2 df tests for each SNP. The functions snp.lhs.tests and snp.rhs.tests
potentially calculate chi-squared tests on varying degrees of freedom, which can be extracted with
deg.freedom. The function effect.sign indicates the direction of associations. When applied to
an output object from snp.single.tests, it returns +1 if the association, as measured by the 1 df
test, is positive and -1 if the association is negative. Each test calculated by GlmTests are potentially
tests of several parameters so that the effect sign can be a vector. Thus effect.sign returns a list
of sign vectors unless, if simplify=TRUE, and it can be simplified as a single vector with one sign
for each test. The function sample.size returns the number of observations actually used in the
test, after exclusions due to missing data have been applied, and effective.sample.size returns
the effective sample size which is less than the true sample size for tests on imperfectly imputed
SNPs.

Value

A numeric vector containing the chi-squared test statistics or p-values. The output vector has a
names attribute.

Note

The df and simplify arguments are not always required (or legal). See above

Author(s)

David Clayton <dc208@cam.ac.uk>

See Also

single.snp.tests, snp.lhs.tests, snp.rhs.tests, SingleSnpTests-class, SingleSnpTestsScore-class,
GlmTests-class

Examples

data(testdata)
tests <- single.snp.tests(cc, stratum=region, data=subject.data,

snp.data=Autosomes, snp.subset=1:10)
chi.squared(tests, 1)
p.value(tests, 1)

convert.snpMatrix 5

convert.snpMatrix Convert snpMatrix objects to snpStats objects

Description

These functions convert snpMatrix objects to snpStats objects. convert.snpMatrix converts a
single object, while convert.snpMatrix.dir converts all stored elements in a specified directory.
They really only change the class names since most of the classes in snpStats are backwards-
compatible with snpMatrix. The exception is the ImputationRules class; imputation.rules
objects will need to be regenerated.

Usage

convert.snpMatrix(object)

convert.snpMatrix.dir(dir = ".", ext = "RData")

Arguments

object Object to be converted

dir A directory containing saved snpMatrix objects

ext The file extension for files containing such objects

Value

convert.snpMatrix returns the converted object. convert.snpMatrix.dir rewrites the files in
place.

Author(s)

David Clayton <dc208@cam.ac.uk>

example-new An example of intensity data for SNP genotyping

Description

The file example-new.txt contains some signal intensity data for testing and comparing genotype
scoring algorithms

Format

This is a text file containing data on 99 SNPs for 1550 DNA samples. One line of data appears for
each SNP, starting with the SNP name and followed by 1550 pairs of intensity values. There is a
header line containing variable names, with intensities labelled as xxxxA and xxxxB, where xxxx is
the sample name.

6 families

Details

See the package vignette "Comparing clustering algorithms".

Source

These data were originally distributed with the "Illuminus" genotype scoring software from the
Wellcome Trust Sanger Institute: http://www.sanger.ac.uk/resources/software/illuminus/

families Test data for family association tests

Description

These data started life as real data derived from an affected sibling pair study of type 1 diabetes.
However, original subject and SNP identidiers have been replaced by randomly chosen ones.

Usage

data(families)

Format

There are two objects in the loaded data file:

• genotypes: An object of class "snp.matrix" containing the SNP genotype data for both
parents and affected offspring

• pedData: A data frame containing the standard six fields for a LINKAGE pedfile. The are
named familyid, member, father, mother sex, and affected

The two objects are linked by common row names.

Details

Coding in the pedData frame is as in the LINKAGE package, except that missing data are coded NA
rather than zero

Examples

data(families)
summary(genotypes)
summary(pedData)

http://www.sanger.ac.uk/resources/software/illuminus/

filter.rules 7

filter.rules Filter a set of imputation rules

Description

Determine which imputation rules are broken by removal of some SNPs from a study. This function
is needed because, when if it emerges that genotyping of some SNPs is not reliable, necessitating
their removal from study, we would also wish to remove any SNPs imputed on the basis of these
unreliable SNPs.

Usage

filter.rules(rules, snps.excluded, exclusions = TRUE)

Arguments

rules An object of class "ImputationRules" containing a set of imputation rules

snps.excluded The names of the SNPs whose removal is to be investigated

exclusions If TRUE, the names of the imputed SNPs which would be lost by removal of the
SNPs listed in snps.excluded. If FALSE, the names of the imputed SNPs which
would not be lost are returned

Value

A character vector containing the names of imputed SNPs to be removed

Author(s)

David Clayton <dc208@cam.ac.uk>

See Also

ImputationRules-class, snp.imputation

Examples

No example yet

8 for.exercise

for.exercise Data for exercise in use of the snpStats package

Description

These data have been created artificially from publicly available datasets. The SNPs have been
selected from those genotyped by the International HapMap Project (http://www.hapmap.org) to
represent the typical density found on a whole genome association chip, (the Affymetrix 500K plat-
form, http://www.affymetrix.com/support/technical/sample_data/500k_hapmap_genotype\
_data.affx for a moderately sized chromosome (chromosome 10). A study of 500 cases and 500
controls has been simulated allowing for recombination using beta software from Su and Mar-
chini (http://www.stats.ox.ac.uk/~marchini/software/gwas/hapgen.html). Re-sampling
of cases was weighted in such a way as to simulate three “causal” locus on this chromosome, with
multiplicative effects of 1.3, 1.4 and 1.5 for each copy of the risk allele.

Usage

data(for.exercise)

Format

There are three data objects in the dataset:

• snps.10: An object of class "SnpMatrix" containing a matrix of SNP genotype calls. Rows
of the matrix correspond to subjects and columns correspond to SNPs.

• snp.support: A conventional R data frame containing information about the SNPs typed (the
chromosome position and the nucleotides corresponding to the two alleles of the SNP).

• subject.support: A conventional R dataframe containing information about the study sub-
jects. There are two variables; cc gives case/control status (1=case), and stratum gives eth-
nicity.

Source

The data were obtained from the diabetes and inflammation laboratory (see http://www-gene.
cimr.cam.ac.uk)

Examples

data(for.exercise)
snps.10
summary(snps.10)
summary(snp.support)
summary(subject.support)

http://www.hapmap.org
http://www.affymetrix.com/support/technical/sample_data/500k_hapmap_genotype_data.affx
http://www.affymetrix.com/support/technical/sample_data/500k_hapmap_genotype_data.affx
http://www.stats.ox.ac.uk/~marchini/software/gwas/hapgen.html
http://www-gene.cimr.cam.ac.uk
http://www-gene.cimr.cam.ac.uk

Fst 9

Fst Calculate fixation indices

Description

This function calculates the fixation index Fst for each SNP, together with its weight in the overall
estimate (as used by the Internation HapMap Consortium).

Usage

Fst(snps, group, pairwise=FALSE)

Arguments

snps an object of class SnpMatrix or XSnpMatrix containing the SNP data
group a factor (or object than can be coerced into a factor), of length equal to the

number of rows of snps, giving the grouping or rows for which the Fst is to be
calculated

pairwise if TRUE, the within-group variances are weighted according to the number of
possible within-group pairwise comparisons of chromosomes. If FALSE, the de-
fault value, weights are simply the number of chromosomes in each group.

Details

See vignette.

Value

A list:

Fst Fst values for each SNP
weight The weights for combining these into a single index

Note

Uncertain genotypes are treated as missing

Author(s)

David Clayton <dc208@cam.ac.uk>

Examples

Analysis of some HapMap data

data(for.exercise)
f <- Fst(snps.10, subject.support$stratum)
weighted.mean(fFst, fweight)

10 glm.test.control

glm.test.control Set up control object for GLM computations

Description

Several commands depend on fitting a generalized linear model (GLM), using the standard itera-
tively reweighted least squares (IRLS) algorithm. This function sets various control parameters for
this.

Usage

glm.test.control(maxit = 20, epsilon = 1.e-5, R2Max = 0.99)

Arguments

maxit Maximum number of IRLS steps

epsilon Convergence threshold for IRLS algorithm

R2Max R-squared limit for aliasing of new terms

Details

Sometimes (although not always), an iterative scheme is necessary to fit a generalized linear model
(GLM). The maxit parameter sets the maximum number of iterations to be carried out, while the
epsilon parameter sets the criterion for determining convergence. Variables which are judged to
be "aliased" are dropped. A variable is judged to be aliased if RSS/TSS is less than (1-R2Max),
where

• RSS is the residual (weighted) sum of squares from the regression of that variable on the
variables which precede it in the model formula (and any stratification defined in a strata() call
in th emodel formula), and

• TSS is the total (weighted) sum of squared deviations of this variable from its mean (or, when
a strata() call is present, from its stratum-specific means).

The weights used in this calculation are the "working" weights of the IRLS algorithm.

Value

Returns the parameters as a list in the expected order

Author(s)

David Clayton <dc208@cam.ac.uk>

See Also

snp.lhs.tests, snp.rhs.tests

GlmEstimates-class 11

GlmEstimates-class Class "GlmEstimates"

Description

A simple class to hold output from snp.lhs.estimates and snp.rhs.estimates. Its main pur-
pose is to provide a show method

Objects from the Class

Objects from this class are simple lists. Each element of the list is a list giving the results of a
generalized linear model fit, with elements:

Y.var Name of the Y variable

beta The vector or parameter estimates (with their names)

Var.beta The upper triangle of the variance-covariance matrix of estimates, stored as a simple
vector

N The number of "units" used in the model fit

Extends

Class "list", from data part. Class "vector", by class "list", distance 2.

Methods

[signature(x = "GlmEstimates", i = "ANY", j = "missing", drop = "missing"): Subset

coerce signature(from = "GlmEstimates", to = "GlmTests"): Calculate Wald tests

show signature(object = "GlmEstimates"): Display

Note

Wald tests calculated by coercing an object of class GlmEstimates to class GlmTests are asymptot-
ically equivalent to the "score" tests calculated by snp.lhs.tests and snp.rhs.tests, and both
types of test are asymptotically correct. But the asymptotic properties of Wald tests are not as good
as those of score tests and, in circumstances such as low sample size or low minor allele frequency,
Wald and score tests may differ substantially. In general score tests are to be preferred, but Wald
tests are provided in snpStats because they are widely used.

Author(s)

David Clayton <dc208@cam.ac.uk>

See Also

snp.lhs.estimates, snp.rhs.estimates

12 GlmTests-class

Examples

showClass("GlmEstimates")

GlmTests-class Classes "GlmTests" and "GlmTestsScore"

Description

Classes of objects created by snp.lhs.tests and snp.rhs.tests. The class "GlmTestsScore"
extends the class "GlmTests" and is invoked by setting the argument score=TRUE when calling
testing functions in order to save the scores and their variances (and covariances)

Objects from the Class

Objects of class "GlmTests" have four slots:

snp.names When only single SNPs are tested, a character vector of SNP names. Otherwise a list
of such vectors (one for each test)

var.names A character vector containing names of variables tested against SNPs

chisq A numerical vector of chi-squared test values

df An integer vector of degrees of freedom for the tests

N A integer vector of the number of samples contributing to each test

The "GlmTestsScore" class extends this, adding a slot score containing a list with elements which
are themselves lists with two elements:

U The vector (or matrix) of efficient scores

V The upper triangle of the variance-covariance matrix of U, stored as a vector

Methods

[] signature(x = "GlmTests", i = "ANY", j = "missing", drop = "missing"): Subsetting op-
erator

coerce signature(from = "GlmTests", to = "data.frame"): Simplify object

chi.squared signature(x = "GlmTests", df = "missing"): Extract chi-squared test values

deg.freedom signature(x = "GlmTests"): Extract degrees of freedom for tests

names signature(x="GlmTests"): Extract (or generate) a name for each test

p.value signature(x = "GlmTests", df = "missing"): Extract p-values

sample.size signature(object = "GlmTests"): Extract sample sizes for tests

show signature(object = "GlmTests"): Show method

summary signature(object = "GlmTests"): Summary method

[] signature(x = "GlmTestsScore", i = "ANY", j = "missing", drop = "missing"): Subset-
ting operator

ibsCount 13

effect.sign signature(x = "GlmTestsScore", simplify = "logical"): Extract signs of associ-
ations. If simpify is TRUE then a simple vector is returned if all tests are on 1df

pool2 signature(x = "GlmTestsScore", y = "GlmTestsScore", score = "logical"): Combine
results from two sets of tests

switch.alleles signature(x = "GlmTestsScore", snps = "character"): Emulate, in the score
vector and its (co)variances, the effect of switching of the alleles of specified SNPs

Note

Most of the methods for this class are shared with the SingleSnpTests and SingleSnpTestsScore
classes

Author(s)

David Clayton <dc208@cam.ac.uk>

See Also

snp.lhs.tests,snp.rhs.tests, SingleSnpTests, SingleSnpTestsScore

Examples

showClass("GlmTests")

ibsCount Count alleles identical by state

Description

This function counts, for all pairs of subjects and across all SNPs, the total number of alleles which
are identical by state (IBS)

Usage

ibsCount(snps, uncertain = FALSE)

Arguments

snps An input object of class "SnpMatrix" or "XSnpMatrix"

uncertain If FALSE, uncertain genotypes are ignored. Otherwise contributions are weighted
by posterior probabilities

Details

For each pair of subjects the function counts the total number of alleles which are IBS. For autoso-
mal SNPs, each locus contributes 4 comparisons, since each subject carries two copies. For SNPs
on the X chromosome, the number of comparisons is also 4 for female:female comparisons, but is
2 for female:male and 1 for male:male comparisons.

14 ibsDist

Value

If there are N rows in the input matrix, the function returns an N*N matrix. The lower triangle
contains the total number of comparisons and the upper triangle contains the number of these which
are IBS. The diagonal contains the number of valid calls for each subject.

Note

In genome-wide studies, the SNP data will usually be held as a series of objects (of class "SnpMatrix"
or "XSnpMatrix"), one per chromosome. Note that the matrices produced by applying the ibsCount
function to each object in turn can be added to yield the genome-wide result.

Author(s)

David Clayton <dc208@cam.ac.uk>

See Also

ibsDist which calculates a distance matrix based on proportion of alleles which are IBS

Examples

data(testdata)
ibs.A <- ibsCount(Autosomes[,1:100])
ibs.X <- ibsCount(Xchromosome)

ibsDist Distance matrix based on identity by state (IBS)

Description

Expresses a matrix of IBS counts (see ibsCount) as a distance matrix. The distance between two
samples is returned as the proportion of allele comparisons which are not IBS.

Usage

ibsDist(counts)

Arguments

counts A matrix of IBS counts as produced by the function ibsCount

Value

An object of class "dist" (see dist)

Author(s)

David Clayton <dc208@cam.ac.uk>

imputation.maf 15

See Also

ibsCount, dist

Examples

data(testdata)
ibs <- ibsCount(Xchromosome)
distance <- ibsDist(ibs)

imputation.maf Extract statistics from imputation rules

Description

These functions extract key characteristics of regression-based imputation rules stored as an ob-
ject of class "ImputationRules". imputation.maf extracts the minor allele frequencies of the
imputed SNPs and imputation.r2 extracts the prediction R2.

Usage

can.impute(rules)
imputation.maf(rules)
imputation.r2(rules)
imputation.nsnp(rules)

Arguments

rules An object of class "ImputationRules"

Details

can.impute returns a logical vector identifying which rules allow a valid imputation. imputation.maf
and imputation.r2 extract the minor allele frequencies of the imputed SNPs and the R2 for pre-
diction achieved when building each rule. imputation.nsnp returns the numbers of SNPs used in
each imputation

Value

Either a logical vector, or a numeric vector containing the extracted values

Author(s)

David Clayton <dc208@cam.ac.uk>

See Also

ImputationRules-class, snp.imputation

16 ImputationRules-class

Examples

These functions are currently defined as
function (rules) sapply(rules, function(x) x$maf)
function (rules) sapply(rules, function(x) x$r2)

ImputationRules-class Class "ImputationRules"

Description

A class defining a list "rules" for imputation of SNPs. Rules are estimated population haplotype
probabilities for a target SNP and one or more predictor SNPs

Objects from the Class

Objects are lists of rules. Rules are named list elements each describing imputation of a SNP by a
linear regression equation. Each element is itself a list with the following elements:

maf The minor allele frequency of the imputed SNP
r.squared The squared Pearson correlation coefficient between observed and predicted SNP dura-

tion derivation of the rule.
snps The names of the SNPs to be included in the regression.
hap.probs A numerical array containing estimated probabilities for haplotypes of the SNP to be

imputed and all the predictor SNPs

If any target SNP is monomorphic, the corresponding rule is returned as NULL. An object of class
ImputationRules has an attribute, Max.predictors, which gives the maximum number of predic-
tors used for any imputation.

Methods

show signature(object = "ImputationRules"): prints an abreviated listing of the rules
summary signature(object = "ImputationRules"): returns a table which shows the distribu-

tion of r-squared values achieved against the number of snps used for imputation
plot signature(x="ImputationRules", y="missing"): plots the distribution of r-squared val-

ues as a stacked bar chart
[] signature(x = "ImputationRules", i = "ANY"): subset operations

Author(s)

David Clayton <dc208@cam.ac.uk>

See Also

snp.imputation, impute.snps, single.snp.tests

Examples

showClass("ImputationRules")

impute.snps 17

impute.snps Impute snps

Description

Given SNPs stored in an object of class "SnpMatrix" or "XSnpMatrix" and a set of imputation
rules in an object of class "ImputationRules", this function calculates imputed values.

Usage

impute.snps(rules, snps, subset = NULL, as.numeric = TRUE)

Arguments

rules The imputation rules; an object of class "ImputationRules"

snps The object of class "SnpMatrix" or "XSnpMatrix" containing the observed
SNPs

subset A vector describing the subset of subjects to be used. If NULL (default), then use
all subjects

as.numeric If TRUE, the output is a numeric matrix containing posterior expectations of the
imputed SNPs. Otherwise the output matrix is of the same class as snps and
contains uncertain genotype calls

Value

A matrix with imputed SNPs as columns. The imputed values are the estimated expected values of
each SNP when coded 0, 1 or 2.

Author(s)

David Clayton <dc208@cam.ac.uk>

References

Wallace, C. et al. (2010) Nature Genetics, 42:68-71

See Also

snp.imputation

Examples

Remove 5 SNPs from a datset and derive imputation rules for them
data(for.exercise)
sel <- c(20, 1000, 2000, 3000, 5000)
to.impute <- snps.10[,sel]
impute.from <- snps.10[,-sel]
pos.to <- snp.support$position[sel]

18 ld

pos.fr <- snp.support$position[-sel]
imp <- snp.imputation(impute.from, to.impute, pos.fr, pos.to)
Now calculate the imputed values
imputed <- impute.snps(imp, impute.from)

ld Pairwise linkage disequilibrium measures

Description

This function calculates measures of linkage disequilibrium between pairs of SNPs. The two SNPs
in each pair may both come from the same SnpMatrix object, or from two different SnpMatrix ob-
jects. Statistics which can be calculated are the log likelihood ratio, odds ratio, Yule’s Q, covariance,
D-prime, R-squared, and R.

Usage

ld(x, y = NULL, depth = NULL, stats, symmetric = FALSE)

Arguments

x An object of class SnpMatrix or XSnpMatrix
y (Optional) Another object of the same class as x. If y is supplied, LD statistics

are calculated between each column of x and each column of y. Otherwise, they
are calculated between columns of x

depth When y is not supplied, this parameter is mandatory and controls the maximum
lag between columns of x considered. Thus, LD statistics are calculated between
x[,i] and x[,j] only if i and j differ by no more than depth

stats A character vector specifying the linkage disequilibrium measures to be cal-
culated. This should contain one or more of the strings: "LLR", "OR", "Q",
"Covar", "D.prime", "R.squared", ad "R"

symmetric When no y argument is supplied this argument controls the format of the output
band matrices. If TRUE, symmetric matrices are returned and, otherwise, an
upper triangular matrices are returned

Details

For each pair of SNPs, phased haplotype frequencies are first estimated by maximum likelihood
using the method described by Clayton and Leung (2007). The arrays of chosen LD statistics are
then calculated and returned, either as band matrices (when y is not supplied), or as conventional
rectangular matrices (when y is supplied). Band matrices are stored in compressed form as objects
of class dsCMatrix (symmetric) or dgCMatrix (upper triangular). These classes are defined in the
"Matrix" package)

Value

If only one LD statistic is requested, the function returns either a matrix or a compressed band
matrix. If more than one LD statistic is requested, a list of such objects is returned

ld.example 19

Author(s)

David Clayton <dc208@cam.ac.uk>

References

Clayton and Leung (2007) Human Heredity, 64:45-51, (this paper is included in package documen-
tation)

See Also

"Matrix-class"

Examples

data(testdata)
ld1 <- ld(Autosomes[, 1:50], depth=10, stats=c("D.prime", "R.squared"))
ld2 <- ld(Autosomes[, 1:20], Autosomes[, 21:25], stats="R.squared")

ld.example Datasets to illustrate calculation of linkage disequilibrium statistics

Description

This R data file contains data from the International HapMap project, concerning 603 SNPs span-
ning a one megabase region on chromosome 22, in a sample of Europeans and a sample of Africans

Format

There are three objects in the file:

• ceph.1m: A snpMatrix object containing the European genotype data

• yri.1m: A snpMatrix object containing the African genotype data

• support.ld: A dataframe containing details (chromosome position etc.

of the 603 SNPs

Source

http://hapmap.ncbi.nlm.nih.gov

References

The International HapMap Consortium. The International HapMap Project. Nature 426:789-796
(2003)

http://hapmap.ncbi.nlm.nih.gov

20 mean2g

mean2g Raw coding of posterior probabilities of SNP genotype

Description

An uncertain SNP genotype call is represented by the three posterior probabilities of the three
possible calls. In the class SnpMatrix, an approximation to these is packed into a single 1-byte
variable of type raw. These functions carry out this coding (and decoding).

Usage

post2g(p, transpose = FALSE)
mean2g(m, maxE = FALSE)
g2post(g, transpose = FALSE)

Arguments

p A matrix of posterior probabilities. If transpose is FALSE this is Nx3, otherwise
3xN

m A vector of posterior means

g A raw vector of genotype codes

transpose A logical flag indicating transposition of the matric of posterior probabilities
(see Description)

maxE A logical flag selecting the maximum entropy option in mean2g

Details

post2g and g2post convert from posterior probabilities to raw code and back respectively. If only
the posterior expectation of the genotype (when numerically coded 0, 1, or 2) is available, no unique
soultion exists in general and the behaviour of the function is determined by the value of maxE. If
TRUE, then the maximum entropy solutions are returned while, if FALSE, an attempt is made to return
the least uncertain solution, by setting the posterior probability of the BB genotype to zero when the
posterior mean is less than 1.0 and the probability of AA to zero when the mean is greater than 1.0.

Value

post2g and mean2g return a vector of type raw. g2post returns a numeric matrix.

Note

These functions are provided mainly for users wishing to write their own data input functions.

Author(s)

David Clayton <dc208@cam.ac.uk>

misinherits 21

Examples

data(testdata)
g <- Autosomes[1:10, 20] ## A vector of codes
p <- g2post(g) ## Transform to probabilities ...
pg <- post2g(p) ## ... and back to codes
m <- p[,2]+2*p[,3] ## Posterior expectations
mg <- mean2g(m) ## Transform to codes ...
pmg <- g2post(mg) ## ... and transform to probabilities
Write everything out
print(cbind(as(g, "numeric"), p, as.numeric(pg), m, as.numeric(mg), pmg))

misinherits Find non-Mendelian inheritances in family data

Description

For SNP data in families, this function locates all subjects whose parents are in the dataset and tests
each SNP for non-Mendelian inheritances in these trios.

Usage

misinherits(ped, id, father, mother, data = sys.parent(), snp.data)

Arguments

ped Pedigree identifiers
id Subject identifiers
father Identifiers for subjects’ fathers
mother Identifiers for subjects’ mothers
data A data frame in which to evaluate the previous four arguments
snp.data An object of class "SnpMatrix" containing the SNP genotypes to be tested

Details

The first four arguments are usually derived from a "pedfile". If a data frame is supplied for the
data argument, the first four arguments will be evaluated in this frame. Otherwise they will be
evaluated in the calling environment. If the arguments are missing, they will be assumed to be in
their usual positions in the pedfile data frame i.e. in columns one to four. If the pedfile data are
obtained from a dataframe, the row names of the data and snp.data files will be used to align the
pedfile and SNP data. Otherwise, these vectors will be assumed to be in the same order as the rows
of snp.data.

Value

A logical matrix. Rows are subjects with any non-Mendelian inheritances and columns are SNPs
with any non-Mendelian inheritances. The body of the matrix details whether each subject has non-
Mendelian inheritance at each SNP. If a subject has no recorded genotype for a specific SNP, the
corresponding element of the output matrix is set to NA.

22 mvtests

Author(s)

David Clayton <dc208@cam.ac.uk>

See Also

tdt.snp

Examples

data(families)
misinherits(data=pedData, snp.data=genotypes)

mvtests Multivariate SNP tests

Description

This function calculates multivariate score tests between a multivariate (or multinomial) phenotype
and sets of SNPs

Usage

mvtests(phenotype, sets, stratum, data = sys.parent(), snp.data, rules = NULL, complete = TRUE, uncertain = FALSE, score = FALSE)

Arguments

phenotype Either a factor (for a multinomial phenotype) or a matrix (for a multivariate
phenotype)

sets A list of sets of SNPs to be tested against the phenotype

stratum (Optional) a stratifying variable

data A data frame in which phenotype and stratum reside. If absent these are as-
sumed to be in the parent frame and correctly aligned with the rows of snp.data

snp.data An object of class SnpMatrix containing the SNP data

rules (Optional) A set of imputation rules. The function then carries out tess on im-
puted SNPs

complete If TRUE each test will use only subjects who have complete data for the pheno-
type and all SNPs in the set to be tested. If FALSE, then complete data for the
phenotype is required, but tests are based upon complete pairs of SNPs

uncertain If TRUE, uncertain genotype calls will be used in the tests (scored by their poste-
rior expectations). Otherwise such calls are treated as missing

score If TRUE, the score vectors and their variance-covariance matrices are saved in the
output object for further processing

Details

Currently complete=FALSE is not implemented

plotUncertainty 23

Value

An object of class snp.tests.glm or GlmTests.score depending on whether score is set to FALSE
or TRUE in the call

Note

This is an experimental version

Author(s)

David Clayton <dc208@cam.ac.uk>

Examples

No example yet

plotUncertainty Plot posterior probabilities of genotype assignment

Description

The snpStats package allows for storage of uncertain genotype assignments in a one byte "raw"
variable. The probabilities of assignment form a three-vector, subject to the linear constraint that
they sum to 1.0; their possible values are grouped into 253 different classes. This function displays
counts of these classes on a two-dimensional isometric plot.

Usage

plotUncertainty(snp, nlevels = 10, color.palette = heat.colors(nlevels))

Arguments

snp One or more columns of a SnpMatrix object

nlevels Probability cells are coloured according to frequency. This argument gives the
number of colours that can be used

color.palette The colour palette to be used

Details

The plot takes the form of an equilateral triangle in which each apex represents a certain assignment
to one of the three genotypes. A point within the triangle represents, by the perpendicular distance
from each side, the three probabilities. Each of the 253 probability classes is represented by a
hexagonal cell, coloured according to its frequency in the data, which is also written within the cell

Author(s)

David Clayton <dc208@cam.ac.uk>

24 pool

Examples

No example available yet

pool Pool test results from several studies or sub-studies

Description

Given the same set of "score" tests carried out in several studies or in several different sub-samples
within a study, this function pools the evidence by summation of the score statistics and score vari-
ances. It combines tests produced by single.snp.tests or by snp.lhs.tests and snp.rhs.tests.

Usage

pool(..., score = FALSE)

Arguments

... Objects holding the (extended) test results. These must be of class SingleSnpTests.score
or snp.tests.glm

score Is extended score information to be returned in the output object? Relevant only
for SingleSnpTestsScore objects

Details

This function works by recursive calls to the generic function pool2 which pools the results of two
studies.

Value

An object of same class as the input objects (optionally without the .score) extension. Tests are
produced for the union of SNPs tested in all the input objects.

Author(s)

David Clayton <dc208@cam.ac.uk>

See Also

pool2, SingleSnpTestsScore-class, GlmTests-class, single.snp.tests, snp.lhs.tests,
snp.rhs.tests

pool2 25

Examples

An artificial example which simply doubles the size of a study
data(testdata)
sst <- single.snp.tests(snp.data=Autosomes, cc, data=subject.data,

score=TRUE)
sst2 <- pool(sst, sst)
summary(sst2)

pool2 Pool results of tests from two independent datasets

Description

Generic function to pool results of tests from two independent datasets. It is not designed to be
called directly, but is called recursively by pool

Usage

pool2(x, y, score)

Arguments

x, y Objects holding the (extended) test results. These must be of class SingleSnpTests.score
or snp.tests.glm

score Is extended score information to be returned in the output object?

Value

An object of same class as the input objects (optionally without the .score) extension. Tests are
produced for the union of SNPs tested in all the input objects.

Author(s)

David Clayton <dc208@cam.ac.uk>

See Also

pool, SingleSnpTestsScore-class, GlmTests-class, single.snp.tests, snp.lhs.tests, snp.rhs.tests

26 qq.chisq

pp Unpack posterior probabilities from one-byte codes

Description

In snpStats, the three "posterior" probabilities corresponding to the possible values of an uncertain
genotype are packed into a single byte code (with, of course, some loss in accuracy). This function,
which is provided as an aid to writing new functions, unpacks the posterior probabilities from the
single byte codes.

Usage

pp(x, transpose = FALSE)

Arguments

x A vector, length N, which can be coerced into type raw

transpose If FALSE, the result is an Nx3 matrix of posterior probabilities. If TRUE, a 3xN
matrix is returned.

Value

A numeric matrix

Author(s)

David Clayton <dc208@cam.ac.uk>

Examples

##
Read imputed data from a file produced by MACH
##
path <- system.file("extdata/mach1.out.mlprob.gz", package="snpStats")
mach <- read.mach(path)
pp(mach[1:50, 10])

qq.chisq Quantile-quantile plot for chi-squared tests

Description

This function plots ranked observed chi-squared test statistics against the corresponding expected
order statistics. It also estimates an inflation (or deflation) factor, lambda, by the ratio of the trimmed
means of observed and expected values. This is useful for inspecting the results of whole-genome
association studies for overdispersion due to population substructure and other sources of bias or
confounding.

qq.chisq 27

Usage

qq.chisq(x, df=1, x.max, main="QQ plot",
sub=paste("Expected distribution: chi-squared (",df," df)", sep=""),
xlab="Expected", ylab="Observed",
conc=c(0.025, 0.975), overdisp=FALSE, trim=0.5,
slope.one=FALSE, slope.lambda=FALSE, pvals=FALSE,
thin=c(0.25,50), oor.pch=24, col.shade="gray", ...)

Arguments

x A vector of observed chi-squared test values

df The degreees of freedom for the tests

x.max If present, truncate the observed value (Y) axis at abs(x.max). If x.max is
negative, the y-axis will extend to abs(x.max) even if the observed data do not

main The main heading

sub The subheading

xlab x-axis label (default "Expected")

ylab y-axis label (default "Observed")

conc Lower and upper probability bounds for concentration band for the plot. Set this
to NA to suppress this

overdisp If TRUE, an overdispersion factor, lambda, will be estimated and used in calcu-
lating concentration band

trim Quantile point for trimmed mean calculations for estimation of lambda. Default
is to trim at the median

slope.one Is a line of slope one to be superimpsed?

slope.lambda Is a line of slope lambda to be superimposed?

pvals Are P-values to be indicated on an axis drawn on the right-hand side of the plot?

thin A pair of numbers indicating how points will be thinned before plotting (see
Details). If NA, no thinning will be carried out

oor.pch Observed values greater than x.max are plotted at x.max. This argument sets the
plotting symbol to be used for out-of-range observations

col.shade The colour with which the concentration band will be filled

... Further graphical parameter settings to be passed to points()

Details

To reduce plotting time and the size of plot files, the smallest observed and expected points are
thinned so that only a reduced number of (approximately equally spaced) points are plotted. The
precise behaviour is controlled by the parameter thin, whose value should be a pair of numbers.
The first number must lie between 0 and 1 and sets the proportion of the X axis over which thinning
is to be applied. The second number should be an integer and sets the maximum number of points
to be plotted in this section.

The "concentration band" for the plot is shown in grey. This region is defined by upper and lower
probability bounds for each order statistic. The default is to use the 2.5 Note that this is not a

28 random.snps

simultaneous confidence region; the probability that the plot will stray outside the band at some
point exceeds 95

When required, the dispersion factor is estimated by the ratio of the observed trimmed mean to its
expected value under the chi-squared assumption.

Value

The function returns the number of tests, the number of values omitted from the plot (greater than
x.max), and the estimated dispersion factor, lambda.

Note

All tests must have the same number of degrees of freedom. If this is not the case, I suggest
transforming to p-values and then plotting -2log(p) as chi-squared on 2 df.

Author(s)

David Clayton <dc208@cam.ac.uk>

References

Devlin, B. and Roeder, K. (1999) Genomic control for association studies. Biometrics, 55:997-1004

See Also

single.snp.tests, snp.lhs.tests, snp.rhs.tests

Examples

See example the single.snp.tests() function

random.snps Generate random SnpMatrix

Description

This function is purely for testing purposes. It can generate SnpMatrix objects which contain more
than 2^31-1 elements.

Usage

random.snps(nrows, ncols)

Arguments

nrows The number of rows to be generated

ncols The number of columns to be generated

read.beagle 29

Details

All SNPs should be in Hardy-Weinberg equilibrium with an allele frequency of 0.5.

Note that, although the total number of elements can exceed 2^31-1, the numbers of rows and
columns are still subject to this limit.

Examples

x <- random.snps(100,10)
col.summary(x)

read.beagle Read genotypes imputed by the BEAGLE program

Description

The BEAGLE program generates, for each SNP and each subject, posterior probabilities for the
three genotypes. This function reads such data as a SnpMatrix object, storing the posterior proba-
bilities to as much accuracy allowed by a one-byte coding

Usage

read.beagle(file, rownames=NULL, nsnp = NULL, header=TRUE)

Arguments

file The input file name. This file my be gzipped.

rownames The row names (sample identifiers) for the matrix

nsnp The number of SNPs to be read in. This corresponds with the number of lines in
the input file. If not supplied, the function does a preliminary pass to determine
the number of lines

header Set this TRUE if the file contains a header line (it won’t for older versions of
BEAGLE)

Details

In later versions of BEAGLE, row names are listed on a header line. However, if the rownames
argument is supplied, this will take precedence over the header line. If there is no header line and
no row names are supplied, names are generated as Sample1, Sample2 etc.

No provision is made for data for the X chromosome. Such data must be first read as a SnpMatrix
and subsequently coerced to an XSnpMatrix object

Value

an object of class SnpMatrix

30 read.impute

Author(s)

David Clayton <dc208@cam.ac.uk>

See Also

SnpMatrix-class

Examples

##---- No example available yet

read.impute Read genotypes imputed by the IMPUTE2 program

Description

The IMPUTE2 program generates, for each SNP and each subject, posterior probabilities for the
three genotypes. This function reads such data as a SnpMatrix object, storing the posterior proba-
bilities to as much accuracy allowed by a one-byte coding

Usage

read.impute(file, rownames = NULL, nsnp = NULL, snpcol = 2)

Arguments

file The input file name. This file my be gzipped.

rownames The row names for the output object. Note that these correspond to groups of
three columns in the input file. If not supplied, names are generated as Sample1,
Sample2 etc.

nsnp The number of SNPs to be read in. This corresponds with the number of lines in
the input file. If not supplied, the function does a preliminary pass to determine
the number of lines

snpcol Which column of the input will be used as the SNP name. Default is column 2

Details

No provision is made for data for the X chromosome. Such data must be first read as a SnpMatrix
and subsequently coerced to an XSnpMatrix object

Value

an object of class SnpMatrix

Author(s)

David Clayton <dc208@cam.ac.uk>

read.long 31

See Also

SnpMatrix-class

Examples

##---- No example available yet

read.long Read SNP genotype data in long format

Description

This function reads SNP genotype data from a file in which each line refers to a single genotype
call. Replaces the earlier function read.snps.long.

Usage

read.long(file, samples, snps,
fields = c(snp = 1, sample = 2, genotype = 3, confidence = 4,

allele.A = NA, allele.B = NA),
split = "\t| +", gcodes, no.call = "", threshold = NULL,
lex.order = FALSE, verbose = FALSE)

Arguments

file Name(s) of file(s) to be read (can be gzipped)
samples Either a vector of sample identifiers, or the number of samples to be read. If

a single file is to be read and this argument is omitted, the file will be scanned
initially and all samples will be included

snps Either a vector of SNP identifiers, or the number of SNPs to be read. If a single
file is to be read and this argument is omitted, the file will be scanned initially
and all SNPs will be included

fields A named vector giving the locations of the required fields. See Details below
split A regular expression specifying how the input line will be split into fields. The

default value specifies separation of fields by a TAB character, or by one or more
blanks

gcodes When the genotype is read as a single field, this argument specifies how it is
handled. See Details below.

no.call The string which indicates "no call" for either a genotype or (when the genotype
is read as two allele fields) an allele

threshold A vector of length 2 giving the lower and higher acceptable limits for the confi-
dence score

lex.order If TRUE, the alleles at each locus will be in lexographical order. Otherwise, order-
ing of alleles is arbitrary, depending on the order in which they are encountered

verbose If TRUE, this turns on output from the function. Otherwise only error and warning
messages are produced

32 read.long

Details

Each line on the input file represents a single call and is split into fields using the function strsplit.
The required fields are extracted according to the fields argument. This must contain the locations
of the sample and snp identifier fields and either the location of a genotype field or the locations of
two allele fields.

If the samples and snps arguments contain vectors of character strings, a SnpMatrix is created with
these row and column names and the genotype values are "cherry-picked" from the input file. If
either, or both, of these arguments are specified simply as numbers, then these numbers determine
the dimensions of the SnpMatrix created. In this case samples and/or SNPs are included in the
SnpMatrix on a first-come-first-served basis. If either or both of these arguments are omitted, a
preliminary scan of the input file is carried out to find the missing sample and/or SNP identifiers. In
this scan, when a sample or SNP identifier differs from that in the previous line, but is identical to
one previously found, then all the relevant identifiers are assumed to have been found. This implies
that the file must be sorted, in some consistent order, by sample and by SNP (although either one of
these may vary fastest).

If the genotype is to be read as a single field, the genotype element of the fields argument must
be set to the appropriate value, and the allele.A and allele.B elements should be set to NA.
Its handling is controlled by the gcodes argument. If this is missing or NA, then the genotype is
assumed to be represented by a two-character field, the two characters representing the two alleles.
If gcodes is a single string, then it is assumed to contain a regular expression which will split the
genotype field into two allele fields. Otherwise, gcode must be an array of length three, specifying
the three genotype codes in the order "AA", "AB", "BB".

If the two alleles of the genotype are to be read from two separate fields, the genotype element
should be set to NA and the allele.A and allele.B elements set to the appropriate values. The
gcode argument should be missing or set to NA.

Value

If the genotype is read as a single field matching one of three specified codes, the function returns an
object of class SnpMatrix. Otherwise it returns a list whose first element is the SnpMatrix object
and whose second element is a dataframe containing the allele codes, with the SNP identifiers as
row names. Note that allele codes only occur in this file if they occur in a genotype which was
accepted. Thus, monomorphic SNPs have allele.B coded as NA, and SNPs which never pass
confidence score filters have both alleles coded as NA.

Note

Unlike read.snps.long, this function is written entirely in R and may not be particularly fast.
However, it imposes no restrictions on the allele codes recognized.

Homozygous genotypes are assumed to be represented in the input file by coding both alleles to the
same value. No special provision is made to read XSnpMatrix objects; such data should first be
read as a SnpMatrix and then coerced to an XSnpMatrix using new or as.

Author(s)

David Clayton <dc208@cam.ac.uk>

read.mach 33

See Also

SnpMatrix-class, XSnpMatrix-class

Examples

##
No example supplied yet
##

read.mach Read genotypes imputed by the MACH program

Description

This routine reads imputed genotypes generated by the MACH program. With the --mle and
--mldetails options in force this program generates a .mlprob output file which contains proba-
bilities of assignments. These are stored as uncertain genotype calls in a SnpMatrix object

Usage

read.mach(file, colnames = NULL, nrow = NULL)

Arguments

file The name of the .mlprob file. This may be gzipped
colnames The column names. If absent, names are generated as SNP1, SNP2, etc.
nrow If known the number of rows of data on the file. If not supplied, it is determined

by a preliminary pass through the data

Details

No routine is explicitly available for data on chromosome X. Such data should first be read as a
SnpMatrix and then coerced to an XSnpMatrix object

Value

An object of class SnpMatrix

Author(s)

David Clayton <dc208@cam.ac.uk>

See Also

SnpMatrix-class

Examples

##---- No example available yet

34 read.pedfile

read.pedfile Read a pedfile as "SnpMatrix" object

Description

Reads diallelic data in linkage "pedfile" format, with one line of data per sample (subject) containing
six mandatory fields followed by pairs of fields, one pair for each locus, giving the two alleles
observed.

Usage

read.pedfile(file, n, snps, which, split = "\t| +", sep = ".", na.strings = "0", lex.order = FALSE)

Arguments

file The input pedfile. This may be (but need not be) gzipped

n (Optional) The number of lines of data to be read. If not supplied the pedfile is
read once and rewound to determine how many lines it contains

snps (Optional) Either a character vector giving the names of the loci, or a single
character variable giving the name of a locus information file from which these
can be read. This file is assumed to be white-space delimited with one line
per locus and no header line. If this argument is not supplied, locus names are
generated as a numerical sequence, prefixed by locus and a separator character

which (Optional) If locus names are to be read from a file, this argument should spec-
ify which column contains the names. If not supplied, the first column giving
unique locus names is used

split A "regexp" specifying how the input pedfile will be split into fields. The default
value specifies either a TAB character or one or more spaces

sep The separator character used in constructing row and column names of the out-
put SnpMatrix object

na.strings One or more strings to be set to NA. Any field taking one of these values will be
set to NA

lex.order If TRUE, then alleles will be allocated to internal 1 and 2 values in lexographic
order. Otherwise they are converted in the order in which they are encountered
when reading the file (the default setting)

Details

Row names for the output SnpMatrix object and for the accompanying subject description dataframe
are taken as the pedigree identifiers, when these provide the required unique identifiers. When these
are duplicated, an attempt is made to use the pedigree-member identifiers instead but, when these
too are duplicated, row names are obtained by concatenating, with a separator character, the pedi-
gree and pedigree-member identifiers.

read.plink 35

Value

A list, comprising

genotypes The output genotype data as an object of class "SnpMatrix". If either the pedi-
gree or pedigree-member identifiers in the ped file are not duplicated, these are
used for the row names of the output object. Otherwise these two fields are
concatenated, separated by sep

fam A dataframe containing the first six fields in the pedfile. The row names will
correspond with those of the SnpMatrix

map A dataframe giving the alleles at each locus. If locus names were obtained
from a dataframe read from an existing file, then the allele information is simply
appended to this frame. Otherwise a new dataframe is created. The row names
will correspond with the column names of the SnpMatrix

Note

This function is written entirely in R and may not be particularly fast. However, it imposes no
restrictions on the allele codes recognized.

Homozygous genotypes may be represented in the input file either (a) by coding both alleles to
the same value, or (b) setting the second allele to "missing" (as specified by the missing.allele
argument). No special provision is made to read XSnpMatrix objects; such data should first be read
as a SnpMatrix and then coerced to an XSnpMatrix using new or as.

Author(s)

David Clayton <dc208@cam.ac.uk>

See Also

SnpMatrix-class, XSnpMatrix-class

Examples

##
No example supplied yet
##

read.plink Read a PLINK binary data file as a SnpMatrix

Description

The package PLINK saves genome-wide association data in groups of three files, with the ex-
tensions .bed, .bim, and .fam. This function reads these files and creates an object of class
"SnpMatrix"

36 read.plink

Usage

read.plink(bed, bim, fam, na.strings = c("0", "-9"), sep = "." , select.subjects = NULL, select.snps = NULL)

Arguments

bed The name of the file containing the packed binary SNP genotype data. It should
have the extension .bed; if it doesn’t, then this extension will be appended

bim The file containing the SNP descriptions

fam The file containing subject (and, possibly, family) identifiers. This is basically a
tab-delimited "pedfile"

na.strings Strings in .bam and .fam files to be recoded as NA

sep A separator character for constructing unique subject identifiers
select.subjects

A numeric vector indicating a subset of subjects to be selected from the input
file (see details)

select.snps Either a numeric or a character vector indicating a subset of SNPs to be selected
from the input file (see details)

Details

If the bed argument does not contain a filename with the file extension .bed, then this extension
is appended to the argument. The remaining two arguments are optional; their default values are
obtained by replacing the .bed filename extension by .bim and .fam respectively. See the PLINK
documentation for the detailed specification of these files.

The select.subjects or select.snps argument can be used to read a subset of the data. Use of
select.snps requires that the .bed file is in SNP-major order (the default in PLINK). Likewise,
use of select.snps requires that the .bed file is in individual-major order. Subjects are selected by
their numeric order in the PLINK files, while SNPs are selected either by order or by name. Note
that the order of selected SNPs/subjects in the output objects will be the same as their order in the
PLINK files.

Row names for the output SnpMatrix object and for the accompanying subject description dataframe
are taken as the pedigree identifiers, when these provide the required unique identifiers. When these
are duplicated, an attempt is made to use the pedigree-member identifiers instead but, when these
too are duplicated, row names are obtained by concatenating, with a separator character, the pedi-
gree and pedigree-member identifiers.

Value

A list with three elements:

genotypes The output genotype data as an object of class

"SnpMatrix".

fam A dataframe corresponding to the .fam file, containing the first six fields in a
standard pedfile. The row names will correspond with those of the SnpMatrix

map A dataframe correponding to the .bim file. the row names correpond with the
column names of the SnpMatrix

read.snps.long 37

Note

No special provision is made to read XSnpMatrix objects; such data should first be read as a
SnpMatrix and then coerced to an XSnpMatrix using new or as.

Author(s)

David Clayton <dc208@cam.ac.uk>

References

PLINK: Whole genome association analysis toolset. http://pngu.mgh.harvard.edu/~purcell/
plink/

See Also

write.plink, SnpMatrix-class, XSnpMatrix-class

read.snps.long Read SNP data in long format (deprecated)

Description

Reads SNP data when organized in free format as one call per line. Other than the one call per line
requirement, there is considerable flexibility. Multiple input files can be read, the input fields can
be in any order on the line, and irrelevant fields can be skipped. The samples and SNPs to be read
must be pre-specified, and define rows and columns of an output object of class "SnpMatrix". This
function has been replaced in versions 1.3 and later by the more flexible function read.long.

Usage

read.snps.long(files, sample.id = NULL, snp.id = NULL, diploid = NULL,
fields = c(sample = 1, snp = 2, genotype = 3, confidence = 4),
codes = c("0", "1", "2"), threshold = 0.9, lower = TRUE,
sep = " ", comment = "#", skip = 0, simplify = c(FALSE,FALSE),
verbose = FALSE, in.order=TRUE, every = 1000)

Arguments

files A character vector giving the names of the input files

sample.id A character vector giving the identifiers of the samples to be read

snp.id A character vector giving the names of the SNPs to be read

diploid A logical array of the same length as sample.id, required if reading data into an
XSnpMatrix rather than a SnpMatrix. This vector gives the expected ploidy for
each row. If the same value suffices for all rows, then a scalar may be supplied

http://pngu.mgh.harvard.edu/~purcell/plink/
http://pngu.mgh.harvard.edu/~purcell/plink/

38 read.snps.long

fields A integer vector with named elements specifying the positions of the required
fields in the input record. The fields are identified by the names sample and
snp for the sample and SNP identifier fields, confidence for a call confidence
score (if present) and either genotype if genotype calls occur as a single field,
or allele1 and allele2 if the two alleles are coded in different fields

codes Either the single string "nucleotide" denoting that coding in terms of nu-
cleotides (A, C, G or T, case insensitive), or a character vector giving genotype or
allele codes (see below)

threshold A numerical value for the calling threshold on the confidence score

lower If TRUE, then threshold represents a lower bound. Otherwise it is an upper
bound

sep The delimiting character separating fields in the input record

comment A character denoting that any remaining input on a line is to be ignored

skip An integer value specifying how many lines are to be skipped at the beginning
of each data file

simplify If TRUE, sample and SNP identifying strings will be shortened by removal of any
common leading or trailing sequences when they are used as row and column
names of the output SnpMatrix

verbose If TRUE, a progress report is generated as every every lines of data are read

in.order If TRUE, input lines are assumed to be in the correct order (see details)

every See verbose

Details

If nucleotide coding is not used, the codes argument should be a character array giving the valid
codes. For genotype coding of autosomal SNPs, this should be an array of length 3 giving the codes
for the three genotypes, in the order homozygous(AA), heterozygous(AB), homozygous(BB). All
other codes will be treated as "no call". The default codes are "0", "1", "2". For X SNPs, males are
assumed to be coded as homozygous, unless an additional two codes are supplied (representing the
AY and BY genotypes). For allele coding, the codes array should be of length 2 and should specify
the codes for the two alleles. Again, any other code is treated as "missing" and, for X SNPs, males
should be coded either as homozygous or by omission of the second allele.

For nucleotide coding, nucleotides are assigned to the nominal alleles in alphabetic order. Thus, for
a SNP with either "T" and "A" nucleotides in the variant position, the nominal genotypes AA, AB
and BB will refer to A/A, A/T and T/T.

Although the function allows for reading into an object of class XSnpMatrix directly, it is usu-
ally preferable to read such data as a "SnpMatrix" (i.e. as autosomal) and to coerce it to an
object of type "XSnpMatrix" later using as(..., "X.SnpMatrix") or new("XSnpMatrix", ...,
diploid=...). If diploid is coded NA for any subject the latter course must be followed, since NAs
are not accepted in the diploid argument.

If the in.order argument is set TRUE, then the vectors sample.id and snp.id must be in the same
order as they vary on the input file(s) and this ordering must be consistent. However, there is no
requirement that either SNP or sample should vary fastest as this is detected from the input. If
in.order is FALSE, then no assumptions about the ordering of the input file are assumed and SNP
and sample identifiers are looked up in hash tables as they are read. This option must be expected,

row.summary 39

therefore, to be somewhat slower. Each file may represent a separate sample or SNP, in which case
the appropriate .id argument can be omitted; row or column names are then taken from the file
names.

Value

An object of class "SnpMatrix" or "XSnpMatrix".

Note

The function will read gzipped files.

If in.order is TRUE, every combination of sample and snp listed in the sample.id and snp.id
arguments must be present in the input file(s). Otherwise the function will search for any missing
observation until reaching the end of the data, ignoring everything else on the way.

Author(s)

David Clayton <dc208@cam.ac.uk>

See Also

read.plink, SnpMatrix-class, XSnpMatrix-class

row.summary Summarize rows or columns of a snp matrix

Description

These function calculates summary statistics of each row or column of call rates and heterozygosity
for each row of a an object of class "SnpMatrix" or "XSnpMatrix"

Usage

row.summary(object)
col.summary(object, rules = NULL, uncertain = TRUE)

Arguments

object genotype data as a SnpMatrix-class or XSnpMatrix-class object

rules An object of class "ImputationRules". If supplied, the rules coded in this
object are used, together with the snp genotype data in object, to generate
imputed SNPs. The column summary of these imputed data are then returned

uncertain If TRUE uncertain genotypes are used in calculation of allele and genotype fre-
quencies (by scoring as posterior expectations). Otherwise, and for Hardy-
Weinberg tests, they are ignored

40 row.summary

Value

row.summary returns a data frame with rows corresponding to rows of the input object and
with columns/elements:

• Call.rate: Proportion of SNPs called
• Certain.calls: Proportion of called SNPs with certain calls
• Heterozygosity: Proportion of called SNPs which are heterozygous

Uncertain calls are ignored for calculating the heterozygosity.

col.summary returns a data frame with rows corresponding to columns of the input object and
with columns/elements:

• Calls: The number of valid calls
• Call.rate: The proportion of genotypes called
• Certain.calls: Proportion of called SNPs with certain calls
• RAF: The "risk" allele (allele B) frequency
• MAF: The minor allele frequency
• P.AA: The frequency of homozygous genotype 1 (A/A)
• P.AB: The frequency of heterozygous genotype 2 (A/B)
• P.BB: The frequency of homozygous genotype 3 (B/B)
• z.HWE: A z-test for Hardy-Weinberg equilibrium

For objects of class "XSnpMatrix", the following additional columns are re-
turned:

• P.AY: The frequency of allele A in males
• P.BY: The frequency of allele B in males
• Calls.female: The number of valid calls in females (only these calls are

used in the z-test for HWE)

Note

The current version of row.summary does not deal with the X chromosome differently, so that males
are counted as homozygous.

Author(s)

David Clayton <dc208@cam.ac.uk>

Examples

data(testdata)
rs <- row.summary(Autosomes)
summary(rs)
cs <- col.summary(Autosomes)
summary(cs)
cs <- col.summary(Xchromosome)
summary(cs)

sample.ped.gz 41

sample.ped.gz Sample datasets to illustrate data input

Description

The first five files concern data on 20 diallelic loci on 120 subjects. These data are distributed
with the Haploview package (Barrett et al., 2003). The sixth files contains a additional dataset of
18 SNPs in 100 subjects, coded in "long" format, and the seventh file duplicates this dataset in an
alternative long format. These seven files are used in the data input vignette. The final file is a
sample imputed genotype dataset distributed with the MACH imputation package, and used in the
imputation vignette.

These files are stored in the extdata relative to the package base. Full file names can be obtained
using the system.file function.

Format

The following files are described here:

• sample.ped.gz: A gzipped pedfile

• sample.info: An accompanying locus information file

• sample.bed: The corresponding PLINK .bed file

• sample.bim: The PLINK .bim file

• sample.fam: The PLINK .fam file

• sample-long.gz: A sample of long-formatted data

• sample-long-alleles.gz: The same as above, but allele-coded

• mach1.out.mlprob.gz: An mlprob output file from the MACH genotype imputation pro-
gram. This file contains, for each imputed genotype call, posterior probabilities for the three
possible genotypes

Source

http://www.broadinstitute.org/scientific-community/science/programs/medical-and-population-genetics/
haploview/downloads http://www.sph.umich.edu/csg/abecasis/MACH/download

References

Barrett JC, Fry B, Maller J, Daly MJ.(2005) Haploview: analysis and visualization of LD and
haplotype maps. Bioinformatics, 2005 Jan 15, [PubMed ID: 15297300]

http://www.broadinstitute.org/scientific-community/science/programs/medical-and-population-genetics/haploview/downloads
http://www.broadinstitute.org/scientific-community/science/programs/medical-and-population-genetics/haploview/downloads
http://www.sph.umich.edu/csg/abecasis/MACH/download

42 single.snp.tests

single.snp.tests 1-df and 2-df tests for genetic associations with SNPs (or imputed
SNPs)

Description

This function carries out tests for association between phenotype and a series of single nucleotide
polymorphisms (SNPs), within strata defined by a possibly confounding factor. SNPs are consid-
ered one at a time and both 1-df and 2-df tests are calculated. For a binary phenotype, the 1-df test
is the Cochran-Armitage test (or, when stratified, the Mantel-extension test). The function will also
calculate the same tests for SNPs imputed by regression analysis.

Usage

single.snp.tests(phenotype, stratum, data = sys.parent(), snp.data,
rules=NULL, subset, snp.subset, uncertain = FALSE, score=FALSE)

Arguments

phenotype A vector containing the values of the phenotype

stratum Optionally, a factor defining strata for the analysis

data A dataframe containing the phenotype and stratum data. The row names of
this are linked with the row names of the snps argument to establish corre-
spondence of phenotype and genotype data. If this argument is not supplied,
phenotype and stratum are evaluated in the calling environment and should be
in the same order as rows of snps

snp.data An object of class "SnpMatrix" containing the SNP genotypes to be tested

rules An object of class "ImputationRules". If supplied, the rules coded in this
object are used, together with snp.data, to calculate tests for imputed SNPs

subset A vector or expression describing the subset of subjects to be used in the anal-
ysis. This is evaluated in the same environment as the phenotype and stratum
arguments

snp.subset A vector describing the subset of SNPs to be considered. Default action is to
test all SNPs in snp.data or, in imputation mode, as specified by rules

uncertain If TRUE, uncertain genotypes are handled by replacing score contributions by
their posterior expectations. Otherwise they are treated as missing. Setting this
option authomatically invokes use of robust variance estimates

score If TRUE, the output object will contain, for each SNP, the score vector and its
variance-covariance matrix

Details

Formally, the test statistics are score tests for generalized linear models with canonical link. That
is, they are inner products between genotype indicators and the deviations of phenotypes from their

single.snp.tests 43

stratum means. Variances (and covariances) are those of the permutation distribution obtained by
randomly permuting phenotype within stratum.

When the function is used to calculate tests for imputed SNPs, the test is still a score test. The score
statistics are calculated from the expected value, given observed SNPs, of the score statistic if the
SNP to be tested were itself observed.

The subset argument can either be a logical vector of length equal to the length of the vector of
phenotypes, an integer vector specifying positions in the data frame, or a character vector contain-
ing names of the selected rows in the data frame. Similarly, the snp.subset argument can be a
logical, integer, or character vector.

Value

An object of class "SingleSnpTests". If score is set to TRUE, the output object will be of the
extended class "SingleSnpTestsScore" containing additional slots holding the score statistics and
their variances (and covariances). This allows meta-analysis using the pool function.

Note

The 1 df imputation tests are described by Chapman et al. (2008) and the 2 df imputation tests
are a simple extension of these. The behaviour of this function for objects of class XSnpMatrix is
as described by Clayton (2008). Males are treated as homozygous females and corrected variance
estimates are used.

Author(s)

David Clayton <dc208@cam.ac.uk>

References

Chapman J.M., Cooper J.D., Todd J.A. and Clayton D.G. (2003) Human Heredity, 56:18-31.
Clayton (2008) Testing for association on the X chromosome Biostatistics, 9:593-600.)

See Also

snp.lhs.tests, snp.rhs.tests, impute.snps, ImputationRules-class, pool, SingleSnpTests-class,
SingleSnpTestsScore-class

Examples

data(testdata)
results <- single.snp.tests(cc, stratum=region, data=subject.data,

snp.data=Autosomes, snp.subset=1:10)
print(summary(results))

writing to an (anonymous and temporary) csv file
csvfile <- tempfile()
write.csv(file=csvfile, as(results, 'data.frame'))
unlink(csvfile)
QQ plot
qq.chisq(chi.squared(results, 1), 1)

44 SingleSnpTests-class

qq.chisq(chi.squared(results, 2), 2)

SingleSnpTests-class Classes "SingleSnpTests" and "SingleSnpTestsScore"

Description

These are classes to hold the objects created by single.snp.tests and provide methods for ex-
tracting key elements. The class "SingleSnpTestsScore" extends class "SingleSnpTests" to
include the score and score variance statistics in order to provide methods for pooling results from
several studies or parts of a study

Objects from the Class

Objects can be created by calls of the form new("SingleSnpTests", ...) and new("SingleSnpTestsScore",
...) but, more usually, will be created by calls to single.snp.tests

Slots

snp.names: The names of the SNPs tested, as they appear as column names in the original SnpMatrix

chisq: A two-column matrix holding the 1 and 2 df association tests

N: The numbers of observations included in each test

N.r2: For tests on imputed SNPs, the product of N and the imputation r2. Otherwise a zero-length
object

U: (class "SingleSnpTestsScore") Score statistics

V: (class "SingleSnpTestsScore") Score variances

Methods

[] signature(x = "SingleSnpTests", i = "ANY"): Subsetting operator

[] signature(x = "SingleSnpTestsScore", i = "ANY"): Subsetting operator

chi.squared signature(x = "SingleSnpTests", df = "numeric"): Extract 1- and 2-df chi-squared
test values

effect.sign signature(x = "SingleSnpTestsScore", simplify = "missing"): Extract signs of
associations tested by the 1df tests

names signature(x="SingleSnpTests"): Extract names of test values (snp.names slot)

p.value signature(x = "SingleSnpTests", df = "numeric"): Evaluate 1- and 2-df test p-values

show signature(object = "SingleSnpTests"): List all tests and p-values

coerce signature(from = "SingleSnpTests", to = "data.frame"): Conversion to data frame
class

sample.size signature(object = "SingleSnpTests"): Extract sample sizes for tests

effective.sample.size signature(object = "SingleSnpTests"): Extract effective sample sizes
for tests. For imputed tests, these are the real sample sizes multiplied by the corresponding
R-squared values for imputation

sm.compare 45

summary signature(object = "SingleSnpTests"): Summarize all tests and p-values

pool2 signature(x = "SingleSnpTestsScore",y = "SingleSnpTestsScore", score = "logical"):
Combine two sets of test results. Used recursively by pool

switch.alleles signature(x = "SingleSnpTestsScore", snps = "ANY"): Emulate, in the score
vector and its (co)variances, the effect of switching of the alleles for the specified tests

Author(s)

David Clayton <dc208@cam.ac.uk>

See Also

single.snp.tests, pool

Examples

showClass("SingleSnpTests")
showClass("SingleSnpTestsScore")

sm.compare Compare two SnpMatrix objects

Description

For quality control purposes, it is sometimes necessary to compare genotype data derived from
different sources. This function facilitates this.

Usage

sm.compare(obj1, obj2, row.wise = TRUE, col.wise = TRUE)

Arguments

obj1 The first of the two SnpMatrix objects to be compared

obj2 The second SnpMatrix object

row.wise Calculate comparison statistics aggregated in a row-wise manner

col.wise Calculate column-wise comparison statistics

Details

Initially row and column names of the two objects are compared to identify subsets of subjects and
SNPs which they have in common. Then, every instance of a SNP genotype in the two objects are
compared and agreements and disagreements counted by row and/or by column.

46 snp.cor

Value

If only one of the row-wise and column-wise summaries are to be calculated, the return value is a
matrix with rows defined by subjects or SNPs and columns giving counts of:

Agree Agreements (all)

Disagree Disgreements (all)

NA.agree Genotype coded NA in both objects

NA.disagree Genotype coded NA in only one object

Hom.agree Objects agree and genotype is homozygous

Hom.switch Genotype coded as homozygous in both objects, but alleles switched

Het.agree Genotype coded as heterozygous in both objects

Het.Hom Genotype coded as heterozygous in one object and homozygous in the other

If both row-wise and column-wise summaries are computed (the default behaviour) , the function
returns a list containing two matrices of the form described above. These are named row.wise and
col.wise

Note

No special provision is yet made for objects of class XSnpMatrix, in which haploid calls are coded
as homozygous.

Author(s)

David Clayton <dc208@cam.ac.uk>

See Also

SnpMatrix-class, XSnpMatrix-class

Examples

##
No example yet available
##

snp.cor Correlations with columns of a SnpMatrix

Description

This function calculates Pearson correlation coefficients between columns of a SnpMatrix and
columns of an ordinary matrix. The two matrices must have the same number of rows. All valid
pairs are used in the computation of each correlation coefficient.

snp.cor 47

Usage

snp.cor(x, y, uncertain = FALSE)

Arguments

x An N by M SnpMatrix

y An N by P general matrix

uncertain If TRUE, uncertain genotypes are replaced by posterior expectations. Otherwise
these are treated as missing values

Details

This can be used together with xxt and eigen to calculate standardized loadings in the principal
components

Value

An M by P matrix of correlation coefficients

Note

This version cannot handle X chromosomes

Author(s)

David Clayton <dc208@cam.ac.uk>

See Also

xxt

Examples

make a SnpMatrix with a small number of rows
data(testdata)
small <- Autosomes[1:100,]
Calculate the X.X-transpose matrix
xx <- xxt(small, correct.for.missing=TRUE)
Calculate the principal components
pc <- eigen(xx, symmetric=TRUE)$vectors
Calculate the loadings in first 10 components */
loadings <- snp.cor(small, pc[,1:10])

48 snp.imputation

snp.imputation Calculate imputation rules

Description

Given two set of SNPs typed in the same subjects, this function calculates rules which can be used
to impute one set from the other in a subsequent sample. The function can also calculate rules for
imputing each SNP in a single dataset from other SNPs in the same dataset

Usage

snp.imputation(X, Y, pos.X, pos.Y, phase=FALSE, try=50, stopping=c(0.95, 4, 0.05),
use.hap=c(1.0, 0.0), em.cntrl=c(50,0.01,10,0.01), minA=5)

Arguments

X An object of class "SnpMatrix" or "XSnpMatrix" containing observations of
the SNPs to be used for imputation ("predictor SNPs")

Y An object of same class as X containing observations of the SNPs to be imputed
in a future sample ("target SNPs"). If this argument is missing, then target SNPs
are also drawn from X

pos.X The positions of the predictor SNPs. Can be missing if there is no Y argument
and the columns of X are in genome position order

pos.Y The positions of the target SNPs. Only required when a Y argument is present

phase See "Details" below

try The number of potential predictor SNPs to be considered in the stepwise regres-
sion procedure around each target SNP . The nearest try predictor SNPs to each
target SNP will be considered

stopping Parameters of the stopping rule for the stepwise regression (see below)

use.hap Parameters to control use of the haplotype imputation method (see below)

em.cntrl Parameters to control test for convergence of EM algorithm for fitting phased
haplotypes (see below)

minA A minimum data quantity measure for estimating pairwise linkage disequilib-
rium (see below)

Details

The routine first carries out a series of step-wise least-square regression analyses in which each Y
SNP is regressed on the nearest try predictor (X) SNPs. If phase is TRUE, the regressions will be
calculated at the chromosome (haplotype) level, variances being simply p(1 − p) and covariances
estimated from the estimated two-locus haplotypes (this option is not yet implemented). Otherwise,
the analysis is carried out at the genotype level based on conventional variance and covariance
estimates using the "pairwise.complete.obs" missing value treatment (see cov). New SNPs are
added to the regression until either (a) the value of R2 exceeds the first parameter of stopping,

snp.imputation 49

(b) the number of "tag" SNPs has reached the maximum set in the second parameter of stopping,
or (c) the change in R2 does not achieve the target set by the third parameter of stopping. If the
third parameter of stopping is NA, this last test is replaced by a test for improvement in the Akaike
information criterion (AIC).

After choosing the set of "tag" SNPs in this way, a prediction rule is generated either by calculating
phased haplotype frequencies, either (a) under a log-linear model for linkage disequilibrium with
only first order association terms fitted, or (b) under the "saturated" model. These methods do not
differ if there is only one tag SNP but, otherwise, choice between methods is controlled by the
use.hap parameters. If the prediction, as measure by R2 achieved with the log-linear smoothing
model exceeds a threshold (the first parameter of use.hap) then this method is used. Otherwise,
if the gain in R2 achieved by using the second method exceeds the second parameter of use.hap,
then the second method is used. Current experience is that, the log-linear method is rarely preferred
with reasonable choices for use.hap, and imputation is much faster when the second method only
is considered. The current default ensures that this second method is used, but the other possibility
might be considered if imputing from very small samples; however this code is not extensively
tested and should be regarded as experimental.

The argument em.cntrl controls convergence testing for the EM algorithm for fitting haplotype
frequencies and the IPF algorithm for fitting the log-linear model. The first parameter is the max-
imum number of EM iterations, and the second parameter is the threshold for the change in log
likelihood below which the iteration is judged to have converged. The third and fourth parameters
give the maximum number of IPF iterations and the convergence tolerance. There should be no
need to change the default values.

All SNPs selected for imputation must have sufficient data for estimating pairwise linkage disequi-
librium with each other and with the target SNP. The statistic chosen is based on the four-fold tables
of two-locus haplotype frequencies. If the frequencies in such a table are labelled a, b, c and d then,
if ad > bc then t = min(a, d) and, otherwise, t = min(b, c). The cell frequencies t must exceed
minA for all pairwise comparisons.

Value

An object of class "ImputationRules".

Note

The phase=TRUE option is not yet implemented

Author(s)

David Clayton <dc208@cam.ac.uk>

References

Chapman J.M., Cooper J.D., Todd J.A. and Clayton D.G. (2003) Human Heredity, 56:18-31.

Wallace, C. et al. (2010) Nature Genetics, 42:68-71

See Also

ImputationRules-class, imputation.maf, imputation.r2

50 snp.lhs.estimates

Examples

Remove 5 SNPs from a datset and derive imputation rules for them
data(for.exercise)
sel <- c(20, 1000, 2000, 3000, 5000)
to.impute <- snps.10[,sel]
impute.from <- snps.10[,-sel]
pos.to <- snp.support$position[sel]
pos.fr <- snp.support$position[-sel]
imp <- snp.imputation(impute.from, to.impute, pos.fr, pos.to)

snp.lhs.estimates Logistic regression with SNP genotypes as dependent variable

Description

Under the assumption of Hardy-Weinberg equilibrium, a SNP genotype is a binomial variate with
two trials for an autosomal SNP or with one or two trials (depending on sex) for a SNP on the X
chromosome. With each SNP in an input "SnpMatrix" as dependent variable, this function fits a
logistic regression model. The Hardy-Weinberg assumption can be relaxed by use of a "robust"
option.

Usage

snp.lhs.estimates(snp.data, base.formula, add.formula, subset, snp.subset,
data = sys.parent(), robust = FALSE, uncertain = FALSE,
control=glm.test.control())

Arguments

snp.data The SNP data, as an object of class "SnpMatrix" or "XSnpMatrix"
base.formula A formula object describing a base model containing those terms which are

to be fitted but for which parameter estimates are not required (the dependent
variable is omitted from the model formula)

add.formula A formula object describing the additional terms in the model for which param-
eter estimates are required (again, the dependent variable is omitted)

subset An array describing the subset of observations to be considered
snp.subset An array describing the subset of SNPs to be considered. Default action is to

test all SNPs.
data The data frame in which base.formula, add.formula and subset are to be

evaluated
robust If TRUE, Hardy-Weinberg equilibrium will is not assumed in calculating the

variance-covariance matrix of parameter estimates
uncertain If TRUE, uncertain genotypes are used and scored by their posterior expectations.

Otherwise they are treated as missing. If set, this option forces robust variance
estimates

control An object giving parameters for the IRLS algorithm fitting of the base model and
for the acceptable aliasing amongst new terms to be tested. See glm.test.control

snp.lhs.estimates 51

Details

The model fitted is the union of the base.formula and add.formula models, although parameter
estimates (and their variance-covariance matrix) are only generated for the parameters of the latter.
The "robust" option causes a Huber-White "sandwich" estimate of the variance-covariance matrix to
be used in place of the usual inverse second derivative matrix of the log-likelihood (which assumes
Hardy-Weinberg equilibrium). If a data argument is supplied, the snp.data and data objects are
aligned by rowname. Otherwise all variables in the model formulae are assumed to be stored in the
same order as the columns of the snp.data object.

Value

An object of class GlmEstimates

Note

A factor (or several factors) may be included as arguments to the function strata(...) in the
base.formula. This fits all interactions of the factors so included, but leads to faster computation
than fitting these in the normal way. Additionally, a cluster(...) call may be included in the base
model formula. This identifies clusters of potentially correlated observations (e.g. for members
of the same family); in this case, an appropriate robust estimate of the variance-covariance matrix
of parameter estimates is calculated. No more than one strata() call may be used, and neither
strata(...) or cluster(...) calls may appear in the add.formula.

If uncertain genotypes (e.g. as a result of imputation) are used, the interpretation of the regression
coefficients is questionable.

A known bug is that the function fails when no data argument is supplied and the base model
formula contains no variables (~1). A work-round is to create a data frame to hold the variables in
the models and pass this as data=.

Author(s)

David Clayton <dc208@cam.ac.uk>

See Also

GlmEstimates-class, snp.lhs.tests

Examples

data(testdata)
test1 <-
snp.lhs.estimates(Autosomes[,1:10], ~cc, ~region, data=subject.data)
test2 <-
snp.lhs.estimates(Autosomes[,1:10], ~strata(region), ~cc,

data=subject.data)
test3 <-
snp.lhs.estimates(Autosomes[,1:10], ~cc, ~region, data=subject.data, robust=TRUE)
test4 <-
snp.lhs.estimates(Autosomes[,1:10], ~strata(region), ~cc,

data=subject.data, robust=TRUE)

52 snp.lhs.tests

test5 <- snp.lhs.estimates(Autosomes[,1:10], ~region+sex, ~cc, data=subject.data, robust=TRUE)
print(test1)
print(test2)
print(test3)
print(test4)
print(test5)

snp.lhs.tests Score tests with SNP genotypes as dependent variable

Description

Under the assumption of Hardy-Weinberg equilibrium, a SNP genotype is a binomial variate with
two trials for an autosomal SNP or with one or two trials (depending on sex) for a SNP on the X
chromosome. With each SNP in an input "SnpMatrix" as dependent variable, this function first
fits a "base" logistic regression model and then carries out a score test for the addition of further
term(s). The Hardy-Weinberg assumption can be relaxed by use of a "robust" option.

Usage

snp.lhs.tests(snp.data, base.formula, add.formula, subset, snp.subset,
data = sys.parent(), robust = FALSE, uncertain = FALSE,
control=glm.test.control(), score=FALSE)

Arguments

snp.data The SNP data, as an object of class "SnpMatrix" or "XSnpMatrix"

base.formula A formula object describing the base model, with dependent variable omitted

add.formula A formula object describing the additional terms to be tested, also with depen-
dent variable omitted

subset An array describing the subset of observations to be considered

snp.subset An array describing the subset of SNPs to be considered. Default action is to
test all SNPs.

data The data frame in which base.formula, add.formula and subset are to be
evaluated

robust If TRUE, a test which does not assume Hardy-Weinberg equilibrium will be used

uncertain If TRUE, uncertain genotypes are used and scored by their posterior expectations.
Otherwise they are treated as missing. If set, this option forces robust variance
estimates

control An object giving parameters for the IRLS algorithm fitting of the base model and
for the acceptable aliasing amongst new terms to be tested. See glm.test.control

score Is extended score information to be returned?

snp.lhs.tests 53

Details

The tests used are asymptotic chi-squared tests based on the vector of first and second derivatives
of the log-likelihood with respect to the parameters of the additional model. The "robust" form is
a generalized score test in the sense discussed by Boos(1992). If a data argument is supplied, the
snp.data and data objects are aligned by rowname. Otherwise all variables in the model formulae
are assumed to be stored in the same order as the columns of the snp.data object.

Value

An object of class snp.tests.glm or GlmTests.score depending on whether score is set to FALSE
or TRUE in the call.

Note

A factor (or several factors) may be included as arguments to the function strata(...) in the
base.formula. This fits all interactions of the factors so included, but leads to faster computation
than fitting these in the normal way. Additionally, a cluster(...) call may be included in the base
model formula. This identifies clusters of potentially correlated observations (e.g. for members of
the same family); in this case, an appropriate robust estimate of the variance of the score test is used.
No more than one strata() call may be used, and neither strata(...) or cluster(...) calls
may appear in the add.formula. A known bug is that the function fails when no data argument is
supplied and the base model formula contains no variables (~1). A work-round is to create a data
frame to hold the variables in the models and pass this as data=.

Author(s)

David Clayton <dc208@cam.ac.uk>

References

Boos, Dennis D. (1992) On generalized score tests. The American Statistician, 46:327-333.

See Also

GlmTests-class, GlmTestsScore-class, glm.test.control,snp.rhs.tests single.snp.tests,
SnpMatrix-class, XSnpMatrix-class

Examples

data(testdata)
snp.lhs.tests(Autosomes[,1:10], ~cc, ~region, data=subject.data)
snp.lhs.tests(Autosomes[,1:10], ~strata(region), ~cc,

data=subject.data)

54 snp.pre.multiply

snp.pre.multiply Pre- or post-multiply a SnpMatrix object by a general matrix

Description

These functions first standardize the input SnpMatrix in the same way as does the function xxt. The
standardized matrix is then either pre-multiplied (snp.pre.multiply) or post-multiplied (snp.post.multiply)
by a general matrix. Allele frequencies for standardizing the input SnpMatrix may be supplied but,
otherwise, are calculated from the input SnpMatrix

Usage

snp.pre.multiply(snps, mat, frequency=NULL, uncertain = FALSE)
snp.post.multiply(snps, mat, frequency=NULL, uncertain = FALSE)

Arguments

snps An object of class "SnpMatrix" or "XSnpMatrix"

mat A general (numeric) matrix

frequency A numeric vector giving the allele (relative) frequencies to be used for stan-
dardizing the columns of snps. If NULL, allele frequencies will be calculated
internally. Frequencies should refer to the second (B) allele

uncertain If TRUE, uncertain genotypes are replaced by posterior expectations. Otherwise
these are treated as missing values

Details

The two matrices must be conformant, as with standard matrix multiplication. The main use en-
visaged for these functions is the calculation of factor loadings in principal component analyses
of large scale SNP data, and the application of these loadings to other datasets. The use of exter-
nally supplied allele frequencies for standardizing the input SnpMatrix is required when applying
loadings calculated from one dataset to a different dataset

Value

The resulting matrix product

Author(s)

David Clayton <dc208@cam.ac.uk>

See Also

xxt

snp.rhs.estimates 55

Examples

##--
##-- Calculate first two principal components and their loading, and verify
##--
Make a SnpMatrix with a small number of rows
data(testdata)
small <- Autosomes[1:20,]
Calculate the X.X-transpose matrix
xx <- xxt(small, correct.for.missing=FALSE)
Calculate the first two principal components and corresponding eigenvalues
eigvv <- eigen(xx, symmetric=TRUE)
pc <- eigvv$vectors[,1:2]
ev <- eigvv$values[1:2]
Calculate loadings for first two principal components
Dinv <- diag(1/sqrt(ev))
loadings <- snp.pre.multiply(small, Dinv %*% t(pc))
Now apply loadings back to recalculate the principal components
pc.again <- snp.post.multiply(small, t(loadings) %*% Dinv)
print(cbind(pc, pc.again))

snp.rhs.estimates Fit GLMs with SNP genotypes as independent variable(s)

Description

This function fits a generalized linear model with phenotype as dependent variable and with a se-
ries of SNPs (or small sets of SNPs) as predictor variables. Optionally, one or more potential
confounders of a phenotype-genotype association may be included in the model. In order to pro-
tect against misspecification of the variance function, "robust" estimates of the variance-covariance
matrix of estimates may be calculated in place of the usual model-based estimates.

Usage

snp.rhs.estimates(formula, family = "binomial", link, weights, subset,
data = parent.frame(), snp.data,

rules = NULL, sets = NULL, robust = FALSE, uncertain = FALSE, control
= glm.test.control())

Arguments

formula The model formula, with phenotype as dependent variable and any potential
confounders as independent variables. Note that parameter estimates are not
returned for these model terms

family A string defining the generalized linear model family. This currently should
(partially) match one of "binomial", "Poisson", "Gaussian" or "gamma" (case-
insensitive)

56 snp.rhs.estimates

link A string defining the link function for the GLM. This currently should (partially)
match one of "logit", "log", "identity" or "inverse". The default action
is to use the "canonical" link for the family selected

data The dataframe in which the model formula is to be interpreted

snp.data An object of class "SnpMatrix" or "XSnpMatrix" containing the SNP data

rules Optionally, an object of class "ImputationRules"

sets Either a vector of SNP names (or numbers) for the SNPs to be added to the
model formula, or a logical vector of length equal to the number of columns
in snp.data or a list of short vectors defining sets of SNPs to be included (see
Details)

weights "Prior" weights in the generalized linear model

subset Array defining the subset of rows of data to use

robust If TRUE, robust tests will be carried out

uncertain If TRUE, uncertain genotypes are used and scored by their posterior expectations.
Otherwise they are treated as missing

control An object giving parameters for the IRLS algorithm fitting of the base model and
for the acceptable aliasing amongst new terms to be tested. See glm.test.control

Details

Homozygous SNP genotypes are coded 0 or 2 and heterozygous genotypes are coded 1. For SNPs
on the X chromosome, males are coded as homozygous females. For X SNPs, it will often be
appropriate to include sex of subject in the base model (this is not done automatically). The "robust"
option causes Huber-White estimates of the variance-covariance matrix of the parameter estimates
to be returned. These protect against mis-specification of the variance function in the GLM, for
example if binary or count data are overdispersed,

If a data argument is supplied, the snp.data and data objects are aligned by rowname. Otherwise
all variables in the model formulae are assumed to be stored in the same order as the columns of the
snp.data object.

Usually SNPs to be fitted in models will be referenced by name. However, they can also be ref-
erenced by number, indicating the appropriate column in the input snp.data. They can also be
referenced by a logical selection vector of length equal to the number of columns in snp.data.

If the rules argument is supplied, SNPs may be imputed using these rules and included in the
model.

Value

An object of class GlmEstimates

Note

A factor (or several factors) may be included as arguments to the function strata(...) in the
formula. This fits all interactions of the factors so included, but leads to faster computation than
fitting these in the normal way. Additionally, a cluster(...) call may be included in the base
model formula. This identifies clusters of potentially correlated observations (e.g. for members

snp.rhs.tests 57

of the same family); in this case, an appropriate robust estimate of the variance of the parameter
estimates is used.

If uncertain genotypes (e.g. as a result of imputation) are used, the interpretation of the regression
coefficients is questionable; the regression coefficient for an imperfectly measurement of a variable
is not a biased (attenuated) estimate of the coefficient of the variable measured.

Author(s)

David Clayton <dc208@cam.ac.uk>

See Also

GlmEstimates-class, snp.lhs.estimates, snp.rhs.tests, SnpMatrix-class, XSnpMatrix-class

Examples

data(testdata)
test <- snp.rhs.estimates(cc~strata(region), family="binomial",

data=subject.data, snp.data= Autosomes, sets=1:10)
print(test)
test2 <- snp.rhs.estimates(cc~region+sex, family="binomial",

data=subject.data, snp.data= Autosomes, sets=1:10)
print(test2)
test.robust <- snp.rhs.estimates(cc~strata(region), family="binomial",

data=subject.data, snp.data= Autosomes, sets=1:10, robust=TRUE)
print(test.robust)

snp.rhs.tests Score tests with SNP genotypes as independent variable

Description

This function fits a generalized linear model with phenotype as dependent variable and, optionally,
one or more potential confounders of a phenotype-genotype association as independent variable. A
series of SNPs (or small groups of SNPs) are then tested for additional association with phenotype.
In order to protect against misspecification of the variance function, "robust" tests may be selected.

Usage

snp.rhs.tests(formula, family = "binomial", link, weights, subset, data = parent.frame(),
snp.data, rules=NULL, tests=NULL, robust = FALSE, uncertain=FALSE,
control=glm.test.control(), allow.missing=0.01, score=FALSE)

58 snp.rhs.tests

Arguments

formula The base model formula, with phenotype as dependent variable

family A string defining the generalized linear model family. This currently should
(partially) match one of "binomial", "Poisson", "Gaussian" or "gamma" (case-
insensitive)

link A string defining the link function for the GLM. This currently should (partially)
match one of "logit", "log", "identity" or "inverse". The default action
is to use the "canonical" link for the family selected

data The dataframe in which the base model is to be fitted

snp.data An object of class "SnpMatrix" or "XSnpMatrix" containing the SNP data

rules An object of class "ImputationRules". If supplied, the rules coded in this
object are used, together with snp.data, to calculate tests for imputed SNPs

tests Either a vector of SNP names (or numbers) for the SNPs to be tested, or a logical
vector of length equal to the number of columns in snp.data, or a list of short
numeric or character vectors defining groups of SNPs to be tested (see Details)

weights "Prior" weights in the generalized linear model

subset Array defining the subset of rows of data to use

robust If TRUE, robust tests will be carried out

uncertain If TRUE, uncertain genotypes are used and scored by their posterior expectations.
Otherwise they are treated as missing

control An object giving parameters for the IRLS algorithm fitting of the base model and
for the acceptable aliasing amongst new terms to be tested. See glm.test.control

allow.missing The maximum proportion of SNP genotype that can be missing before it be-
comes necessary to refit the base model

score Is extended score information to be returned?

Details

The tests used are asymptotic chi-squared tests based on the vector of first and second derivatives
of the log-likelihood with respect to the parameters of the additional model. The "robust" form is
a generalized score test in the sense discussed by Boos(1992). The "base" model is first fitted, and
a score test is performed for addition of one or more SNP genotypes to the model. Homozygous
SNP genotypes are coded 0 or 2 and heterozygous genotypes are coded 1. For SNPs on the X
chromosome, males are coded as homozygous females. For X SNPs, it will often be appropriate to
include sex of subject in the base model (this is not done automatically).

If a data argument is supplied, the snp.data and data objects are aligned by rowname. Otherwise
all variables in the model formulae are assumed to be stored in the same order as the columns of the
snp.data object.

Usually SNPs to be used in tests will be referenced by name. However, they can also be referenced
by number, a positive number indicating the appropriate column in the input snp.data, and a
negative number indicating (minus) a position in the rules list. They can also be referenced by
a logical selection vector of length equal to the number of columns in snp.data. Sets of tests
involving more than one SNP are referenced by a list and can use a mixture of observed and imputed

SnpMatrix-class 59

SNPs. If the tests argument is missing, single SNP tests are carried out; if a rules is given, all
imputed SNP tests are calculated, otherwise all SNPs in the input snp.data matrix are tested. But
note that, for single SNP tests, the function single.snp.tests will often achieve the same result
much faster.

Value

An object of class GlmTests or GlmTestsScore depending on whether score is set to FALSE or
TRUE in the call.

Note

A factor (or several factors) may be included as arguments to the function strata(...) in the
formula. This fits all interactions of the factors so included, but leads to faster computation than
fitting these in the normal way. Additionally, a cluster(...) call may be included in the base
model formula. This identifies clusters of potentially correlated observations (e.g. for members of
the same family); in this case, an appropriate robust estimate of the variance of the score test is
used.

Author(s)

David Clayton <dc208@cam.ac.uk>

References

Boos, Dennis D. (1992) On generalized score tests. The American Statistician, 46:327-333.

See Also

GlmTests-class, GlmTestsScore-class, single.snp.tests, snp.lhs.tests, impute.snps,
ImputationRules-class, SnpMatrix-class, XSnpMatrix-class

Examples

data(testdata)
slt3 <- snp.rhs.tests(cc~strata(region), family="binomial",

data=subject.data, snp.data= Autosomes, tests=1:10)
print(slt3)

SnpMatrix-class Class "SnpMatrix"

Description

This class defines objects holding large arrays of single nucleotide polymorphism (SNP) genotypes
generated using array technologies.

60 SnpMatrix-class

Objects from the Class

Objects can be created by calls of the form new("SnpMatrix", x) where x is a matrix with storage
mode "raw". Chips (usually corresponding to samples or subjects) define rows of the matrix while
polymorphisms (loci) define columns. Rows and columns will usually have names which can be
used to link the data to further data concerning samples and SNPs

Slots

.Data: Object of class "matrix" and storage mode raw Internally, missing data are coded 0 and
SNP genotypes are coded 1, 2 or 3. Imputed values may not be known exactly. Such uncertain
calls are grouped by probability and represented by codes 4 to 253

Extends

Class "matrix", from data part. Class "structure", by class "matrix". Class "array", by class
"matrix". Class "vector", by class "matrix", with explicit coerce. Class "vector", by class
"matrix", with explicit coerce.

Methods

[] signature(x = "SnpMatrix", i = "ANY", j = "ANY",drop = "missing"): subset operations

cbind2 signature(x = "SnpMatrix", y = "SnpMatrix"): S4 generic function to provide cbind()
for two or more matrices together by column. Row names must match and column names
must not coincide. If the matrices are of the derived class XSnpMatrix-class, the diploid
slot values must also agree

coerce signature(from = "SnpMatrix", to = "numeric"): map to numeric values 0, 1, 2 or, for
uncertain assignments, to the posterior expectation of the 0, 1, 2 code

coerce signature(from = "SnpMatrix", to = "character"): map to codes "A/A", "A/B", "B/B",
""

coerce signature(from = "matrix", to = "SnpMatrix"): maps numeric matrix (coded 0, 1, 2
or NA) to a SnpMatrix

coerce signature(from = "SnpMatrix", to = "XSnpMatrix"): maps a SnpMatrix to an XSnpMa-
trix. Ploidy is inferred from the genotype data since haploid genotypes should always be coded
as homozygous. After inferring ploidy, heterozygous calls for haploid genotypes are set to NA

is.na signature(x = "SnpMatrix"): returns a logical matrix indicating whether each element is
NA

rbind2 signature(x = "SnpMatrix", y = "snp.matrix"): S4 generic function to provide rbind()
for two or more matrices by row. Column names must match and duplicated row names
prompt warnings

show signature(object = "SnpMatrix"): shows the size of the matrix (since most objects will
be too large to show in full)

summary signature(object = "SnpMatrix"): returns summaries of the data frames returned by
row.summary and col.summary

is.na signature(x = "SnpMatrix"): returns a logical matrix of missing call indicators

switch.alleles signature(x = "SnpMatrix", snps ="ANY"): Recode specified columns of of the
matrix to reflect allele switches

switch.alleles 61

Note

This class requires at least version 2.3 of R

Author(s)

David Clayton <dc208@cam.ac.uk>

See Also

XSnpMatrix-class

Examples

data(testdata)
summary(Autosomes)

Just making it up - 3-10 will be made into NA during conversion
snps.class<-new("SnpMatrix", matrix(1:10))
snps.class
if(!isS4(snps.class)) stop("constructor is not working")

pretend.X <- as(Autosomes, 'XSnpMatrix')
if(!isS4(pretend.X)) stop("coersion to derived class is not S4")
if(class(pretend.X) != 'XSnpMatrix') stop("coersion to derived class is not working")

pretend.A <- as(Xchromosome, 'SnpMatrix')
if(!isS4(pretend.A)) stop("coersion to base class is not S4")
if(class(pretend.A) != 'SnpMatrix') stop("coersion to base class is not working")

display the first 10 snps of the first 10 samples
print(as(Autosomes[1:10,1:10], 'character'))

convert the empty strings (no-calls) explicitly to "NC" before
writing to an (anonymous and temporary) csv file
csvfile <- tempfile()
write.csv(file=csvfile, gsub ('^$', 'NC',

as(Autosomes[1:10,1:10], 'character')
), quote=FALSE)

unlink(csvfile)

switch.alleles Switch alleles in columns of a SnpMatrix or in test results

Description

This is a generic function which can be applied to objects of class "SnpMatrix" or "XSnpMatrix"
(which hold SNP genotype data), or to objects of class "SingleSnpTestsScore" or "GlmTests"
(which hold association test results). In the former case, specified SNPs can be recoded as if the al-
leles were switched (so that AA genotypes become BB and vice-versa while AB remain unchanged).
In the latter case, test results are modified as if alleles had been switched.

62 tdt.snp

Usage

switch.alleles(x, snps)

Arguments

x The input object, of class "SnpMatrix", "XSnpMatrix", "SingleSnpTestsScore",
or "GlmTests"

snps A vector of type integer, character or logical specifying the SNP to have its
alleles switched

Value

An object of the same class as the input object

Note

Switching alleles for SNPs has no effect on test results. These functions are required when carrying
out meta-analysis, bringing together several sets of results. It is then important that alleles line up
in the datasets to be combined. It is often more convenient (and faster) to apply this process to the
test result objects rather than to the genotype data themselves.

Author(s)

David Clayton <dc208@cam.ac.uk>

See Also

SnpMatrix-class, XSnpMatrix-class, SingleSnpTests-class, GlmTests-class

Examples

data(testdata)
which <- c("173774", "173811")
Asw <- switch.alleles(Autosomes, which)
col.summary(Autosomes[,which])
col.summary(Asw[,which])

tdt.snp 1-df and 2-df tests for genetic associations with SNPs (or imputed
SNPs) in family data

Description

Given large-scale SNP data for families comprising both parents and one or more affected offspring,
this function computes 1 df tests (the TDT test) and a 2 df test based on observed and expected
transmissions of genotypes. Tests based on imputation rules can also be carried out.

tdt.snp 63

Usage

tdt.snp(ped, id, father, mother, affected, data = sys.parent(), snp.data,
rules = NULL, snp.subset, check.inheritance = TRUE, robust = FALSE,
uncertain = FALSE, score = FALSE)

Arguments

ped Pedigree identifiers

id Subject identifiers

father Identifiers for subjects’ fathers

mother Identifiers for subjects’ mothers

affected Disease status (TRUE if affected, FALSE otherwise)

data A data frame in which to evaluate the previous five arguments

snp.data An object of class "SnpMatrix" containing the SNP genotypes to be tested

rules An object of class "ImputationRules". If supplied, the rules coded in this
object are used, together with snp.data, to calculate tests for imputed SNPs

snp.subset A vector describing the subset of SNPs to be considered. Default action is to
test all SNPs in snp.data or, in imputation mode, as specified by rules

check.inheritance

If TRUE, each affected offspring/parent trio is tested for Mendelian inheritance
and excluded if the test fails. If FALSE, misinheriting trios are used but the
"robust" variance option is forced

robust If TRUE, forces the robust (Huber-White) variance option (with ped determin-
ing independent "clusters")

uncertain If TRUE, uncertain genotypes are handed by replacing score contributions by
their posterior expectations. Otherwise these are treated as missing. Setting this
option authomatically invokes use of robust variance estimates

score If TRUE, the output object will contain, for each SNP, the score vector and its
variance-covariance matrix

Details

Formally, the test statistics are score tests for the "conditioning on parental genotype" (CPG) like-
lihood. Parametrization of associations is the same as for the population-based tests calculated by
single.snp.tests so that results from family-based and population-based studies can be com-
bined using pool.

When the function is used to calculate tests for imputed SNPs, the test is still an approximate score
test. The current version does not use the family relationships in the imputation. With this option,
the robust variance estimate is forced.

The first five arguments are usually derived from a "pedfile". If a data frame is supplied for the data
argument, the first five arguments will be evaluated in this frame. Otherwise they will be evaluated
in the calling environment. If the arguments are missing, they will be assumed to be in their usual
positions in the pedfile data frame i.e. in columns one to four for the identifiers and column six for
disease status (with affected coded 2). If the pedfile data are obtained from a dataframe, the row

64 test.allele.switch

names of the data and snp.data files will be used to align the pedfile and SNP data. Otherwise,
these vectors will be assumed to be in the same order as the rows of snp.data.

The snp.subset argument can be a logical, integer, or character vector.

If imputed rather than observed SNPs are tested, or if check.inheritance is set to FALSE, the
"robust" variance estimate is used regardless of the value supplied for the robust argument.

Value

An object of class "SingleSnpTests". If score=TRUE, the output object will be of the extended
class "SingleSnpTestsScore" containing additional slots holding the score statistics and their
variances (and covariances). This allows meta-analysis using the pool function.

Note

When the snps are on the X chromosome (i.e. when the snp.data argument is of class "XSnpMatrix"),
the tests are constructed in the same way as was described by Clayton (2008) for population-based
association tests i.e. assuming that genotype relative risks for males mirror thos of homozygous
females

Author(s)

David Clayton <dc208@cam.ac.uk>

References

Clayton (2008) Testing for association on the X chromosome Biostatistics, 9:593-600.)

See Also

single.snp.tests, impute.snps, pool, ImputationRules-class, SingleSnpTests-class, SingleSnpTestsScore-class

Examples

data(families)
tdt.snp(data=pedData, snp.data=genotypes)

test.allele.switch Test for switch of alleles between two collections

Description

When testing genotype data derived from different platforms or scoring algorithms a common prob-
lem is switching of alleles. This function provides a diagnostic for this. Input can either be two
objects of class "SnpMatrix" to be examined, column by column, for allele switching, or a single
"SnpMatrix" object together with an indicator vector giving group membership for its rows.

test.allele.switch 65

Usage

test.allele.switch(snps, snps2 = NULL, split = NULL, prior.df = 1)

Arguments

snps An object of class "SnpMatrix" or "XSnpMatrix"

snps2 A second object of the same class as snps

split If only one SnpMatrix object supplied, a vector with the same number of el-
ements as rows of snps. It must be capable of coercion to a factor with two
levels.

prior.df A degree of freedom parameter for the prior distribution of the allele frequency
prior.df (see Details)

Details

This function calculates a Bayes factor for the comparison of the hypothesis that the alleles have
been switched with the hypothesis that they have not been switched. This requires integration over
the posterior distribution of the allele frequency. The prior is taken as a beta distribution with both
parameters equal to prior.dfso that the prior is symmetric about 0.5. The default, prior.df=1
represents a uniform prior on (0,1).

Value

A vector containing the log (base 10) of the Bayes Factors for an allele switch.

Author(s)

David Clayton <dc208@cam.ac.uk>

See Also

SnpMatrix-class, XSnpMatrix-class

Examples

data(testdata)
#
Call with two SnpMatrix arguments
#
cc <- as.numeric(subject.data$cc)
lbf1 <- test.allele.switch(Autosomes[cc==1,], Autosomes[cc==2,])
#
Single matrix call (giving the same result)
#
lbf2 <- test.allele.switch(Autosomes, split=cc)

66 testdata

testdata Test data for the snpStats package

Description

This dataset comprises several data frames from a fictional (and unrealistically small) study. The
dataset started off as real data from a screen of non-synonymous SNPs for association with type 1
diabetes, but the original identifiers have been removed and a random case/control status has been
generated.

Usage

data(testdata)

Format

There are five data objects in the dataset:

• Autosomes: An object of class "SnpMatrix" containing genotype calls for 400 subjects at
9445 autosomal SNPs

• Xchromosome: An object of class "XSnpMatrix" containing genotype calls for 400 subjects
at 155 SNPs on the X chromosome

• Asnps: A dataframe containing information about the autosomal SNPs. Here it contains only
one variable, chromosome, indicating the chromosomes on which the SNPs are located

• Xsnps: A dataframe containing information about the X chromosome SNPs. Here it is empty
and is only included for completeness

• subject.data: A dataframe containing information about the subjects from whom each row
of SNP data was obtained. Here it contains:

– cc: Case-control status
– sex: Sex
– region: Geographical region of residence

Source

The data were obtained from the diabetes and inflammation laboratory (see http://www-gene.
cimr.cam.ac.uk)

Examples

data(testdata)
Autosomes
Xchromosome
summary(Asnps)
summary(Xsnps)
summary(subject.data)
summary(summary(Autosomes))
summary(summary(Xchromosome))

http://www-gene.cimr.cam.ac.uk
http://www-gene.cimr.cam.ac.uk

write.plink 67

write.plink Write files for analysis in the PLINK toolset

Description

Given a SnpMatrix object, together with associated subject and SNP support dataframes, this func-
tion writes .bed, .bim, and .fam files for processing in the PLINK toolset

Usage

write.plink(file.base, snp.major = TRUE, snps,
subject.data, pedigree, id, father, mother, sex, phenotype,
snp.data, chromosome, genetic.distance, position, allele.1, allele.2,
na.code = 0, human.genome=TRUE)

Arguments

file.base A character string giving the base filename. The extensions .bed, .bim, and
.fam are appended to this string to give the filenames of the three output files

snp.major Logical variable controlling whether the .bed file is in SNP-major or subject-
major order

snps The SnpMatrix or XSnpMatrix object to be written out
subject.data (Optional) A subject support dataframe. If supplied, the next six arguments

(which define the fields of the PLINK .fam file) will be evaluated in this en-
vironment, after matching row names with the row names of snps. Otherwise
they will be evaluated in the calling environment; they then must be of the right
length and in the correct order.

pedigree A pedigree (family) identifier. Default is the row names of snps.
id An identifier of an individual within family. Default is a vector of na.code.
father The within-family identifier of the subject’s father. Default is a vector of na.code.
mother The within-family identifier of the subject’s mother. Default is a vector of

na.code.
sex Sex of the individual. Default is a vector of na.code. This will be coerced to

type numeric.
phenotype The primary phenotype value. Default is a vector of na.code. This will be

coerced to type numeric.
snp.data (Optional) A SNP support dataframe. If supplied, the next five arguments (which

define the columns of the PLINK .bim file) will be evaluated in this environ-
ment, after matching row names with the column names of snps. Otherwise
they will be evaluated in the calling environment; they then must be of the right
length and in the correct order.

chromosome The chromosome on which the SNP is located. This should either be numeric,
as specified by SPLINK, or character, with "X", "Y", "XY", and "MT" for the
non-numeric values. Default is a vector of na.code, or a vector of 23’s if snps
is a XSnpMatrix.

68 write.plink

genetic.distance

The location of the SNP, expressed as a genetic distance. Default is a vector of
na.code. This will be coerced to type numeric.

position The physical location of the SNP, expressed in base pairs. Default is a vector of
na.code. This will be coerced to type numeric.

allele.1 A character vector giving the first allele. Default is a vector of "A"s.

allele.2 A character vector giving the first allele. Default is a vector of "B"s.

na.code The code to be written for NA in the .fam and .bin output files. It should be
numeric (or capable of coercion to numeric).

human.genome If TRUE, check the chromosome argument for valid values.

Details

For more details of required codings in .fam and .bim files, see the PLINK documentation.

Value

Returns NULL.

Author(s)

David Clayton <dc208@cam.ac.uk>

References

PLINK: Whole genome association analysis toolset. http://pngu.mgh.harvard.edu/~purcell/
plink/

See Also

read.plink, SnpMatrix-class, XSnpMatrix-class

Examples

data(testdata)
the use of as.numeric() below is not necessary since this is done
automatically. It just illustrates use of expressions for these arguments
Note that cc and sex are variables within the subject.data frame
This command writes files test.bed. test.fam and test.bim
write.plink(file.base="test", snps=Autosomes,

subject.data=subject.data, phenotype = as.numeric(cc), sex=as.numeric(sex),
snp.major=FALSE)

http://pngu.mgh.harvard.edu/~purcell/plink/
http://pngu.mgh.harvard.edu/~purcell/plink/

write.SnpMatrix 69

write.SnpMatrix Write a SnpMatrix object as a text file

Description

This function is closely modelled on write.table. It writes an object of class SnpMatrix as a text
file with one line for each row of the matrix. Genotpyes are written in numerical form, i.e. as 0, 1
or 2 (where 1 denotes heterozygous) or, optionally, as a pair of alleles (each coded 1 or 2).

Usage

write.SnpMatrix(x, file, as.alleles= FALSE, append = FALSE, quote = TRUE, sep = " ", eol = "\n", na = "NA", row.names = TRUE, col.names = TRUE)

Arguments

x The object to be written

file The name of the output file

as.alleles If TRUE, write each genotype as two alleles

append If TRUE, the output is appended to the designated file. Otherwise a new file is
opened

quote If TRUE, row and column names will be enclosed in quotes

sep The string separating entries within a line

eol The string terminating each line

na The string written for missing genotypes

row.names If TRUE, each row will commence with the row name

col.names If TRUE, the first line will contain all the column names

Value

A numeric vector giving the dimensions of the matrix written

Author(s)

David Clayton <dc208@cam.ac.uk>

See Also

write.table, SnpMatrix-class, XSnpMatrix-class

70 XSnpMatrix-class

XSnpMatrix-class Class "XSnpMatrix"

Description

This class extends the SnpMatrix-class to deal with SNPs on the X and Y chromosomes and
mitocondrial SNPs.

Objects from the Class

Objects can be created by calls of the form new("XSnpMatrix", x, diploid). Such objects have
an additional slot to objects of class "SnpMatrix" consisting of a logical array of the same length
as the number of rows. This array indicates whether genotypes in that row are diploid (TRUE) or
haploid (FALSE as, for example, SNPs on the X chromosome for males).

Slots

.Data: Object of class "matrix" and storage mode "raw"

diploid: Object of class "logical" indicating sex of samples

Extends

Class "SnpMatrix", directly, with explicit coerce. Class "matrix", by class "SnpMatrix". Class
"structure", by class "SnpMatrix". Class "array", by class "SnpMatrix". Class "vector",
by class "SnpMatrix", with explicit coerce. Class "vector", by class "SnpMatrix", with explicit
coerce.

Methods

[] signature(x = "XSnpMatrix", i = "ANY", j = "ANY",drop = "missing"): subset extraction

[<- signature(x = "XSnpMatrix", i = "ANY", j = "ANY", "XSnpMatrix"): subset assignment op-
eration to replace part of an object

coerce signature(from = "XSnpMatrix", to = "character"): map to codes 0, 1, 2, or NA

coerce signature(from = "SnpMatrix", to = "XSnpMatrix"): maps a SnpMatrix to an XSnpMa-
trix. Ploidy is inferred from the genotype data since haploid genotypes should always be coded
as homozygous. After inferring ploidy, heterozygous calls for haploid genotpes are set to NA

show signature(object = "XSnpMatrix"): map to codes "A/A", "A/B", "B/B", "A", "B" or ""

summary signature(object = "XSnpMatrix"): returns the distribution of ploidy, together with
summaries of the data frames returned by row.summary and col.summary

Author(s)

David Clayton <dc208@cam.ac.uk>

See Also

SnpMatrix-class

xxt 71

Examples

data(testdata)
summary(Xchromosome)

display the first 10 snps of the first 10 samples
print(as(Xchromosome[1:10,1:10],'character'))

convert the empty strings (no-calls) explicitly to "NC" before
writing to an (anonymous and temporary) csv file
csvfile <- tempfile()
write.csv(file=csvfile, gsub ('^$', 'NC',

as(Xchromosome[1:10,1:10], 'character')
), quote=FALSE)

unlink(csvfile)

xxt X.X-transpose for a standardized SnpMatrix

Description

The input SnpMatrix is first standardized by subtracting the mean (or stratum mean) from each call
and dividing by the expected standard deviation under Hardy-Weinberg equilibrium. It is then post-
multiplied by its transpose. This is a preliminary step in the computation of principal components.

Usage

xxt(snps, strata = NULL, correct.for.missing = FALSE, lower.only = FALSE,
uncertain = FALSE)

Arguments

snps The input matrix, of type "SnpMatrix"

strata A factor (or an object which can be coerced into a factor) with length equal
to the number of rows of snps defining stratum membership

correct.for.missing

If TRUE, an attempt is made to correct for the effect of missing data by use of
inverse probability weights. Otherwise, missing observations are scored zero in
the standardized matrix

lower.only If TRUE, only the lower triangle of the result is returned and the upper triangle is
filled with zeros. Otherwise, the complete symmetric matrix is returned

uncertain If TRUE, uncertain genotypes are replaced by posterior expectations. Otherwise
these are treated as missing values

72 xxt

Details

This computation forms the first step of the calculation of principal components for genome-wide
SNP data. As pointed out by Price et al. (2006), when the data matrix has more rows than columns
it is most efficient to calculate the eigenvectors of X .X -transpose, where X is a SnpMatrix whose
columns have been standardized to zero mean and unit variance. For autosomes, the genotypes
are given codes 0, 1 or 2 after subtraction of the mean, 2p , are divided by the standard deviation
sqrt(2p(1-p)) (p is the estimated allele frequency). For SNPs on the X chromosome in male sub-
jects, genotypes are coded 0 or 2. Then the mean is still 2p , but the standard deviation is 2sqrt(p(1-
p)). If the strata is supplied, a stratum-specific estimate value for p is used for standardization.

Missing observations present some difficulty. Price et al. (2006) recommended replacing missing
observations by their means, this being equivalent to replacement by zeros in the standardized
matrix. However this results in a biased estimate of the complete data result. Optionally this
bias can be corrected by inverse probability weighting. We assume that the probability that any
one call is missing is small, and can be predicted by a multiplicative model with row (subject) and
column (locus) effects. The estimated probability of a missing value in a given row and column is
then given by m = RC/T , where R is the row total number of no-calls, C is the column total of
no-calls, and T is the overall total number of no-calls. Non-missing contributions to X .X -transpose
are then weighted by w = 1/(1 − m) for contributions to the diagonal elements, and products of
the relevant pairs of weights for contributions to off–diagonal elements.

Value

A square matrix containing either the complete X.X-transpose matrix, or just its lower triangle

Warning

The correction for missing observations can result in an output matrix which is not positive semi-
definite. This should not matter in the application for which it is intended

Note

In genome-wide studies, the SNP data will usually be held as a series of objects (of class "SnpMatrix"
or"XSnpMatrix"), one per chromosome. Note that the X .X -transpose matrices produced by apply-
ing the xxt function to each object in turn can be added to yield the genome-wide result.

If the matrix is converted to a correlation matrix by pre- and post-multiplying by the sqrt of the
inverse of its diagonal, then this is an unbiased estimate of twice the kinship matrix.

Author(s)

David Clayton <dc208@cam.ac.uk>

References

Price et al. (2006) Principal components analysis corrects for stratification in genome-wide associ-
ation studies. Nature Genetics, 38:904-9

xxt 73

Examples

make a SnpMatrix with a small number of rows
data(testdata)
small <- Autosomes[1:100,]
Calculate the X.X-transpose matrix
xx <- xxt(small, correct.for.missing=TRUE)
Calculate the principal components
pc <- eigen(xx, symmetric=TRUE)$vectors

Index

∗ IO
read.beagle, 29
read.impute, 30
read.long, 31
read.mach, 33
read.pedfile, 34
read.plink, 35
read.snps.long, 37
write.plink, 67
write.SnpMatrix, 69

∗ array
snp.cor, 46
snp.pre.multiply, 54
xxt, 71

∗ classes
convert.snpMatrix, 5
GlmEstimates-class, 11
GlmTests-class, 12
ImputationRules-class, 16
SingleSnpTests-class, 44
SnpMatrix-class, 59
XSnpMatrix-class, 70

∗ cluster
ibsCount, 13
ibsDist, 14

∗ datasets
example-new, 5
families, 6
for.exercise, 8
ld.example, 19
sample.ped.gz, 41
testdata, 66

∗ file
read.beagle, 29
read.impute, 30
read.long, 31
read.mach, 33
read.pedfile, 34
read.plink, 35

read.snps.long, 37
write.plink, 67
write.SnpMatrix, 69

∗ hplot
plotUncertainty, 23
qq.chisq, 26

∗ htest
mvtests, 22
pool, 24
pool2, 25
single.snp.tests, 42
snp.lhs.estimates, 50
snp.lhs.tests, 52
snp.rhs.estimates, 55
snp.rhs.tests, 57
tdt.snp, 62

∗ manip
imputation.maf, 15
misinherits, 21
read.long, 31
read.pedfile, 34
read.plink, 35
read.snps.long, 37
write.plink, 67
write.SnpMatrix, 69

∗ misc
ld, 18

∗ models
filter.rules, 7
impute.snps, 17
snp.imputation, 48

∗ multivariate
snp.cor, 46
snp.pre.multiply, 54
xxt, 71

∗ package
snpStats-package, 3

∗ programming
mean2g, 20

74

INDEX 75

∗ regression
filter.rules, 7
impute.snps, 17
snp.imputation, 48

∗ univar
Fst, 9

∗ utilities
chi.squared, 3
glm.test.control, 10
random.snps, 28
read.long, 31
read.pedfile, 34
read.plink, 35
read.snps.long, 37
row.summary, 39
sm.compare, 45
switch.alleles, 61
test.allele.switch, 64
write.plink, 67
write.SnpMatrix, 69

[,GlmEstimates,ANY,missing,missing-method
(GlmEstimates-class), 11

[,GlmTests,ANY,missing,missing-method
(GlmTests-class), 12

[,GlmTestsScore,ANY,missing,missing-method
(GlmTests-class), 12

[,ImputationRules,ANY,missing,missing-method
(ImputationRules-class), 16

[,SingleSnpTests,ANY,missing,missing-method
(SingleSnpTests-class), 44

[,SingleSnpTestsScore,ANY,missing,missing-method
(SingleSnpTests-class), 44

[,SnpMatrix,ANY,ANY,ANY-method
(SnpMatrix-class), 59

[,XSnpMatrix,ANY,ANY,ANY-method
(XSnpMatrix-class), 70

[<-,XSnpMatrix,ANY,ANY,XSnpMatrix-method
(XSnpMatrix-class), 70

Asnps (testdata), 66
Autosomes (testdata), 66

can.impute (imputation.maf), 15
cbind,SnpMatrix-method

(SnpMatrix-class), 59
cbind2,SnpMatrix,SnpMatrix-method

(SnpMatrix-class), 59
ceph.1mb (ld.example), 19
chi.squared, 3

chi.squared,GlmTests,missing-method
(GlmTests-class), 12

chi.squared,SingleSnpTests,numeric-method
(SingleSnpTests-class), 44

coerce,GlmEstimates,GlmTests-method
(GlmEstimates-class), 11

coerce,GlmTests,data.frame-method
(GlmTests-class), 12

coerce,matrix,SnpMatrix-method
(SnpMatrix-class), 59

coerce,SingleSnpTests,data.frame-method
(SingleSnpTests-class), 44

coerce,SnpMatrix,character-method
(SnpMatrix-class), 59

coerce,SnpMatrix,numeric-method
(SnpMatrix-class), 59

coerce,SnpMatrix,XSnpMatrix-method
(XSnpMatrix-class), 70

coerce,XSnpMatrix,character-method
(XSnpMatrix-class), 70

col.summary, 60, 70
col.summary (row.summary), 39
convert.snpMatrix, 5
cov, 48

deg.freedom (chi.squared), 3
deg.freedom,GlmTests-method

(GlmTests-class), 12
dist, 14, 15

effect.sign (chi.squared), 3
effect.sign,GlmTests,logical-method

(GlmTests-class), 12
effect.sign,SingleSnpTestsScore,missing-method

(SingleSnpTests-class), 44
effective.sample.size (chi.squared), 3
effective.sample.size,SingleSnpTests-method

(SingleSnpTests-class), 44
eigen, 47
example-new, 5

families, 6
filter.rules, 7
for.exercise, 8
Fst, 9

g2post (mean2g), 20
genotypes (families), 6
glm.test.control, 10, 50, 52, 53, 56, 58

76 INDEX

GlmEstimates, 51, 56
GlmEstimates-class, 11
GlmTests, 59
GlmTests-class, 12
GlmTests.score, 23, 53
GlmTestsScore, 59
GlmTestsScore-class (GlmTests-class), 12

ibsCount, 13, 14, 15
ibsDist, 14, 14
imputation.maf, 15, 49
imputation.nsnp (imputation.maf), 15
imputation.r2, 49
imputation.r2 (imputation.maf), 15
ImputationRules-class, 16
impute.snps, 16, 17, 43, 59, 64
initialize,SnpMatrix-method

(SnpMatrix-class), 59
initialize,XSnpMatrix-method

(XSnpMatrix-class), 70
is.na,SnpMatrix-method

(SnpMatrix-class), 59

ld, 18
ld.example, 19
list, 11

mach1.out.mlprob.gz (sample.ped.gz), 41
Matrix, 18
mean2g, 20
misinherits, 21
mvtests, 22

names,GlmTests-method (GlmTests-class),
12

names,SingleSnpTests-method
(SingleSnpTests-class), 44

p.value (chi.squared), 3
p.value,GlmTests,missing-method

(GlmTests-class), 12
p.value,SingleSnpTests,numeric-method

(SingleSnpTests-class), 44
pedData (families), 6
plot,ImputationRules,missing-method

(ImputationRules-class), 16
plotUncertainty, 23
pool, 24, 25, 43, 45, 63, 64
pool2, 24, 25

pool2,GlmTestsScore,GlmTestsScore,logical-method
(GlmTests-class), 12

pool2,SingleSnpTestsScore,SingleSnpTestsScore,logical-method
(SingleSnpTests-class), 44

post2g (mean2g), 20
pp, 26

qq.chisq, 26

random.snps, 28
rbind,SnpMatrix-method

(SnpMatrix-class), 59
rbind2,SnpMatrix,SnpMatrix-method

(SnpMatrix-class), 59
read.beagle, 29
read.impute, 30
read.long, 31
read.mach, 33
read.pedfile, 34
read.plink, 35, 39, 68
read.snps.long, 37
row.summary, 39, 60, 70

sample-long-alleles.gz (sample.ped.gz),
41

sample-long.gz (sample.ped.gz), 41
sample.bed (sample.ped.gz), 41
sample.bim (sample.ped.gz), 41
sample.fam (sample.ped.gz), 41
sample.info (sample.ped.gz), 41
sample.ped.gz, 41
sample.size (chi.squared), 3
sample.size,GlmTests-method

(GlmTests-class), 12
sample.size,SingleSnpTests-method

(SingleSnpTests-class), 44
sapply, 4
show,GlmEstimates-method

(GlmEstimates-class), 11
show,GlmTests-method (GlmTests-class),

12
show,ImputationRules-method

(ImputationRules-class), 16
show,SingleSnpTests-method

(SingleSnpTests-class), 44
show,SnpMatrix-method

(SnpMatrix-class), 59
show,XSnpMatrix-method

(XSnpMatrix-class), 70

INDEX 77

single.snp.tests, 4, 16, 24, 25, 28, 42, 44,
45, 53, 59, 63, 64

SingleSnpTests, 13
SingleSnpTests-class, 44
SingleSnpTests.score, 24, 25
SingleSnpTestsScore, 13
SingleSnpTestsScore-class

(SingleSnpTests-class), 44
sm.compare, 45
snp.cor, 46
snp.imputation, 7, 15–17, 48
snp.lhs.estimates, 11, 50, 57
snp.lhs.tests, 4, 10–13, 24, 25, 28, 43, 51,

52, 59
snp.matrix, 6
snp.post.multiply (snp.pre.multiply), 54
snp.pre.multiply, 54
snp.rhs.estimates, 11, 55
snp.rhs.tests, 4, 10–13, 24, 25, 28, 43, 53,

57, 57
snp.support (for.exercise), 8
snp.tests.glm, 23–25, 53
SnpMatrix-class, 59
snps.10 (for.exercise), 8
snpStats (snpStats-package), 3
snpStats-package, 3
subject.data (testdata), 66
subject.support (for.exercise), 8
summary,GlmTests-method

(GlmTests-class), 12
summary,ImputationRules-method

(ImputationRules-class), 16
summary,SingleSnpTests-method

(SingleSnpTests-class), 44
summary,SnpMatrix-method

(SnpMatrix-class), 59
summary,XSnpMatrix-method

(XSnpMatrix-class), 70
support.ld (ld.example), 19
switch.alleles, 61
switch.alleles,GlmTestsScore,character-method

(GlmTests-class), 12
switch.alleles,SingleSnpTestsScore,ANY-method

(SingleSnpTests-class), 44
switch.alleles,SnpMatrix,ANY-method

(SnpMatrix-class), 59

tdt.snp, 22, 62
test.allele.switch, 64

testdata, 66

vector, 11

write.plink, 37, 67
write.SnpMatrix, 69
write.table, 69

Xchromosome (testdata), 66
XSnpMatrix-class, 70
Xsnps (testdata), 66
xxt, 47, 54, 71

yri.1mb (ld.example), 19

	snpStats-package
	chi.squared
	convert.snpMatrix
	example-new
	families
	filter.rules
	for.exercise
	Fst
	glm.test.control
	GlmEstimates-class
	GlmTests-class
	ibsCount
	ibsDist
	imputation.maf
	ImputationRules-class
	impute.snps
	ld
	ld.example
	mean2g
	misinherits
	mvtests
	plotUncertainty
	pool
	pool2
	pp
	qq.chisq
	random.snps
	read.beagle
	read.impute
	read.long
	read.mach
	read.pedfile
	read.plink
	read.snps.long
	row.summary
	sample.ped.gz
	single.snp.tests
	SingleSnpTests-class
	sm.compare
	snp.cor
	snp.imputation
	snp.lhs.estimates
	snp.lhs.tests
	snp.pre.multiply
	snp.rhs.estimates
	snp.rhs.tests
	SnpMatrix-class
	switch.alleles
	tdt.snp
	test.allele.switch
	testdata
	write.plink
	write.SnpMatrix
	XSnpMatrix-class
	xxt
	Index

