
widgetInvoke
April 20, 2009

R topics documented:
SimpleW-class . 1
createWF . 2
fun2wFun . 3
funArg-class . 4
testWIfun . 5
wFun-class . 6
widgetInvoke . 7
writeWIxml . 8

Index 11

SimpleW-class Class "SimpleW": A Class To Represent A Widget Type

Description

The SimpleW is a virtual class used to provide a framework for representing the type of widget
used to display and obtain information in the widgetInvoke package. There are currently three
subclasses, providing for radio buttons (RadButtonW), a drop down list (DropDownW) or text
entry (TypeInW)

Objects from the Class

Objects can be created by calls of the form new("SimpleW", ...).

Slots

defaultValue: Object of class "character": This is the only slot defined by SimpleW and
represents the default value of the argument.

nItems: Object of class "numeric": This is used by the RadButtonW and DropDownW sub-
classes, and describes how many objects are to be represented in their widget.

itemNames: Object of class "character": This is used by the RadButtonW and DropDownW
subclasses, and is a character vector detailing the names of the objects to display in the widget.
The length of itemNames must match the value stored in the nItems slot.

returnType: Object of class "character": This is used by the TypeInW subclass, and
specifies the return type of this argument (e.g. character, numeric, logical).

1

2 createWF

Methods

defaultValue signature(object = "SimpleW"): Retrieves the defaultValue slot.

nItems signature(object = "RadButtonW"): Retrieves the nItems slot.

nItems signature(object = "DropDownW"): Retrieves the nItems slot.

returnType signature(object = "TypeInW"): Retrieves the returnType slot.

Author(s)

Jeff Gentry

See Also

createWF, widgetInvoke

createWF A function to specify widget structure for widgetInvoke

Description

This function will present a widget (currently using Gtk) that will allow the user (in this case,
typically a package author or maintainer) to specify the structure of the function widgets used by
widgetInvoke.

Usage

createWF(funName)

Arguments

funName The name of the function to create a widget for

Details

The package that funName is in must already be loaded via library for this function to work
properly.

This function will use RGtk to display a widget detailing the arguments of the specified function,
and other information to be used for the widgetInvoke function. The widget presents a six
column table, with the first column detailing each argument name. The arguments themselves are
represented by the rows of the table.

The Type column specifies the type of the argument (e.g. character, logical, etc). If this
field is blank, it is assumed that any type of value may be entered in by the widgetInvoke user.
A character vector can be entered to specify a set of possible values (e.g. "mean", "median")
that the argument is allowed to take - to do this use comma separated, quoted strings.

The Default column is used to specify the default value of the argument, if any. Leaving this
field blank will imply that there is no default value, otherwise the value in this field must be of the
type specified by type.

fun2wFun 3

The Location column describes where this argument will appear. The widget used by widgetInvoke
allows for notebook style paning, and this field will specify which pane the argument will appear
on. By default, all arguments appear on the "main" pane, but by specifying another string a new
pane will be created.

WidgetType allows the user to specify what sort of widget is used by widgetInvoke for the
entry of this argument. Currently, logical and vector types must use either Radio or DropDown
and all other types must use TypeIn.

If the Required check box is marked for an argument, that means that the argument must be filled
in with a value by the widgetInvoke user.

The Reset button can be used to bring the entire table back to its original state. Any changes the
user has made will be reverted.

The Check button will check the validity of all the values stored in the table and report to the user
if there are potential problems.

The Preview button will display a window that will be identical to what the widgetInvoke
user will see. For this sub-window, the Evaluate window will not actually evaluate the function,
but simply close the window.

The Save button will save the information in the table to an XML file in the current directory, of
the name FUN.xml, where FUN is the name of the function.

Value

This function is used for its side effect, which is to output a file with the appropriate meta-data.
The default filename is funName.xml (where funName is the same as the value specified by the
parameter) and stored in the current working directory of the R session. By using the Save As
button, this can be changed, and saved to any file the operator wishes.

Author(s)

Jeff Gentry

See Also

widgetInvoke

Examples

if (interactive())
createWF("testWIfun")

fun2wFun A Function To Generate wFun Objects For A Function

Description

This function will take a function name and attempt to create a corresponding wFun object for it
based off of available information about the function.

Usage

fun2wFun(funName)

4 funArg-class

Arguments

funName The name of the function to use

Details

This function will first attempt to get the argument list for the requested function, and then create
a basic/default wFun object for this function. The wFun object can be further manipulated by the
user, if desired.

Typically, this function is primarily used internally by createWF.

Value

An object of class wFun, representing available knowledge about the requested function.

Author(s)

Jeff Gentry

See Also

createWF, widgetInvoke, wFun, writeWIxml, readWIxml

Examples

z <- fun2wFun("apropos")
funName(z)
funArgList(z)

funArg-class Class "funArg": A Class To Represent A Function Argument

Description

This class is used by the widgetInvoke to represent the necessary information for creation of
widgets for a function argument. Each argument for a function maps to an object of class funArg,
and stored as a list with the others in the funArgList slot of the appropriate wFun object.

Details

The argType slot can specify a particular type, or use the string ANY to allow this argument to
be untyped. When using the fun2wFun function, the default for a funArg object is that if there
is no argDefault specified by the function, there will be no argType. Likewise, if there is an
argDefault, the argType will be of the same type.

Objects from the Class

Objects can be created by calls of the form new("funArg", ...).

testWIfun 5

Slots

argName: Object of class "character": The name of the argument

argDefault: Object of class "character": The default value of the argument.

argType: Object of class "character": The type of the argument (e.g. numeric, character,
logical)

argLocation: Object of class "character": Which pane of the widget notebook to display
this argument.

argWidgetType: Object of class "character": What type of widget to use in displaying this
argument.

argRequired: Object of class "logical": Whether or not this argument is required to have a
value for function evaluation.

Methods

argDefault signature(object = "funArg"): Retrieves the argDefault slot.

argLocation signature(object = "funArg"): Retrieves the argLocation slot.

argName signature(object = "funArg"): Retrieves the argName slot.

argRequired signature(object = "funArg"): Retrieves the argRequired slot.

argType signature(object = "funArg"): Retrieves the argType slot.

argWidgetType signature(object = "funArg"): Retrieves the argWidgetType slot

Author(s)

Jeff Gentry

See Also

createWF, widgetInvoke, wFun

Examples

z <- readWIxml(system.file("wFun-example", "apropos.xml",
package="widgetInvoke"))

a <- funArgList(z)[[1]]
argRequired(a)
argName(a)
argType(a)

testWIfun Find Objects by (Partial) Name

Description

testWIfun returns a character vector giving the names of all objects in the search list matching
what.

Usage

testWIfun(what, where = FALSE, mode = "any")

6 wFun-class

Arguments

what name of an object, or regular expression to match against

where a logical indicating whether positions in the search list should also be returned

mode character; if not "any", only objects who’s mode equals mode are searched.

Details

If mode != "any" only those objects which are of mode mode are considered. If where is
TRUE, the positions in the search list are returned as the names attribute.

Author(s)

Kurt Hornik and Martin Maechler (May 1997).

See Also

objects for listing objects from one place, help.search for searching the help system, search
for the search path.

wFun-class Class "wFun": A Class To Represent A Function Widget

Description

This class is used to model the information used in the widgetInvoke function. Each object of
this class represents the necessary information for a single function to create its widget interface.

Objects from the Class

Objects can be created by calls of the form new("wFun", ...).

Slots

funName: Object of class "character": The name of the function.

funArgList: Object of class "list": A list of funArg objects, representing the arguments of
this function.

Methods

funArgList signature(object = "wFun"): Retrieves the funArgList slot.

funName signature(object = "wFun"): Retrieves the funName slot.

Author(s)

Jeff Gentry

See Also

createWF, widgetInvoke, writeWIxml, readWIxml

widgetInvoke 7

Examples

z <- readWIxml(system.file("wFun-example", "apropos.xml",
package="widgetInvoke"))

funName(z)
funArgList(z)

widgetInvoke A function to provide a graphical widget to call a function

Description

This function will provide a graphical widget (currently using Gtk) to call a function. The widget
is defined previously by the package author and information about this widget is stored in an XML
file, which is then read in by widgetInvoke. The user’s input is passed on directly to the appropriate
function.

Usage

widgetInvoke(funName, argOverides=list(), argsOnly=FALSE)

Arguments

funName The name of the function

argOverides Allows the user to customize the argument display on widgets

argsOnly If this is set to TRUE, the internal argument list is returned instead of evaluated
values.

Details

The package that funName is in must already be loaded prior to running widgetInvoke for
widgetInvoke to work properly.

Calling this function will display a widget via RGtk to the user that allows them to graphically enter
in the values for the function described by funName. Then, upon hitting the Evaluate button,
the values stored in the widget are passed directly to the requested function, which is then evaluated
normally.

The widget is constructed by information stored in an XML file, which must be generated by run-
ning createWF for funName prior to running widgetInvoke.

Some arguments will have default values specified, which can be changed by the user. Also, argu-
ments may have been designated as being required to have a value before evaluation can take place,
these arguments will have their name surrounded by * characters (e.g. *colors* or *x*). If the
user hits the Evaluate button and any of the required parameters do not have a value, the function
will not be evaluated and the user will be warned of the situation.

Note that with text entry boxes, values which the user intends to be treated as a character string
must be quoted. Any value which is not quoted will be treated in the same manner as usual for R,
in that it will be handled as a numerical value, a variable name, etc.

If a user wishes to enter in a vector of values, the simplest manner would be to declare that vector as
a variable before calling widgetInvoke and then using that variable as the value for an argument.
However, if the user wants to enter the vector in the actual entry spot, comma separated values are
interpreted to be vectors.

8 writeWIxml

The argOverides argument allows the widgetInvoke user to customize their widget for
a particular function. The structure of this argument is a list, where for any argument that the
user wishes to customize, an element is in the list w/ the same name as the argument. That ele-
ment itself is a list where elements are any slot of the function’s wFun object’s argument list (e.g.
argDefault). The value of these elements are used to replace the values that come from the
XML file. This use of this argument is not recommended for most users, and is primarily intended
for the use of other software which is using the widgetInvoke function.

Author(s)

Jeff Gentry

See Also

createWF, wFun-class

Examples

Coming soon

writeWIxml Functions to read and write widgetInvoke XML files

Description

These functions are used to serialize object of class wFun to and from XML files.

Usage

writeWIxml(wFun, file = paste(funName(wFun), "xml", sep = "."))
readWIxml(file)

Arguments

wFun An object of class wFun to serialize.

file The filename to use for reading or writing.

Details

The class wFun is used to create the user interface in the widgetInvoke function. These
wFun objects must be precreated for any given function, and then stored in XML format in the
inst/wFun directory of the appropriate package, and are then read in with readWIxml when
the user calls widgetInvoke for that function.

The XML format used first defines the primary tag of wFun, which indicates the start of a wFun
definition. There are two main sub-fields in the wFun block: funName and funArgList. The
former simply contains a string indicating the name of this function. The funArgList block itself
contains a series of smaller blocks, each representing an argument to the function.

Within the funArgList are a series of funArg blocks. Within each funArg are six tags. The
first is argName, detailing the argument’s name. The second is argDefault, which if not empty
is the default value of the argument. Next is argType, which describes the type of the argument
(e.g. character, numeric, logical, or ANY for an untyped argument). The argLocation field

writeWIxml 9

specifies which tab this argument appears on in the widgetInvoke notebook, and argWidgetType
describes the type of widget to use in displaying this argument. Finally, the argRequired field is
a logical value specifying if this argument is required to be filled in by the user (or a default) before
evaluation of the function.

As an example, the following is an example for the function apropos:

<?xml version="1.0"?>
<wFun xmlns:bt="http://www.bioconductor.org/WINVOKE">

<funName>apropos</funName>
<funArgList>

<funArg>
<argName>what</argName>
<argDefault></argDefault>
<argType>ANY</argType>
<argLocation>main</argLocation>
<argWidgetType>TypeIn</argWidgetType>
<argRequired>FALSE</argRequired>

</funArg>
<funArg>

<argName>where</argName>
<argDefault>FALSE</argDefault>
<argType>logical</argType>
<argLocation>main</argLocation>
<argWidgetType>Radio</argWidgetType>
<argRequired>FALSE</argRequired>

</funArg>
<funArg>

<argName>mode</argName>
<argDefault>"any"</argDefault>
<argType>character</argType>
<argLocation>main</argLocation>
<argWidgetType>TypeIn</argWidgetType>
<argRequired>FALSE</argRequired>

</funArg>
</funArgList>

</wFun>

Value

The readWIxml will return an object of class wFun representing the data stored in the specified
XML file.

The writeWIxml function has no return value.

Author(s)

Jeff Gentry

See Also

createWF, widgetInvoke

10 writeWIxml

Examples

z <- readWIxml(system.file("wFun-example", "apropos.xml",
package="widgetInvoke"))

writeWIxml(z, file=tempfile())

Index

∗Topic classes
funArg-class, 4
SimpleW-class, 1
wFun-class, 6

∗Topic data
testWIfun, 5

∗Topic documentation
testWIfun, 5

∗Topic environment
testWIfun, 5

∗Topic interface
createWF, 2
widgetInvoke, 7

∗Topic utilities
fun2wFun, 3
writeWIxml, 8

apropos, 8
argDefault (funArg-class), 4
argDefault,funArg-method

(funArg-class), 4
argLocation (funArg-class), 4
argLocation,funArg-method

(funArg-class), 4
argName (funArg-class), 4
argName,funArg-method

(funArg-class), 4
argRequired (funArg-class), 4
argRequired,funArg-method

(funArg-class), 4
argType (funArg-class), 4
argType,funArg-method

(funArg-class), 4
argWidgetType (funArg-class), 4
argWidgetType,funArg-method

(funArg-class), 4

createWF, 2, 2–9

defaultValue (SimpleW-class), 1
defaultValue,DropDownW-method

(SimpleW-class), 1
defaultValue,RadButtonW-method

(SimpleW-class), 1

defaultValue,TypeInW-method
(SimpleW-class), 1

DropDown (SimpleW-class), 1
DropDownW-class (SimpleW-class), 1

fun2wFun, 3
funArg (funArg-class), 4
funArg-class, 4
funArgList (wFun-class), 6
funArgList,wFun-method

(wFun-class), 6
funName (wFun-class), 6
funName,wFun-method (wFun-class),

6

help.search, 6

itemNames (SimpleW-class), 1
itemNames,DropDownW-method

(SimpleW-class), 1
itemNames,RadButtonW-method

(SimpleW-class), 1

library, 2

mode, 5

nItems (SimpleW-class), 1
nItems,DropDownW-method

(SimpleW-class), 1
nItems,RadButtonW-method

(SimpleW-class), 1

objects, 6

RadButton (SimpleW-class), 1
RadButtonW-class (SimpleW-class),

1
readWIxml, 4, 6
readWIxml (writeWIxml), 8
regular expression, 5
returnType (SimpleW-class), 1
returnType,TypeInW-method

(SimpleW-class), 1

search, 6

11

12 INDEX

SimpleW (SimpleW-class), 1
SimpleW-class, 1

testWIfun, 5
TypeInW (SimpleW-class), 1
TypeInW-class (SimpleW-class), 1

wFun, 3–5, 7–9
wFun (wFun-class), 6
wFun-class, 8
wFun-class, 6
widgetInvoke, 2–6, 7, 8, 9
writeWIxml, 4, 6, 8

	SimpleW-class
	createWF
	fun2wFun
	funArg-class
	testWIfun
	wFun-class
	widgetInvoke
	writeWIxml
	Index

