### R code from vignette source 'LedPred.Rnw' ### Encoding: UTF-8 ################################################### ### code chunk number 1: LedPred.Rnw:42-44 ################################################### library(LedPred) data(crm.features) ################################################### ### code chunk number 2: LedPred.Rnw:128-145 (eval = FALSE) ################################################### ## dirPath <- system.file("extdata", package="LedPred") ## file.list <- list.files(dirPath, full.names=TRUE) ## background.freq <- file.list[grep("freq", file.list)] ## positive.regions <- file.list[grep("positive", file.list)] ## negative.regions <- file.list[grep("negative", file.list)] ## TF.matrices <- file.list[grep("tf", file.list)] ## ngs.path <- system.file("extdata/ngs", package="LedPred") ## ngs.files=list.files(ngs.path, full.names=TRUE) ## crm.features.list <- mapFeaturesToCRMs(URL = 'http://ifbprod.aitorgonzalezlab.org/map_features_to_crms.php', positive.bed=positive.regions, ## negative.bed=negative.regions, background.freqs=background.freq, ## pssm=TF.matrices, genome="dm3", ngs=ngs.files, ## crm.feature.file = "crm.features.tab", ## stderr.log.file = "stderr.log", stdout.log.file = "stdout.log") ## names(crm.features.list) ## class(crm.features.list$crm.features) ## crm.features.list$stdout.log ## crm.features.list$stderr.log ################################################### ### code chunk number 3: LedPred.Rnw:152-159 ################################################### library(GenomicRanges) vals=mcols(crm.features) cl=vals[,1] vals=vals[,-1] vals_mod=as.data.frame(apply(as.data.frame(vals), 2, function(x) x/sqrt(sum(x^2)))) vals_mod=cbind(cl, vals_mod) mcols(crm.features)=vals_mod ################################################### ### code chunk number 4: LedPred.Rnw:167-174 ################################################### cost.vector <- c(1,3,10,30) gamma.vector <- c(1,3,10,30) #c.g.obj <- mcTune(data.granges= crm.features, ranges = list(cost=cost.vector, # gamma=gamma.vector), kernel='linear', file.prefix = "test") #names(c.g.obj) # cost <- c.g.obj$best.parameters$cost # gamma <- c.g.obj$best.parameters$gamma ################################################### ### code chunk number 5: LedPred.Rnw:186-188 (eval = FALSE) ################################################### ## feature.ranking <- rankFeatures(data.granges =crm.features, cost=cost,gamma=gamma, ## kernel='linear', file.prefix = "test") ################################################### ### code chunk number 6: LedPred.Rnw:194-198 (eval = FALSE) ################################################### ## # feature.nb.obj <- tuneFeatureNb(data.granges=crm.features, ## # feature.ranking=feature.ranking, kernel='linear', cost=cost,gamma=gamma, ## # file.prefix = "test") ## # names(feature.nb.obj) ################################################### ### code chunk number 7: LedPred.Rnw:210-213 ################################################### feature.nb <- 50 #svm.model <- createModel(data.granges=crm.features, cost=cost, gamma=gamma, # feature.ranking=feature.ranking, feature.nb=feature.nb) ################################################### ### code chunk number 8: LedPred.Rnw:218-219 ################################################### #feature.weights <- as.data.frame(t(t(svm.model$coefs) %*% svm.model$SV)) ################################################### ### code chunk number 9: LedPred.Rnw:225-229 ################################################### #probs.labels.list <- evaluateModelPerformance(data.granges=crm.features, # feature.ranking=feature.ranking, feature.nb=50, # file.prefix = "test") #names(probs.labels.list[[1]]) ################################################### ### code chunk number 10: mapFeaturesToCRMs2 ################################################### dirPath <- system.file("extdata", package="LedPred") file.list <- list.files(dirPath, full.names=TRUE) background.freqs <- file.list[grep("freq", file.list)] positive.bed <- file.list[grep("prediction_small", file.list)] TF.matrices <- file.list[grep("259_matrices_lightNames", file.list)] ngs.path <- system.file("extdata/ngs", package="LedPred") ngs.files=list.files(ngs.path, full.names=TRUE) feature.nb=50 #prediction.crm.features.list <- mapFeaturesToCRMs(URL = 'http://ifbprod.aitorgonzalezlab.org/map_features_to_crms.php', #positive.bed=positive.bed, # pssm=TF.matrices, background.freqs=background.freqs, # genome='dm3', ngs=ngs.files, feature.ranking=feature.ranking, feature.nb=50, # crm.feature.file = "test_pred.crm.features.tab", # stderr.log.file = "test_pred.stderr.log", stdout.log.file = "test_pred.stdout.log") #names(prediction.crm.features.list) #prediction.crm.features <- prediction.crm.features.list$crm.features ################################################### ### code chunk number 11: LedPred.Rnw:263-265 ################################################### #pred.test <- scoreData(data.granges=prediction.crm.features, model=svm.model, # score.file="test_prediction.tab") ################################################### ### code chunk number 12: LedPred.Rnw:272-278 (eval = FALSE) ################################################### ## data(crm.features) ## cost_vector <- c(1,3,10) ## gamma_vector <- c(1,3,10) ## ledpred.list=LedPred(data.granges=crm.features, cl=1, ranges = list(cost=cost_vector, ## gamma=gamma_vector), kernel="linear", halve.above=50) ## names(ledpred.list) ################################################### ### code chunk number 13: LedPred.Rnw:285-286 ################################################### sessionInfo()