--- title: Deploying custom panels in the `iSEE` interface author: - name: Federico Marini affiliation: - &id1 Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), Mainz - Center for Thrombosis and Hemostasis (CTH), Mainz email: marinif@uni-mainz.de - name: Aaron Lun affiliation: - &id2 Cancer Research UK Cambridge Institute, University of Cambridge email: infinite.monkeys.with.keyboards@gmail.com - name: Charlotte Soneson affiliation: - &id3 Institute of Molecular Life Sciences, University of Zurich - SIB Swiss Institute of Bioinformatics email: charlottesoneson@gmail.com - name: Kevin Rue-Albrecht affiliation: - &id4 Kennedy Institute of Rheumatology, University of Oxford, Headington, Oxford OX3 7FY, UK. email: kevin.rue-albrecht@kennedy.ox.ac.uk date: "`r BiocStyle::doc_date()`" package: "`r BiocStyle::pkg_ver('iSEE')`" output: BiocStyle::html_document: toc_float: true vignette: > %\VignetteIndexEntry{4. Deploying custom panels} %\VignetteEncoding{UTF-8} %\VignettePackage{iSEE} %\VignetteKeywords{GeneExpression, RNASeq, Sequencing, Visualization, QualityControl, GUI} %\VignetteEngine{knitr::rmarkdown} editor_options: chunk_output_type: console bibliography: iSEE.bib --- **Compiled date**: `r Sys.Date()` **Last edited**: 2018-03-08 **License**: `r packageDescription("iSEE")[["License"]]` ```{r setup, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>", error = FALSE, warning = FALSE, message = FALSE ) stopifnot(requireNamespace("htmltools")) htmltools::tagList(rmarkdown::html_dependency_font_awesome()) sce <- readRDS('sce.rds') ``` # Background Users can define their own plots or tables to include in the `iSEE` interface [@kra2018iSEE]. These custom panels are intended to receive a subset or rows or columns from other transmitting panels in the interface. The values in the custom panels will be recomputed "on the fly" by user-defined functions with the transmitted subset. This provides a flexible and convenient approach for light-weight interactive analysis during data exploration. For example, selection of a particular subset of samples can be transmitted to a custom plot panel that performs dimensionality reduction on that subset. Alternatively, the subset can be transmitted to a custom table that performs a differential expression analysis between that subset and all other samples. # Defining custom functions ## Minimum requirements Recalculations in custom panels are performed using user-defined functions that are supplied to the `iSEE()` call. The only requirements are that the function has to accept: - A `SummarizedExperiment` object or its derivatives as the first argument. - A vector of row names as the second argument, specifying the rows that are selected in the transmitting _row-panel_ panel. - A vector of column names as the third argument, specifying the columns that are selected in the transmitting _column-based_ panel. In addition: - For _custom plot panels_, the function is expected to produce a `ggplot` object. - For _custom table panels_, the function is expected to produce a `data.frame`. ## Example of custom plot panel To demonstrate the use of _custom plot panels_, we define an example function `CUSTOM_PCA` below. This takes a subset of features and cells in a `SingleCellExperiment` object, performs a principal components analysis (PCA) using that subset with `runPCA`, and creates a plot of the first two principal components with `plotPCA` [@mccarthy2017scater]. ```{r CUSTOM_PCA} library(scater) CUSTOM_PCA <- function(se, rows, columns, colour_by=NULL, scale_features=TRUE) { if (!is.null(columns)) { kept <- se[, columns] } else { return( ggplot() + theme_void() + geom_text( aes(x, y, label=label), data.frame(x=0, y=0, label="No column data selected."), size=5) ) } scale_features <- as.logical(scale_features) kept <- runPCA(kept, feature_set=rows, scale_features=scale_features) plotPCA(kept, colour_by=colour_by) } ``` Note that `rows` and `columns` may be `NULL` if no selection was made in the respective transmitting panels. How these should be treated is up to the user-defined function. In the `CUSTOM_PCA` example above, an empty _ggplot_ is returned if there is no selection on the columns, while the default `runPCA` behaviour is used if `feature_set=NULL`. ## Example of custom table panel To demonstrate the use of _custom table panels_, we define an example function `CUSTOM_SUMMARY` below. This takes a subset of features and cells in a `SingleCellExperiment` object, and creates data-frame that details the `mean`, `variance` and count of samples with expression above a given cut-off within the selection. ```{r CUSTOM_SUMMARY} CUSTOM_SUMMARY <- function(se, ri, ci, assay="logcounts", min_exprs=0) { if (is.null(ri)) { ri <- rownames(se) } if (is.null(ci)) { ci <- colnames(se) } assayMatrix <- assay(se, assay)[ri, ci, drop=FALSE] data.frame( Mean = rowMeans(assayMatrix), Var = rowVars(assayMatrix), Sum = rowSums(assayMatrix), n_detected = rowSums(assayMatrix > min_exprs), row.names = ri ) } ``` Note that in the `CUSTOM_SUMMARY` example above, if either `rows` or `columns` are `NULL`, all rows or columns are used, respectively. ## Additional arguments Users of custom panels can specify additional arguments via a text box that accepts multi-line inputs. This is automatically converted into named arguments before being passed to the custom function. Each line corresponds to one argument:value pair, separated by the first space (ignoring whitespace at the start of the line). For example, consider the `CUSTOM_PCA` function. If a user were to type: ``` colour_by Nanog scale_features FALSE ``` ... in the text box, this would pass `colour_by="Nanog"` and `scale_features="TRUE"` to `CUSTOM_PCA`. Note that all additional arguments are passed as character strings for the sake of security. It is the responsibility of the custom function to perform any necessary type checks and conversions (hence the `as.logical` in `CUSTOM_PCA`). Similarly, additional arguments can be passed to the `CUSTOM_SUMMARY` function above. For instance: ``` assay counts min_exprs 5 ``` ## Example use Using the `sce` object that we generated `r Biocpkg("iSEE", vignette="basic.html", label="earlier")`, we will add some fields for examining the mean-variance relationship across features: ```{r mean_log-var_log} rowData(sce)$mean_log <- rowMeans(logcounts(sce)) rowData(sce)$var_log <- apply(logcounts(sce), 1, var) ``` We will then set up an `iSEE` instance with four panels - a reduced dimension plot, a row data plot, a custom plot, and a custom table. Note how both custom panels initially receives a column selection from the reduced dimension plot and a row selection from the row data plot. We also set the initial function to the name of `CUSTOM_PCA` in `customDataFun`, and the initial arguments to the values described above. ```{r app} library(iSEE) reddim <- redDimPlotDefaults(sce, 1) rowdat <- rowDataPlotDefaults(sce, 1) rowdat$XAxis <- "Row data" rowdat$XAxisRowData <- "mean_log" rowdat$YAxis <- "var_log" cdp <- customDataPlotDefaults(sce, 1) cdp$Function <- "CUSTOM_PCA" cdp$Arguments <- "colour_by Nanog\nscale_features FALSE" cdp$ColumnSource <- "Reduced dimension plot 1" cdp$RowSource <- "Row data plot 1" cst <- customStatTableDefaults(sce, 1) cst$Function <- "CUSTOM_SUMMARY" cst$Arguments <- "assay logcounts\nmin_exprs 1" cst$ColumnSource <- "Reduced dimension plot 1" cst$RowSource <- "Row data plot 1" app <- iSEE( sce, redDimArgs=reddim, rowDataArgs=rowdat, customDataArgs=cdp, customStatArgs=cst, initialPanels=DataFrame( Name=c( "Reduced dimension plot 1", "Row data plot 1", "Custom data plot 1", "Custom statistics table 1"), Width=c(4, 4, 4, 12)), customDataFun=list(CUSTOM_PCA=CUSTOM_PCA), customStatFun=list(CUSTOM_SUMMARY=CUSTOM_SUMMARY) ) ``` # Caching for greater efficiency True R wizards can take advantage of the pass-by-reference activity of environments to cache results throughout the lifetime of the app. This can be used to avoid repeating time-consuming steps that are not affected by changes in certain parameters. For example, we could cache the output of `runPCA` to avoid repeating the PCA if only `colour_by` changes. We will demonstrate this below using a function that computes log-fold changes for the selected features in one subset of samples compared to the others. For any given column selection, we compute log-fold changes for all features and cache the results in the `caching` environment. This allows us to avoid recomputing these values if only the row selection changes. ```{r CUSTOM_LFC} caching <- new.env() CUSTOM_LFC <- function(se, rows, columns) { if (is.null(columns)) { return(data.frame(logFC=numeric(0))) } if (!identical(caching$columns, columns)) { caching$columns <- columns in.subset <- rowMeans(logcounts(sce)[,columns]) out.subset <- rowMeans(logcounts(sce)[,setdiff(colnames(sce), columns)]) caching$logFC <- setNames(in.subset - out.subset, rownames(sce)) } lfc <- caching$logFC if (!is.null(rows)) { out <- data.frame(logFC=lfc[rows], row.names=rows) } else { out <- data.frame(logFC=lfc, row.names=rownames(se)) } out } ``` We will then set up an `iSEE` instance with three panels - a reduced dimension plot, a row data plot and a custom statistics table. This is much the same as described for the custom plot panel. ```{r app2} cst <- customStatTableDefaults(sce, 1) cst$Function <- "CUSTOM_LFC" cst$ColumnSource <- "Reduced dimension plot 1" cst$RowSource <- "Row data plot 1" app2 <- iSEE(sce, redDimArgs=reddim, rowDataArgs=rowdat, customStatArgs=cst, initialPanels=DataFrame(Name=c("Reduced dimension plot 1", "Row data plot 1", "Custom statistics table 1")), customStatFun=list(CUSTOM_LFC=CUSTOM_LFC)) ``` # Session Info {.unnumbered} ```{r sessioninfo} sessionInfo() # devtools::session_info() ``` # References {.unnumbered}