The ChIPpeakAnno user's guide

Lihua Julie Zhu*

April 1, 2010

Contents

1	Introduction	1					
2	2 Examples of using ChIPpeakAnno	2					
	2.1 Task 1: Find the nearest feature such as gene and the distance to the feat such as the transcription start site (TSS) of the nearest gene						
	2.2 Task 2: Obtain overlapping peaks for potential transcription factor comp and determine the significance of the overlapping and generate Venn Diag						
	2.3 Task 3: Obtain sequences surrounding the peaks for PCR validation or modiscovery						
	2.4 Task 3: Obtain enriched gene ontology (GO) terms near the peaks	7					
3	8 References	10					
4	4 Session Info 1						

1 Introduction

Chromatin immunoprecipitation (ChIP) followed by high-throughput tag sequencing (ChIPseq) and ChIP followed by genome tiling array analysis (ChIP-chip) become more and more prevalent high throughput technologies for identifying the binding sites of DNA-binding proteins in a genome-wide bases. A number of algorithms have been published to facilitate the identification of the binding sites of the DNA-binding proteins of interest. The identified binding sites in the list of peaks are usually converted to BED or WIG file format to be loaded to UCSC genome browser as custom tracks for investigators to view the proximity to various genomic features such as genes, exons and conserved elements. However, clicking through the genome browser could be a daunting task for the biologist if the number of peaks gets large or the peaks spread widely across the genome. Here we have developed a

^{*}julie.zhu@umassmed.edu

Bioconducor package called ChIPpeakAnno to facilitate the batch annotation of the peaks identified from either ChIP-seq or ChIP-chip experiments. We have implemented functionality to find the nearest gene, exon, miRNA or custom features supplied by users such as most conserved elements and other transcription factor binding sites leveraging IRanges. Since the genome annotation gets updated from time to time, we have leveraged the *biomaRt* package from Bioconductor to retrieve the annotation data on the fly if the annotation of interest is available via the *biomaRt* package. The users also have the flexibility to pass their own annotation data as RangedData or pass in annotation data from *GenomicFeatures*. We have also leveraged *BSgenome* and *biomaRt* package on implementing functions to retrieve the sequences around the peak identified for peak validation. To understand whether the identified peaks are enriched around genes with certain GO terms, we have implemented GO enrichment test in ChIPpeakAnno package leveraging the hypergeometric test phyper in *stats* package and integrated with Gene Ontology (GO) annotation from *GO.db* package and multiplicity adjustment functions from *multtest* package.

2 Examples of using ChIPpeakAnno

2.1 Task 1: Find the nearest feature such as gene and the distance to the feature such as the transcription start site (TSS) of the nearest gene

We have a list of peaks identified from ChIP-seq or ChIP-chip experiments and we would like to retrieve the nearest gene and distance to the corresponding gene transcription start site. We have retrieved all the genomic locations of the genes for human genome as TSS.human.NCBI36 data package for repeated use with function getAnnotation, now we just pass the annotation to the annotatePeakInBatch function.

```
> library(ChIPpeakAnno)
> data(myPeakList)
> data(TSS.human.NCBI36)
> annotatedPeak = annotatePeakInBatch(myPeakList[1:6, ], AnnotationData = TSS.human.NCBI36)
> as.data.frame(annotatedPeak)
                                                                  peak strand
 space
        start
                   end width
                                                    names
     1 703885 703985 101 1_12_703729 ENSG00000197049 1_12_703729
1
                                                                            1
     1 559774 559874
                         101 1_41_559455 ENSG00000212678 1_41_559455
2
                                                                            1
3
     1
        556660 556760
                         101 1_93_556427 ENSG00000212875 1_93_556427
                                                                            1
                        101 1_11_1041174 ENSG00000131591 1_11_1041174
4
     1 1041646 1041746
                                                                           -1
                        101 1_14_1269014 ENSG00000107404 1_14_1269014
5
     1 1270239 1270339
                                                                           -1
     1 926058 926158 101 1_20_925025 ENSG00000188290 1_20_925025
6
                                                                           -1
         feature start_position end_position insideFeature distancetoFeature
1 ENSG00000197049
                         711183
                                      712376
                                                  upstream
                                                                       -7298
2 ENSG00000212678
                         559619
                                      560165
                                                    inside
                                                                         155
3 ENSG00000212875
                         556317
                                      557859
                                                    inside
                                                                         343
4 ENSG00000131591
                        1007061
                                     1041341
                                                                        -305
                                                  upstream
5 ENSG0000107404
                        1260522
                                     1274623
                                                    inside
                                                                        4384
6 ENSG0000188290
                         924208
                                      925333
                                                  upstream
                                                                        -725
 shortestDistance fromOverlappingOrNearest
             7198
                              NearestStart
              155
                              NearestStart
2
```

3	343	NearestStart
4	305	NearestStart
5	4284	NearestStart
6	725	NearestStart

To annotate the peaks with other genomic feature, you will need to call function getAnnotation with featureType, e.g., "Exon" for finding the nearest exon, and "miRNA" for finding the nearest miRNA, "5utr" or '3utr"for finding the overlapping 5 prime UTR or 3 prime UTR. Please refer to getAnnotation function for more details.

We have presented the examples using human genome as annotation source. To annotate your data with other species, you will need to pass to the function getAnnotation the appropriate dataset for example, drerio_gene_ensembl for zebrafish genome, mmusculus_gene_ensembl for mouse genome and rnorvegicus_gene_ensembl for rat genome. For a list of available biomart and dataset, please refer to the *biomaRt* package documentation (Durinck S. et al., 2005). For fast access, in addition to TSS.human.NCBI36, TSS.mouse.NCBIM37, TSS.rat.RGSC3.4 and TSS.zebrafish.Zv8 are included as annotation data packages.

You could also pass your own annotation data into the function annotatePeakInBatch. For example, if you have a list of transcription factor biding sites from literature and are interested in obtaining the nearest binding site of the transcription factor and distance to it for the list of peaks.

```
> myPeak1 = RangedData(IRanges(start = c(967654, 2010897, 2496704,
      3075869, 3123260, 3857501, 201089, 1543200, 1557200, 1563000,
      1569800, 167889600), end = c(967754, 2010997, 2496804, 3075969,
      3123360, 3857601, 201089, 1555199, 1560599, 1565199, 1573799,
      167893599), names = c("Site1", "Site2", "Site3", "Site4",
      "Site5", "Site6", "Site7", "Site8", "Site9", "Site10", "Site11",
      "Site12")), space = c("1", "2", "3", "4", "5", "6", "2",
      "6", "6", "6", "6", "5"))
>
 TFbindingSites = RangedData(IRanges(start = c(967659, 2010898,
      2496700, 3075866, 3123260, 3857500, 96765, 201089, 249670,
      307586, 312326, 385750, 1549800, 1554400, 1565000, 1569400,
      167888600), end = c(967869, 2011108, 2496920, 3076166, 3123470,
      3857780, 96985, 201299, 249890, 307796, 312586, 385960, 1550599,
      1560799, 1565399, 1571199, 167888999), names = c("t1", "t2",
      "t3", "t4", "t5", "t6", "t7", "t8", "t9", "t10", "t11", "t12"
      "t13", "t14", "t15", "t16", "t17")), space = c("1", "2",
"3", "4", "5", "6", "1", "2", "3", "4", "5", "6", "6", "6",
      -1, -1, -1, 1, 1, 1, 1, 1))
> annotatedPeak2 = annotatePeakInBatch(myPeak1, AnnotationData = TFbindingSites)
> pie(table(as.data.frame(annotatedPeak2)$insideFeature))
> as.data.frame(annotatedPeak2)
```

	space	start	end	width	names	peak	strand	feature
1	- 1	967654	967754	101	Site1 t1	Site1	1	t1
2	2	2010897	2010997	101	Site2 t2	Site2	1	t2
3	2	201089	201089	1	Site7 t8	Site7	-1	t8
4	3	2496704	2496804	101	Site3 t3	Site3	1	t3
5	4	3075869	3075969	101	Site4 t4	Site4	1	t4
6	5	167889600	167893599	4000	Site12 t17	Site12	1	t17
7	5	3123260	3123360	101	Site5 t5	Site5	1	t5
8	6	1563000	1565199	2200	Site10 t15	Site10	1	t15
9	6	1569800	1573799	4000	Site11 t16	Site11	1	t16
10	6	3857501	3857601	101	Site6 t6	Site6	1	t6
11	6	1543200	1555199	12000	Site8 t13	Site8	1	t13

12	6 1557200	1560599 3	3400	Site9	t14	Site9	1	t14
	start_position end_position		ins	insideFeature		distancetoFeature		
1	967659	967869	ov	erlapSt	art		-5	
2	2010898	2011108	ov	erlapSt	art		-1	
3	201089	201299		ins	ide		210	
4	2496700	2496920		ins	ide		4	
5	3075866	3076166		ins	ide		3	
6	167888600	167888999		downstr	eam		1000	
7	3123260	3123470		ins	ide		0	
8	1565000	1565399	ov	erlapSt	art		-2000	
9	1569400	1571199		overlap	End		400	
10	3857500	3857780		ins	ide		1	
11	1549800	1550599	incl	udeFeat	ure		-6600	
12	1554400	1560799		ins	ide		2800	
	shortestDistance	fromOverla	pping	OrNeare	st			
1	5		Nea	restSta	rt			
2	1		Nea	restSta	rt			
3	0		Nea	restSta	rt			
4	4		NearestStart					
5	3		Nea	restSta	rt			
6	601		Nea	restSta	rt			
7	0		Nea	restSta	rt			
8	199		Nea	restSta	rt			
9	400		Nea	restSta	rt			
10	1		Nea	restSta	rt			
11	4600		Nea	restSta	rt			
12	200		Nea	restSta	rt			

Both BED format and GFF format are common file format that provides a flexible way to define the peaks and annotations as the data lines. Therefore, conversion functions RfunctionBED2RangedData and RfunctionGFF2RangedData were implemented for converting these data format to RangedData before calling annotatePeakInBatch

Once you annotated the peak list, you can plot the distance to nearest feature such as TSS.

2.2 Task 2: Obtain overlapping peaks for potential transcription factor complex and determine the significance of the overlapping and generate Venn Diagram

Here is an example of obtaining overlapping peaks with maximum gap 1kb for two peak ranges.

> pea	aks1 = RangedData(IRanges(start = c(967654, 2010897, 2496704,
+	3075869, 3123260, 3857501, 201089, 1543200, 1557200, 1563000,
+	1569800, 167889600), end = $c(967754, 2010997, 2496804, 3075969,$
+	3123360, 3857601, 201089, 1555199, 1560599, 1565199, 1573799,
+	167893599), names = c("Site1", "Site2", "Site3", "Site4",
+	"Site5", "Site6", "Site7", "Site8", "Site9", "Site10", "Site11",
+	"Site12")), space = c("1", "2", "3", "4", "5", "6", "2",
+	"6", "6", "6", "6", "5"),
> pea	aks2 = RangedData(IRanges(start = c(967659, 2010898, 2496700,
+	3075866, 3123260, 3857500, 96765, 201089, 249670, 307586,
+	312326, 385750, 1549800, 1554400, 1565000, 1569400, 167888600),
+	end = c(967869, 2011108, 2496920, 3076166, 3123470, 3857780,
+	96985, 201299, 249890, 307796, 312586, 385960, 1550599,
+	1560799, 1565399, 1571199, 167888999), names = c("t1",
+	"t2", "t3", "t4", "t5", "t6", "t7", "t8", "t9", "t10",

```
+ "t11", "t12", "t13", "t14", "t15", "t16", "t17")), space = c("1",
+ "2", "3", "4", "5", "6", "1", "2", "3", "4", "5", "6", "6",
+ "6", "6", "6", "5"), strand = c(1, 1, 1, 1, 1, 1, -1, -1,
+ -1, -1, -1, 1, 1, 1, 1))
> t1 = find0verlappingPeaks(peaks1, peaks2, maxgap = 1000, multiple = F,
+ Name0fPeaks1 = "TF1", Name0fPeaks2 = "TF2")
```

Here is a list of overlapping peaks with maximum gap 1kb and a pie graph describing the distribution of relative position of peaks1 to peaks2 for overlapping peaks.

```
> overlappingPeaks = t1$OverlappingPeaks
> overlappingPeaks
```

	TF1	chr	TF2	TF2_start	TF2_end	strand	TF1_start	TF1_end	strand1
1	Site1	1	t1	967659	967869	1	967654	967754	1
5	Site2	2	t2	2010898	2011108	1	2010897	2010997	1
10	Site7	2	t8	201089	201299	-1	201089	201089	1
6	Site3	3	t3	2496700	2496920	1	2496704	2496804	1
7	Site4	4	t4	3075866	3076166	1	3075869	3075969	1
4	Site12	5	t17	167888600	167888999	1	167889600	167893599	1
8	Site5	5	t5	3123260	3123470	1	3123260	3123360	1
2	Site10	6	t15	1565000	1565399	1	1563000	1565199	1
3	Site11	6	t16	1569400	1571199	1	1569800	1573799	1
9	Site6	6	t6	3857500	3857780	1	3857501	3857601	1
11	Site8	6	t13	1549800	1550599	1	1543200	1555199	1
12	Site9	6	t14	1554400	1560799	1	1557200	1560599	1
	overla	pFeat	ture	shortestD	istance				
1	over	lapS	tart		5				
5	over	lapS	tart		1				
10		in	side		0				
6		in	side		4				
7		in	side		3				
4	dor	wnst	ream		601				
8		in	side		0				
2	2 overlapStart			199					
3	ove	erlaj	pEnd		400				
9		in	side	e 1					
11	include	eFeat	ture		4600				
12		in	side		200				

> pie(table(overlappingPeaks\$overlapFeature))

Here is the merged overlapping peaks, which can be used to obtain overlapping peaks with another TF binding sites from a protein complex.

> as.data.frame(t1\$MergedPeaks)

	space	start	end	width	names
1	1	967654	967869	216	TF1-Site1-TF2-t1
2	2	2010897	2011108	212	TF1-Site2-TF2-t2
3	2	201089	201299	211	TF1-Site7-TF2-t8
4	3	2496700	2496920	221	TF1-Site3-TF2-t3
5	4	3075866	3076166	301	TF1-Site4-TF2-t4
6	5	167888600	167893599	5000	TF1-Site12-TF2-t17
7	5	3123260	3123470	211	TF1-Site5-TF2-t5
8	6	1563000	1565399	2400	TF1-Site10-TF2-t15
9	6	1569400	1573799	4400	TF1-Site11-TF2-t16
10	6	3857500	3857780	281	TF1-Site6-TF2-t6
11	6	1543200	1555199	12000	TF1-Site8-TF2-t13
12	6	1554400	1560799	6400	TF1-Site9-TF2-t14

Here is the peaks in peaks1 that overlaps with peaks in peaks2

> as.data.frame(t1\$Peaks1withOverlaps)

	space	start	end	width	names	strand
1	- 1	967654	967754	101	Site1	1
2	2	2010897	2010997	101	Site2	1
3	2	201089	201089	1	Site7	1
4	3	2496704	2496804	101	Site3	1
5	4	3075869	3075969	101	Site4	1
6	5	167889600	167893599	4000	Site12	1
7	5	3123260	3123360	101	Site5	1
8	6	1563000	1565199	2200	Site10	1
9	6	1569800	1573799	4000	Site11	1
10	6	3857501	3857601	101	Site6	1
11	6	1543200	1555199	12000	Site8	1
12	6	1557200	1560599	3400	Site9	1

Here is the peaks in peaks2 that overlap with peaks in peaks1

> as.data.frame(t1\$Peaks2withOverlaps)

Site4

Site5

Site6

	space	start	end	width	names	strand
1	1	967659	967869	211	t1	1
2	2	2010898	2011108	211	t2	1
3	2	201089	201299	211	t8	-1
4	3	2496700	2496920	221	t3	1
5	4	3075866	3076166	301	t4	1
6	5	167888600	167888999	400	t17	1
7	5	3123260	3123470	211	t5	1
8	6	1565000	1565399	400	t15	1
9	6	1569400	1571199	1800	t16	1
10	6	3857500	3857780	281	t6	1
11	6	1549800	1550599	800	t13	1
12	6	1554400	1560799	6400	t14	1

The findOVerlappingPeaks function can be repeatedly called to obtain for example, the peaks in peaks1 that overlap with peaks in both peaks2 and peaks3.

```
> peaks3 = RangedData(IRanges(start = c(967859, 2010868, 2496500,
      3075966, 3123460, 3851500, 96865, 201189, 249600, 307386),
+
      end = c(967969, 2011908, 2496720, 3076166, 3123470, 3857680,
          96985, 201299, 249890, 307796), names = c("p1", "p2",
      "p3", "p4", "p5", "p6", "p7", "p8", "p9", "p10")), space = c("1",
"2", "3", "4", "5", "6", "1", "2", "3", "4"), strand = c(1,
      1, 1, 1, 1, 1, -1, -1, -1, -1))
> findOverlappingPeaks(findOverlappingPeaks(peaks1, peaks2, maxgap = 1000,
      multiple = F, NameOfPeaks1 = "TF1", NameOfPeaks2 = "TF2")$Peaks1withOverlap,
+
      peaks3, maxgap = 1000, multiple = F, NameOfPeaks1 = "TF1TF2",
+
      NameOfPeaks2 = "TF3")$Peaks1withOverlap
RangedData with 7 rows and 1 value column across 6 spaces
                             ranges | strand
           space
      <character>
                           <IRanges> | <character>
          1 [ 967654, 967754] |
Site1
                                                  1
Site2
                2 [2010897, 2010997] |
                                                   1
                2 [ 201089, 201089] |
Site7
                                                   1
Site3
               3 [2496704, 2496804] |
                                                   1
```

4 [3075869, 3075969] |

5 [3123260, 3123360] |

6 [3857501, 3857601] |

Venn Diagram can be generated by the following function call with p-value that indicates whether the extent of overlapping is significant.

1

1

1

```
> makeVennDiagram(RangedDataList(peaks1, peaks2), NameOfPeaks = c("TF1",
     "TF2"), maxgap = 0, totalTest = 100, cex = 1, counts.col = "red")
$p.value
[1] 9.837922e-10
$vennCounts
    TF1 TF2 Counts
[1.] 0 0
                82
[2,] 0 1
                 6
[3,] 1 0
                 1
[4,]
      1
         1
                11
attr(,"class")
[1] "VennCounts"
```

2.3 Task 3: Obtain sequences surrounding the peaks for PCR validation or motif discovery

Here is an example of obtaining sequences surrounding the peak intervals including 20 bp upstream and downstream sequence.

```
> peaks = RangedData(IRanges(start = c(100, 500), end = c(300,
+ 600), names = c("peak1", "peak2")), space = c("NC_008253",
+ "NC_010468"))
> library(BSgenome.Ecoli.NCBI.20080805)
> peaksWithSequences = getAllPeakSequence(peaks, upstream = 20,
+ downstream = 20, genome = Ecoli)
```

You can easily convert the obtained sequences into fasta format for motif discovery by calling the function write2FASTA.

2.4 Task 3: Obtain enriched gene ontology (GO) terms near the peaks

Once you have obtained the annotated peak data from the example above, you can also use the function getEnrichedGO to obtain a list of enriched gene ontology (GO) terms using hypergeometric test.

library(org.Hs.eg.db)

enrichedGO = getEnrichedGO (annotatedPeak, orgAnn = "org.Hs.eg.db", maxP = 0.01, multiAdj = TRUE, minGOterm = 10, multiAdjMethod = "BH")

Please note that org.Hs.eg.db is the GO gene mapping for Human, for other organisms, please refer to http://www.bioconductor.org/packages/release/data/annotation/ for additional org.xx.eg.db packages.

> data(enrichedGO)

Here is a list of enriched GO biological process for myPeakList dataset.

```
> enrichedGO$bp[1:6, ]
       go.id
1 GD:0000187
2 GD:0002573
3 GD:0002702
4 GD:0002761
5 GD:0002763
6 GD:0006213
                                                                         go.term
1
                                                   activation of MAPK activity
2
                                             myeloid leukocyte differentiation
3 positive regulation of production of molecular mediator of immune response
4
                              regulation of myeloid leukocyte differentiation
                     positive regulation of myeloid leukocyte differentiation
5
                                       pyrimidine nucleoside metabolic process
6
1
2
3
4
5
6 The chemical reactions and pathways involving any pyrimidine nucleoside, one of a fami
  Ontology count.InDataset count.InGenome
                                                 pvalue totaltermInDataset
        BP
                         17
                                         65 0.001673400
1
                                                                      85892
                                         81 0.004192510
2
        BP
                         19
                                                                      85892
3
        BP
                          4
                                         10 0.005921074
                                                                      85892
                                         50 0.004712934
4
        BP
                         13
                                                                      85892
5
        BP
                          8
                                         22 0.001277580
                                                                      85892
        ΒP
                          4
                                         10 0.005921074
                                                                      85892
6
  totaltermInGenome
             644151
1
2
             644151
3
             644151
4
             644151
5
             644151
6
             644151
```

Here is a list of enriched GO molecular functions for myPeakList dataset.

go.id go.term 1 GD:0003702 RNA polymerase II transcription factor activity 2 GO:0003705 RNA polymerase II transcription factor activity, enhancer binding cyclic-nucleotide phosphodiesterase activity 3 GD:0004112 4 GD:0004114 3',5'-cyclic-nucleotide phosphodiesterase activity 5 GD:0004659 prenyltransferase activity 6 GD:0004896 cytokine receptor activity 1 Functions to initiate or regulate RNA polymerase 2 Functions to initiate or regulate RNA polymerase II transcription by binding an enhanc Catalysis of the reaction: a nucleoside cyclic phosphate + H2O = a nucl 3 Catalysis of the reaction: nucleoside 3',5'-cyclic phosphate + H2O = nucleos 4 5 Catalysis of the transfer of a prenyl group from one compound (donor) to an 6 Combining with a cytokine to initiate a change pvalue totaltermInDataset Ontology count.InDataset count.InGenome 214 0.0065818928 1 MF 39 29657 2 MF 29 0.0001003699 29657 11 3 9 26 0.0007622170 MF 29657 4 MF 9 25 0.0005282939 29657 5 MF 9 23 0.0002346785 29657 66 0.0027160003 6 MF 16 29657 totaltermInGenome 1 235991 2 235991 3 235991 4 235991 5 235991

Heres is a list of enriched GO cellular components for myPeakList dataset.

> enrichedGO\$cc

235991

6

> enrichedGO\$mf[1:6,]

	go.id	go.term
1	GO:0005811	lipid particle
2	GD:0005942	phosphoinositide 3-kinase complex
3	GD:0016363	nuclear matrix
4	GD:0034399	nuclear periphery

1 Any particle of coalesced lipids in the cytopl 2 A complex containing a heterodimer of a catalytic subunit and a regulatory (adaptor) s

3					The dense fibrillar network l
4					The portion of the nuclea
	Ontology	count.InDataset	$\verb"count.InGenome"$	pvalue	totaltermInDataset
1	CC	5	15	0.006685158	45317
2	CC	4	11	0.007074546	45317
3	CC	12	49	0.005607016	45317
4	CC	12	52	0.009516449	45317
	totalterm	InGenome			
1		365523			
2		365523			
3		365523			
4		365523			

3 References

1. Y. Benjamini and Y. Hochberg (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Statist. Soc. B. Vol. 57: 289-300.

2. Y. Benjamini and D. Yekutieli (2001). The control of the false discovery rate in multiple hypothesis testing under dependency. Annals of Statistics. Accepted.

3. S. Durinck et al. (2005) BioMart and Bioconductor: a powerful link between biological biomarts and microarray data analysis. Bioinformatics, 21, 3439-3440.

4. S. Dudoit, J. P. Shaffer, and J. C. Boldrick (Submitted). Multiple hypothesis testing in microarray experiments.

5. Y. Ge, S. Dudoit, and T. P. Speed. Resampling-based multiple testing for microarray data hypothesis, Technical Report #633 of UCB Stat. http://www.stat.berkelev.edu/ gvc

6. R. Gentleman et al. (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol., 5:R80

7. Y. Hochberg (1988). A sharper Bonferroni procedure for multiple tests of significance, Biometrika. Vol. 75: 800-802.

8. S. Holm (1979). A simple sequentially rejective multiple test procedure. Scand. J. Statist.. Vol. 6: 65-70.

9. N. L. Johnson, S. Kotz and A. W. Kemp (1992) Univariate Discrete Distributions, Second Edition. New York: Wiley

10. G. Robertson et al. (2007) Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing. Nat Methods, 4:651-7.

Session Info 4

```
> sessionInfo()
```

```
R version 2.10.1 (2009-12-14)
x86_64-unknown-linux-gnu
```

locale: [1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C [3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8 [5] LC_MONETARY=C [7] LC_PAPER=en_US.UTF-8 LC_NAME=C [9] LC_ADDRESS=C LC_TELEPHONE=C [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C attached base packages: [1] tools stats graphics grDevices utils datasets methods [8] base other attached packages: [1] ChIPpeakAnno_1.2.15 limma_3.2.3 [3] org.Hs.eg.db_2.3.6 GO.db_2.3.5 [5] RSQLite_0.8-4 DBI_0.2-5 BSgenome.Ecoli.NCBI.20080805_1.3.16 [7] AnnotationDbi_1.8.2 [9] BSgenome_1.14.2 Biostrings_2.14.12 [11] IRanges_1.4.16 multtest_2.3.2 [13] Biobase_2.6.1 biomaRt_2.2.0 loaded via a namespace (and not attached): [1] MASS_7.3-5 RCurl_1.3-1 splines_2.10.1 survival_2.35-8 [5] XML_2.8-1