\name{RPA.sigma2.update} \Rdversion{1.1} \alias{RPA.sigma2.update} \title{Updating probe-specific variances.} \description{Updates the probe-specific variance parameters sigma2 given data S and estimated mean d, assuming the prior parameters alphahat, beta} \usage{RPA.sigma2.update(d, S = S, alphahat, beta, sigma2.method="var")} \arguments{ \item{d }{A vector. Estimated 'true' signal underlying the noisy probe-level observations.} \item{S }{Matrix of probe-level observations for a single probeset: samples x probes.} \item{alphahat }{T/2 + alpha, where T = nrow(S) (sample size), and alpha is the shape parameter for inverse Gamma prior.} \item{beta }{Scale parameter for inverse gamma prior.} \item{sigma2.method }{ Optimization method for sigma2 (probe-specific variances). "basic": optimization using user-specified alpha, beta priors. Default: alpha, beta = 1e-6. "var": utilizes the fact that the cost function converges to variance with large sample sizes. Default method. } } \value{A vector of probe-specific variances.} \references{Probabilistic Analysis of Probe Reliability in Differential Gene Expression Studies with Short Oligonucleotide Arrays. Lahti et al., TCBB/IEEE, to appear. See http://www.cis.hut.fi/projects/mi/software/RPA/ } \author{Leo Lahti } \seealso{RPA.sigma2.update.variance, RPA.sigma2.update.fast} \keyword{ iteration } \keyword{ internal }