\name{qpHist} \alias{qpHist} \title{ Histograms of non-rejection rates } \description{ Plots the distribution of non-rejection rates. } \usage{ qpHist(nrrMatrix, K=NULL, titlehist = "all estimated\nnon-rejection rates", freq=TRUE) } \arguments{ \item{nrrMatrix}{matrix of non-rejection rates.} \item{K}{concentration matrix of the generative distribution (whenever available).} \item{titlehist}{main title of the histogram(s).} \item{freq}{logical; if TRUE, the histograms show frequencies (counts) of occurrence of the different non-rejection rate values; if FALSE, then probability densities are plotted} } \details{ This function plots histograms using the R-function \code{\link{hist}} and therefore the way they are displayed follows that of this R-function. } \value{ None } \references{ Castelo, R. and Roverato, A. A robust procedure for Gaussian graphical model search from microarray data with p larger than n, \emph{J. Mach. Learn. Res.}, 7:2621-2650, 2006. } \author{R. Castelo and A. Roverato} \seealso{ \code{\link{qpNrr}} \code{\link{qpAvgNrr}} \code{\link{qpEdgeNrr}} \code{\link{qpGraphDensity}} \code{\link{qpClique}} } \examples{ nVar <- 50 # number of variables maxCon <- 5 # maximum connectivity per variable nObs <- 30 # number of observations to simulate I <- qpRndGraph(n.vtx=nVar, n.bd=maxCon) K <- qpI2K(I) X <- qpSampleMvnorm(K, nObs) nrr.estimates <- qpNrr(X, q=5, verbose=FALSE) qpHist(nrr.estimates, K) } \keyword{models} \keyword{multivariate}