\name{tweeDE} \alias{tweeDE} \alias{testPoissonTweedie} \alias{print.tweeDE} \alias{MAplot} \alias{MAplot.tweeDE} \alias{Vplot} \alias{Vplot.tweeDE} \title{ Score test for differences between two Poisson-Tweedie groups } \description{ Carry out a score test for differences between two Poisson-Tweedie groups. } \usage{ tweeDE(object, group, mc.cores = 1, pair = NULL, \dots) testPoissonTweedie(x, group, saveModel = FALSE, \dots) MAplot(x, \dots) Vplot(x, \dots) \method{print}{tweeDE}(x, n=6L, sort.by="pval", log2fc.cutoff=0, pval.adjust.cutoff=1, print=TRUE, \dots) \method{MAplot}{tweeDE}(x, log2fc.cutoff=0, highlight=NULL, \dots) \method{Vplot}{tweeDE}(x, log2fc.cutoff=0, pval.adjust.cutoff=1, highlight=NULL, ylab=expression(paste(-log[10], " Raw P-value")), \dots) } \arguments{ \item{object}{ a \code{data.frame} or a \code{matrix} of RNA-seq counts. } \item{group}{ vector giving the experimental group/condition for each sample/library. } \item{mc.cores}{ number of cpu cores to be used. This option is only available when the 'multicore' package is installed and loaded first. In such a case, if the default value of \code{mc.cores=1} is not changed, all available cores will be used. } \item{pair}{ vector of two elements containing the representants of each of the two groups (default is 'NULL'). } \item{n}{ maximum number of genes printed. } \item{sort.by}{ character string, indicating whether genes should be ranked by their P-value (\code{pval}), which is the default setting, or by absolute log2 fold-change (\code{log2fc}). } \item{log2fc.cutoff}{ cutoff on the minimum value of the log2 fold change. } \item{pval.adjust.cutoff}{ cutoff on the maximum adjusted P-value (FDR). } \item{print}{ logical; it indicates whether the output should be printed on the terminal. } \item{highlight}{ list of arguments to the \code{points()} plotting function in order to highlight genes in the MA or volcano plots. A component called \code{genes} is expected to have the identifiers of the genes to be higlighted. } \item{ylab}{ label on the y-axis of the volcano plot set by default to -log10 of the raw P-value which is what this plot displays on that axis. } \item{x}{ object returned by the function \code{tweeDE} in the case of \code{print} and vector of count data in the case of \code{testPoissonTweedie}. } \item{saveModel}{ logical indicating whether the results of fitting the model should be saved or not (default is 'FALSE'). } \item{\dots}{ additional arguments. } } \details{ 'testPoissonTweedie' performs the test for a vector of counts. 'tweeDE' performs the test for a whole 'data.frame'. The P-values are then corrected using the Benjamini and Hochberg method. } \value{ 'testPoissonTweedie' returns a list with: 'mean': means for each group 'pvalue': p-value for the test 'tweeDE' returns a 'data.frame' with columns 'overallMean': overall mean counts 'meanA': mean counts of the first group 'meanB': mean counts of the second group 'log2fc': logarigthm (base 2) of the fold-change (second group vs. first group) 'pval': p-value for the test 'pval.adjust': adjusted p-value using Benjamini-Hochberg method } \references{ M. Esnaola, P. Puig, D. Gonzalez, R. Castelo, J.R. Gonzalez. A flexible count data model to fit the wide diversity of expression profiles arising from extensively replicated RNA-seq experiments. Submitted. A.H. El-Shaarawi, R. Zhu, H. Joe (2010). Modelling species abundance using the Poisson-Tweedie family. Environmetrics 22, pages 152-164. P. Hougaard, M.L. Ting Lee, and G.A. Whitmore (1997). Analysis of overdispersed count data by mixtures of poisson variables and poisson processes. Biometrics 53, pages 1225-1238. } \seealso{ \code{\link{normalizeCounts}} \code{\link{mlePoissonTweedie}} } \examples{ # Generate a random matrix of counts counts <- matrix(rPT(n = 1000, a = 0.5, mu = 10, D = 5), ncol = 40) # Test for differences between the two groups tweeDE(counts, group = rep(c(1,2),20)) } \keyword{htest}