\name{RPA-package} \Rdversion{1.1} \alias{RPA-package} \alias{RPA} \docType{package} \title{RPA: probe reliability and differential expression analysis} \description{RPA estimates probe-specific variances and differential gene expression using probe-level observations of differential gene expression.} \details{ \tabular{ll}{ Package: \tab RPA\cr Type: \tab Package\cr Version: \tab 1.1.2\cr Date: \tab 2009-07-22\cr License: \tab GNU GPL 2 or any later version (at your option)\cr LazyLoad: \tab yes\cr } RPA.pointestimate computes probe reliability and differential expression estimates: 'rpa.results <- RPA.pointestimate(affybatch)'. The other functions are provided for users who wish to investigate the details of the algorithm more closely. } \author{Leo Lahti } \references{Probabilistic Analysis of Probe Reliability in Differential Gene Expression Studies with Short Oligonucleotide Arrays. Lahti et al., TCBB/IEEE, to appear. See http://www.cis.hut.fi/projects/mi/software/RPA/ } \keyword{ package } \examples{ ## Load example data set (Dilution affybatch). ## This is a toy example with a small example dataset ## for probe reliability analysis (4 arrays). ## For practical applications, a larger sample size is ## recommended. require(affy) require(affydata) data(Dilution) ## Run RPA analysis ## Compute RPA for the whole data set ## Slow, not executed here ##rpa.results <- RPA.pointestimate(Dilution) # Compute RPA for specific probesets only sets = geneNames(Dilution)[1:5] rpa.results <- RPA.pointestimate(Dilution,sets) ## Visualize the results for one of the probe sets plot(rpa.results[sets[[1]],]) }