## ----warning=F, message=F--------------------------------------------------
library("ggplot2")
library("dplyr")
library("tidyr")
library("gridExtra")
library("cowplot")
library("wesanderson")

## ----warning=F-------------------------------------------------------------
falt1 <- function(t){
    1-pnorm(qnorm(1-t)-mu1)
  }

  lfdr1 <- function(t){
    pi10/(pi10 + (1-pi10)*falt1_density(t))
  }
  falt1_density <- function(t){
      dnorm(qnorm(1-t)-mu1)/dnorm(qnorm(1-t))
  }

#http://stackoverflow.com/questions/10081479/solving-for-the-inverse-of-a-function-in-r
inverse = function (f, lower = -100, upper = 100) {
   function (y) uniroot((function (x) f(x) - y), lower = lower, upper = upper)[1]$roo
}

sim_pars <- function(eff_size, pi0){
  distrib <- function(t) pi0*t + (1-pi0)*(1-pnorm(qnorm(1-t)-eff_size))
  alt_density <-   function(t) dnorm(qnorm(1-t)-eff_size)/dnorm(qnorm(1-t))
  density <- function(t) pi0 + (1-pi0)*alt_density(t)
  tdr <- function(t)  1- pi0/density(t)
  inverse_f <- function(y) uniroot((function (x) density(x) - y), lower = 0.001, upper = 0.999)[1]$root
  tdr_density <- function(t) pi0*(inverse_f(pi0/(1-t)+0.001) - inverse_f(pi0/(1-t)-0.001))/0.002
  return(list(pi0=pi0,distrib=distrib, alt_density=alt_density,density=density, tdr=tdr, inverse_f=inverse_f,
            tdr_density=tdr_density  ))
}


## ----warning=F-------------------------------------------------------------
plot_tdr <- function(x,pi0,xthreshold=0.05){
  eff_size <- x
  pars <- sim_pars(x,pi0)
  df <- data.frame(t=seq(0.001,1, length=1000))
  df <- mutate(df, f1 = pars$alt_density(t), f=pars$density(t), tdr = pars$tdr(t))
  plot_pv <- ggplot(df, aes(x=t, y=f)) + 
                     geom_line()  + 
                     ylim(c(0,4)) + 
                     geom_vline(xintercept=xthreshold, col="blue") + 
                     geom_hline(yintercept=pars$pi0,col="red") +
                     #geom_hline(yintercept=pars$density(xthreshold), linetype=2)+
                     ylab("density")+
                     xlab("p-value")+
                     scale_x_continuous(expand = c(0, 0)) 
  
  plot_pv_vs_tdr <- ggplot(df, aes(x=t, y= tdr)) + 
                    geom_line() +
                    ylab("tdr")+
                    xlab("p-value")+
                    scale_x_continuous(expand = c(0, 0)) 
  
  # now also generate empirical histogram plots
  a = sim_pars(eff_size,pi0)
  m=100000
  H <- rbinom(m, 1, 1-pi0)
  X <- rnorm(m) + eff_size*H
  PV <- 1 - pnorm(X)
  TDR <- a$tdr(PV)
  
  sim_df <- data.frame(pvalue=PV, tdr=TDR)
  
  hist_pv <- ggplot(sim_df, aes(x=pvalue))
  grid.arrange(plot_pv, plot_pv_vs_tdr, ncol=1)
  
  pv_hist <- ggplot(sim_df, aes(x=pvalue)) + geom_histogram(aes(y = ..density..),binwidth=0.036, colour = "darkgreen", fill = "white") + xlab("p-value")
  tdr_hist <- ggplot(sim_df, aes(x=tdr)) + geom_histogram(aes(y = ..density..),binwidth=0.036, colour = "darkgreen", fill = "white") + xlab("tdr")
  list(plot_pv=plot_pv,  plot_pv_vs_tdr=plot_pv_vs_tdr, pv_hist=pv_hist, tdr_hist=tdr_hist)
}

## ----fig.keep="none", warning=F--------------------------------------------
myplots <- c(plot_tdr(3.5, 0.6), plot_tdr(3.5,0.85), plot_tdr(1.5,0.6))
myplots <- myplots[c(1,5,9) + rep(0:3,each=3)]
myplots <- c(myplots, list(labels = letters[1:12]), list(ncol=3, align="hv"))

## ----warning=F, fig.width=10, fig.height=15--------------------------------
do.call(plot_grid,myplots)

## ----eval=F----------------------------------------------------------------
#  pdf("pvalue_vs_tdr_explanation.pdf", width=10, height=15)
#  do.call(plot_grid,myplots)
#  dev.off()

## ----warning=F-------------------------------------------------------------

df <- data.frame(t=seq(0.00001,1, length=1000))
x <- 2.5
pi0 <- 0.8
eff_size <- x
pars <- sim_pars(x,pi0)
df1 <- mutate(df, f1 = pars$alt_density(t), CDF=pars$distrib(t), f=pars$density(t), tdr = pars$tdr(t), test = "1")
  
x <- 1.5
pi0 <- 0.9
eff_size <- x
pars <- sim_pars(x,pi0)
df2 <- mutate(df, f1 = pars$alt_density(t), CDF=pars$distrib(t), f=pars$density(t), tdr = pars$tdr(t), test = "2")

df <- rbind(df1,df2)
  
plot_tdr_inversed1 <- ggplot(df, aes(x=tdr, y= t,color=test)) + 
                    geom_line() +
                    xlab("tdr")+
                    ylab("p-value")+
                    scale_x_continuous(expand = c(0, 0)) +
                    scale_colour_manual(values =wes_palette("Chevalier1")[c(1,4)], name='',
                                        labels = expression(H , tilde(H)))


plot_density1 <- ggplot(df, aes(x=t, y= f,color=test)) + 
                    geom_line() +
                    xlab("p-value")+
                    ylab("density")+
                    scale_x_continuous(expand = c(0, 0)) +
                    ylim(0,4) +
                    scale_colour_manual(values =wes_palette("Chevalier1")[c(1,4)], name='',labels = expression(H , tilde(H)))


plot_cdf1 <- ggplot(df, aes(x=t, y= CDF,color=test)) + 
                    geom_line() +
                    xlab("p-value")+
                    ylab("CDF")+
                    scale_x_continuous(expand = c(0, 0)) +
                    scale_colour_manual(values =wes_palette("Chevalier1")[c(1,4)], name='',labels = expression(H , tilde(H)))


## ----warning=F-------------------------------------------------------------
df <- data.frame(t=seq(0.00001,1, length=1000))
x <- 2.5
pi0 <- 0.8
eff_size <- x
pars <- sim_pars(x,pi0)
df1 <- mutate(df, f1 = pars$alt_density(t), CDF=pars$distrib(t), f=pars$density(t), tdr = pars$tdr(t), test = "1")
  
x <- 2.5
pi0 <- 0.9
eff_size <- x
pars <- sim_pars(x,pi0)
df2 <- mutate(df, f1 = pars$alt_density(t), CDF=pars$distrib(t), f=pars$density(t), tdr = pars$tdr(t), test = "2")
df <- rbind(df1,df2)
  
plot_tdr_inversed <- ggplot(df, aes(x=tdr, y= t,color=test)) + 
                    geom_line() +
                    xlab("tdr")+
                    ylab("p-value")+
                    expand_limits(x = c(0,1),y=0)  +
                    scale_x_continuous(expand=c(0,0),breaks=c(0, 0.25,0.5, 0.75,1),
                                        labels= c("0","0.25","0.5","0.75","1"))   +  
                    scale_y_continuous(expand=c(0,0),breaks=c(0, 0.25,0.5, 0.75,1),
                                       labels= c("0","0.25","0.5","0.75","1"))   +  
                    scale_colour_manual(values =wes_palette("Chevalier1")[c(1,4)], name='',
                                          labels = expression(H[1] , H[2]))


plot_density <- ggplot(df, aes(x=t, y= f1,color=test)) + 
                    geom_line() +
                    xlab("p-value")+
                    ylab("alt")+
                    scale_x_continuous(expand = c(0, 0)) +
                    ylim(0,4) +
                    scale_colour_manual(values =wes_palette("Chevalier1")[c(1,4)], name='',
                                        labels = expression(H , tilde(H)))


plot_cdf <- ggplot(df, aes(x=t, y= CDF,color=test)) + 
                    geom_line() +
                    xlab("p-value")+
                    ylab("CDF")+
                    scale_x_continuous(expand = c(0, 0)) +
                      scale_colour_manual(values =wes_palette("Chevalier1")[c(1,4)], name='',
                                          labels = expression(H , tilde(H)))

## ---- fig.width=8, fig.height=6, warning=F---------------------------------
plotgrid <- plot_grid(plot_cdf1, plot_cdf, plot_tdr_inversed1, plot_tdr_inversed, labels = letters[1:4], ncol=2, align="hv")
plotgrid

## ---- eval=F---------------------------------------------------------------
#  pdf("tdr_size_investing.pdf", width=8, height=6)
#  plotgrid
#  dev.off()