\name{nec} \alias{nec} \title{NormExp by Control background correction (NEC)} \description{Perform normexp background correction using negative control probes.} \usage{ nec(x, status=NULL, negctrl="negative", regular="regular", offset=16, robust=FALSE) } \arguments{ \item{x}{object of class \code{\link{EListRaw-class}} or \code{matrix} containing raw intensities for regular and control probes from a series of microarrays.} \item{status}{character vector giving probe types.} \item{negctrl}{character string identifier for negative control probes.} \item{regular}{character string identifier for regular probes.} \item{offset}{numeric value added to the intensities after background correction.} \item{robust}{logical. Should robust estimators be used for the background mean and standard deviation?} } \details{ This function calls \code{\link{normexp.fit.control}} to estimate the parameters required by normal+exponential convolution model with the help of negative control probes, followed by \code{\link{normexp.signal}} to perform the background correction. If \code{x} contains background intensities \code{x$Eb}, then these are first subtracted from the foreground intensities, prior to normexp background correction. After background correction, an \code{offset} is added to the data. For more descriptions to parameters \code{x}, \code{status}, \code{negctrl} and \code{regular}, please refer to functions \code{\link{normexp.fit.control}} and \code{\link{read.ilmn}}. } \value{ An \code{\link{EListRaw-class}} or matrix object containing background-corrected intensities. Intensities are at raw scale. Control probes are kept. } \references{ Shi W, Oshlack A and Smyth GK (2010). Optimizing the noise versus bias trade-off for Illumina Whole Genome Expression BeadChips. Nucleic Acids Research, In Press } \author{Wei Shi and Gordon Smyth} \seealso{ An overview of background correction functions is given in \link{04.Background}. An overview of LIMMA functions for normalization is given in \link{05.Normalization}. \code{\link{normexp.fit.control}} estimates the parameters in the normal+exponential convolution model using the negative control probes. \code{\link{normexp.fit}} estimates parameters in the normal+exponential convolution model using a saddle-point approximation or other methods. \code{\link{neqc}} performs normexp background correction and quantile normalization aided by control probes. } \examples{ \dontrun{ x <- read.ilmn(files="sample probe profile.txt",ctrlfiles="control probe profile.txt") x.bg <- nec(x) } } \keyword{models}