\name{neqc} \alias{neqc} \title{NormExp and Quantile by Control (NEQC)} \description{Perform normexp background correction and quantile normalization using control probes.} \usage{ neqc(x, status=NULL, negctrl="negative", regular="regular", offset=16, ...) } \arguments{ \item{x}{ object of class \code{\link{EListRaw-class}} or \code{matrix} containing raw intensities for regular and control probes from a series of microarrays.} \item{status}{ character vector giving probe types.} \item{negctrl}{ character string giving the \code{status} identifier of negative control probes. Default is \code{negative}.} \item{regular}{ character string giving the \code{status} identifier of regular probes. Default is \code{regular}.} \item{offset}{ numeric value added to the intensities after background correction.} \item{...}{ any other parameters are passed to \code{normalizeBetweenArrays.}} } \details{ This function calls the function \code{\link{normexp.fit.control}} to estimate the parameters required by normal+exponential convolution model with the help of negative control probes. \code{\link{normexp.signal}} is then called to background correct the raw data. An \code{offset} is added to the data after the background correction. This function will then call the function \code{\link{normalizeBetweenArrays}} to perform quantile between-array normalization and log2 transformation. For more descriptions to parameters \code{x}, \code{status}, \code{negctrl} and \code{regular}, please refer to functions \code{\link{normexp.fit.control}} and \code{\link{read.ilmn}}. } \value{ An \code{\link{EList-class}} object containing normalized log2 expression values. Control probes are removed. } \references{ Shi W, Oshlack A and Smyth GK. Calibrating the noise versus bias trade-off: normalization of Illumina Whole Genome Expression BeadChips. Submitted. } \author{Wei Shi and Gordon Smyth} \seealso{ An overview of LIMMA functions for normalization is given in \link{05.Normalization}. An overview of background correction functions is given in \link{04.Background}. \code{\link{normexp.fit.control}} estimates the parameters in the normal+exponential convolution model using the negative control probes. \code{\link{normexp.fit}} estimates parameters in the normal+exponential convolution model using a saddle-point approximation or other methods. } \examples{ \dontrun{ x <- read.ilmn(files="sample probe profile.txt",ctrlfiles="control probe profile.txt") y <- neqc(x) } } \keyword{models}