\name{qpPCC} \alias{qpPCC} \alias{qpPCC,ExpressionSet-method} \alias{qpPCC,data.frame-method} \alias{qpPCC,matrix-method} \title{ Estimation of Pearson correlation coefficients } \description{ Estimates Pearson correlation coefficients (PCCs) and their corresponding P-values between all pairs of variables from an input data set. } \usage{ \S4method{qpPCC}{ExpressionSet}(data) \S4method{qpPCC}{data.frame}(data, long.dim.are.variables=TRUE) \S4method{qpPCC}{matrix}(data, long.dim.are.variables=TRUE) } \arguments{ \item{data}{data set from where to estimate the Pearson correlation coefficients. It can be an ExpressionSet object, a data frame or a matrix.} \item{long.dim.are.variables}{logical; if TRUE it is assumed that when data are in a data frame or in a matrix, the longer dimension is the one defining the random variables (default); if FALSE, then random variables are assumed to be at the columns of the data frame or matrix.} } \details{ The calculations made by this function are the same as the ones made for a single pair of variables by the function \code{\link{cor.test}} but for all the pairs of variables in the data set. } \value{ A list with two matrices, one with the estimates of the PCCs and the other with their P-values. } \author{R. Castelo and A. Roverato} \seealso{ \code{\link{qpPAC}} } \examples{ nVar <- 50 # number of variables maxCon <- 5 # maximum connectivity per variable nObs <- 30 # number of observations to simulate I <- qpRndGraph(n.vtx=nVar, n.bd=maxCon) K <- qpI2K(I) X <- qpSampleMvnorm(K, nObs) pcc.estimates <- qpPCC(X) # Pearson correlation coefficients of the present edges summary(abs(pcc.estimates$R[upper.tri(pcc.estimates$R) & I])) # Pearson correlation coefficients of the missing edges summary(abs(pcc.estimates$R[upper.tri(pcc.estimates$R) & !I])) } \keyword{models} \keyword{multivariate}