XPS
April 19, 2009

AnalysisTreeSet-class
Class AnalysisTreeSet

Description

This class provides the link to the ROOT analysis file and the ROOT trees contained therein. It
extends class ProcesSet.

Objects from the Class

Objects are currently created using function unifilter.

Slots

fltrset: Objectofclass "FilterTreeSet" providing indirect access to the ExprTreeSet
used and the UniFilter settings.

scheme: Object of class "SchemeTreeSet " providing access to ROOT scheme file.

data: Object of class "data.frame". The data.frame contains the data of the unitest stored in
ROOT data trees.

params: Object of class "11ist" representing relevant parameters.

setname: Object of class "character" representing the name to the ROOT file subdirectoy
where the ROOT trees are stored, currently ‘UniFilterSet’.

settype: Object of class "character" describing the type of treeset stored in setname,
currently ‘unifilter’.

rootfile: Object of class "character" representing the name of the ROOT file, including
full path.

filedir: Object of class "character" describing the full path to the system directory where
rootfile is stored.

numtrees: Object of class "numeric" representing the number of ROOT trees stored in subdi-
rectoy setname.

treenames: Object of class "11ist" representing the names of the ROOT trees stored in subdi-
rectoy setname.

Extends

Class "ProcesSet™", directly. Class "TreeSet", by class "ProcesSet", distance 2.

CallTreeSet-class

Methods
filterTreeset signature (object = "AnalysisTreeSet"): extracts slot fltrset.
getTreeData signature (object = "AnalysisTreeSet"): exports tree data and returns
a data.frame.
validData signature (object = "AnalysisTreeSet"): extracts data.frame data.
validFilter signature (object = "AnalysisTreeSet"): extracts data.frame data from
fltrset.
volcanoplot signature(x = "AnalysisTreeSet"): creates a volcano-plot.
Author(s)

Christian Stratowa

See Also

related classes FilterTreeSet.

Examples

showClass ("AnalysisTreeSet")

CallTreeSet—-class Class CallTreeSet

Description

This class provides the link to the ROOT call file and the ROOT trees contained therein. It extends
class ProcesSet.

Objects from the Class

Objects are created using functions mas5.call or dabg.call, respectively.

Slots

calltype: Object of class "character" representing the call type, i.e. ‘mas5’ or ‘dabg’.

detcall: Objectofclass "data.frame". The data.frame can contain the detection calls stored
in ROOT call trees.

scheme: Object of class "SchemeTreeSet" providing access to ROOT scheme file.

data: Objectofclass "data.frame". The data.frame can contain the data (i.e. p-values) stored
in ROOT call trees.

params: Object of class "1ist" representing relevant parameters.

setname: Object of class "character" representing the name to the ROOT file subdirectoy
where the ROOT call trees are stored, usually ‘CallTreeSet’.

settype: Object of class "character" describing the type of treeset stored in setname,
usually ‘preprocess’.

rootfile: Objectof class "character" representing the name of the ROOT call file, including
full path.

CallTreeSet-class 3

filedir: Object of class "character" describing the full path to the system directory where
rootfile is stored.

numtrees: Object of class "numeric" representing the number of ROOT trees stored in subdi-
rectoy setname.

treenames: Object of class "1ist" representing the names of the ROOT trees stored in subdi-
rectoy setname.

Extends

Class "ProcesSet", directly. Class "TreeSet ", by class "ProcesSet", distance 2.

Methods

attachCall signature (object = "CallTreeSet"): exportsdetection call data from ROOT
call file and and saves as data.frame detcall.

attachPVal signature (object = "CallTreeSet"): exports call p-values from ROOT
call file and and saves as data.frame data.

callplot signature (x = "CallTreeSet"): creates a barplot of percent present and absent
calls.

presCall signature (object = "CallTreeSet"): extracts the detection call data.frame.

presCall<- signature (object = "CallTreeSet", value = "data.frame"):re-

places the detection call data.frame.
pvalData signature (object = "CallTreeSet"): extracts the detection p-value data.frame.

pvalData<- signature (object = "CallTreeSet", value = "data.frame"):re-
places the detection p-value data.frame.

removeCall signature (object = "CallTreeSet"): replacesdata.frame detcall with
an empty data.frame of dim(0,0).

removePVal signature (object = "CallTreeSet"): replaces data.frame data with an
empty data.frame of dim(0,0).

validCall signature (object = "CallTreeSet"): extracts a subset of columns from
data.frame detcall.

Author(s)

Christian Stratowa

See Also

related classes DataTreeSet, ExprTreeSet.

Examples

showClass ("CallTreeSet")

4 DataTreeSet-class

DataTreeSet—class Class DataTreeSet

Description

This class provides the link to the ROOT data file and the ROOT trees contained therein. It extends
class ProcesSet.

Objects from the Class

Objects can be created using the functions import .data or root .data.

Slots
bgtreenames: Object of class "11ist" representing the names of optional ROOT background
trees.

bgrd: Objectofclass "data.frame". The data.frame can contain background intensities stored
in ROOT background trees.

projectinfo: Object of class "ProjectInfo" containing information about the project.
scheme: Object of class "SchemeTreeSet" providing access to ROOT scheme file.

data: Object of class "data.frame". The data.frame can contain the data (e.g. intensities)
stored in ROOT data trees.

params: Object of class "11ist" representing relevant parameters.

setname: Object of class "character" representing the name to the ROOT file subdirectoy
where the ROOT data trees are stored, usually ‘DataTreeSet’.

settype: Object of class "character" describing the type of treeset stored in setname,
usually ‘rawdata’.

rootfile: Object of class "character" representing the name of the ROOT data file, includ-
ing full path.

filedir: Object of class "character" describing the full path to the system directory where
rootfile is stored.

numtrees: Object of class "numeric" representing the number of ROOT trees stored in subdi-
rectoy setname.

treenames: Object of class "1ist" representing the names of the ROOT trees stored in subdi-
rectoy setname.

Extends

Class "ProcesSet™", directly. Class "TreeSet", by class "ProcesSet", distance 2.

Methods
addData signature (object = "DataTreeSet"): import additional CEL-files and up-
date ROOT data file rootfile.

attachBgrd signature (object = "DataTreeSet"): exports background trees from ROOT
data file and and saves as data.frame bgrd.

attachInten signature (object = "DataTreeSet"): exports intensity trees from ROOT
data file and and saves as data.frame data.

DataTreeSet-class 5

attachMask signature (object = "DataTreeSet"): exports scheme tree from ROOT
scheme file and and saves as data.frame mask of slot scheme.

background signature (object = "DataTreeSet"): extracts slot bgrd.

background<- signature (object = "DataTreeSet", value = "data.frame"):
replaces slot bgrd.

bgtreeNames signature (object = "DataTreeSet"): extracts slot bgt reenames.

image signature (x = "DataTreeSet"): creates animage for each column from data.frame
data or bgrd, respectively.

intensity signature (object = "DataTreeSet"): extracts slot data.

intensity<- signature (object = "DataTreeSet", value = "data.frame"):re-
places slot data.

mm signature (object = "DataTreeSet"): extracts the mismatch intensities.

ncols signature (object = "DataTreeSet"): extracts the physical number of array columns
from slot scheme.

nrows signature (object = "DataTreeSet"): extracts the physical number of array
rows from slot scheme.

pm signature (object = "DataTreeSet"): extracts the perfect match intensities.

pmplot signature (x = "DataTreeSet"): creates a barplot of mean perfect match and
mismatch intensities.

projectInfo signature (object = "DataTreeSet"): extracts slot projectinfo.

projectInfo<- signature (object = "DataTreeSet", value = "ProjectInfo"):
replaces slot projectinfo.

rawCELName signature (object = "DataTreeSet"): returns the name(s) of the im-
ported raw CEL-files.

removeBgrd signature (object = "DataTreeSet"): replaces data.frame bgrd with
an empty data.frame of dim(0,0).

removelnten signature (object = "DataTreeSet"): replaces data.frame data with
an empty data.frame of dim(0,0).

removeMask signature (object = "DataTreeSet"): replaces data.frame mask from
slot scheme with an empty data.frame of dim(0,0).

validBgrd signature (object = "DataTreeSet"): extracts the valid data from data.frame
bgrd.

validData signature (object = "DataTreeSet"): extracts a subset of valid data from
data.frame data.

xpsBgCorrect signature (object = "DataTreeSet"): applies background correction
methods. See bgcorrect.

xpsDABGCall signature (object = "DataTreeSet"): computes DABG call.

xpsINICall signature (object = "DataTreeSet"): computes I/NI call.

xpsMAS4 signature (object = "DataTreeSet"): computes MAS4 expression levels.

xpsMASS signature (object = "DataTreeSet"): computes MASS expression levels.

xpsMASSCall signature (object = "DataTreeSet"): computes MASS detection call.

xpsNormalize signature (object = "DataTreeSet"): applies normalization methods.

xpsPreprocess signature (object = "DataTreeSet"): applies normalization methods.

xpsRMA signature (object = "DataTreeSet"): computes RMA expression levels.

xpsSummarize signature (object = "DataTreeSet"): applies summarization meth-

ods.

6 ExprTreeSet-class

Author(s)

Christian Stratowa

See Also

related classes ExprTreeSet, CallTreeSet.

Examples

showClass ("DataTreeSet")

ExprTreeSet-class Class ExprTreeSet

Description

This class provides the link to the ROOT expression file and the ROOT trees contained therein. It
extends class ProcesSet.

Objects from the Class

Objects are created using functions express, summarize or normalize, or the specialized
functions rma, mas5 or mas4.

Slots

exprtype: Object of class "character" representing the exression type, i.e. ‘rma’, ‘mas5’,
‘mas4’ or ‘custom’.

normtype: Object of class "character" representing the normalization type, i.e. ‘mean’,
‘median’, ‘lowess’, ‘supsmu’.

scheme: Object of class "SchemeTreeSet " providing access to ROOT scheme file.

data: Object of class "data.frame". The data.frame can contain the data (e.g. expression
levels) stored in ROOT data trees.

params: Object of class "1ist" representing relevant parameters.

setname: Object of class "character" representing the name to the ROOT file subdirectoy
where the ROOT data trees are stored, usually ‘PreprocesSet’.

settype: Object of class "character" describing the type of treeset stored in setname,
usually ‘preprocess’.

rootfile: Object of class "character" representing the name of the ROOT data file, includ-
ing full path.

filedir: Object of class "character" describing the full path to the system directory where
rootfile is stored.

numtrees: Object of class "numeric" representing the number of ROOT trees stored in subdi-
rectoy setname.

treenames: Object of class "11ist" representing the names of the ROOT trees stored in subdi-
rectoy setname.

Filter-class 7

Extends

Class "ProcessSet ", directly. Class "TreeSet", by class "ProcesSet", distance 2.

Methods

attachExpr signature (object = "ExprTreeSet"): exports expression trees from ROOT
expression file and and saves as data.frame data.

exprType signature (object = "ExprTreeSet"): extracts slot exprtype.

exprType<- signature (object = "ExprTreeSet", value = "character"):re-
places slot exprtype.

exprs signature (object = "ExprTreeSet"): extracts the expression data.frame.

exprs<- signature (object = "ExprTreeSet", value = "data.frame"): replaces
the expression data.frame.

mvaplot signature (x = "ExprTreeSet"): creates an MvA-plot.

normType signature (object = "ExprTreeSet"): extracts slot normtype.

normType<- signature (object = "ExprTreeSet", value = "character"):re-

places slot normtype.

removeExpr signature (object = "ExprTreeSet"): replaces data.frame data with

an empty data.frame of dim(0,0).
se.exprs signature (object = "ExprTreeSet"): extracts the standard deviation data.frame.
xpsNormalize signature (object = "ExprTreeSet"): applies normalization methods.
xpsPreFilter signature (object = "ExprTreeSet"): applies prefiltering methods.
xpsUniFilter signature (object = "ExprTreeSet"): applies unifiltering methods.

Author(s)

Christian Stratowa

See Also

related classes DataTreeSet, CallTreeSet.

Examples

showClass ("ExprTreeSet")

Filter-class Base Class Filter

Description

Base class for classes PreFilter and UniFilter.

Slots

numfilters: Object of class "numeric" giving the number of filters applied.

8 FilterTreeSet-class

Methods

numberFilters signature (object = "Filter"): number of filters applied.

Author(s)

Christian Stratowa

See Also

related classes PreFilter, UniFilter.

Examples

showClass ("Filter")

FilterTreeSet-class
Class FilterTreeSet

Description

This class provides the link to the ROOT filter file and the ROOT trees contained therein. It extends
class ProcesSet.

Objects from the Class

Objects are currently created using function prefilter.

Slots

filter: Objectof class "Filter" currently providing access to the PreFilter settings.

exprset: Objectof class "ExprTreeSet " providing direct access to the ExprTreeSet used
for filtering.

callset: Objectofclass "CallTreeSet " providing direct access to the optional CallTreeSet
used for filtering.

scheme: Object of class "SchemeTreeSet " providing access to ROOT scheme file.

data: Object of class "data.frame". The data.frame contains the data of the filter stored in
ROOT filter trees.

params: Object of class "11ist" representing relevant parameters.

setname: Object of class "character" representing the name to the ROOT file subdirectoy
where the ROOT trees are stored, currently ‘PreFilterSet’.

settype: Object of class "character" describing the type of treeset stored in setname,
currently ‘prefilter’.

rootfile: Object of class "character" representing the name of the ROOT file, including
full path.

filedir: Object of class "character" describing the full path to the system directory where
rootfile is stored.

numtrees: Object of class "numeric" representing the number of ROOT trees stored in subdi-
rectoy setname.

treenames: Object of class "11ist" representing the names of the ROOT trees stored in subdi-
rectoy setname.

PreFilter-class 9

Extends

Class "ProcesSet™", directly. Class "TreeSet", by class "ProcesSet", distance 2.

Methods
callTreeset signature (object = "FilterTreeSet"): extractsslot callset.
exprTreeset signature (object = "FilterTreeSet"): extracts slot exprset.
getTreeData signature (object = "FilterTreeSet"): exports tree data and returns a
data.frame.
validData signature (object = "FilterTreeSet"): extracts data.frame data.
Author(s)

Christian Stratowa

See Also

related classes AnalysisTreeSet.

Examples

showClass ("FilterTreeSet")

PreFilter—-class Class PreFilter

Description

Class PreFilter allows to apply different filters to class ExprTreeSet, i.e. to the expression level
data.frame data.

Objects from the Class

Objects can be created by calls of the form new ("PreFilter", ...).
Alternatively, the contructor PreFilter can be used.

Slots

mad: Object of class "11ist" describing parameters for madFilter.

cv: Object of class "1ist" describing parameters for cvFilter.

variance: Object of class "1ist" describing parameters for varFilter.
difference: Object of class "1ist" describing parameters for diffFilter.
ratio: Object of class "1ist" describing parameters for ratioFilter.

gap: Object of class "1ist" describing parameters for gapFilter.
hithreshold: Object of class "1ist" describing parameters for highFilter.
lothreshold: Object of class "11ist" describing parameters for lowFilter.
quantile: Object of class "1ist" describing parameters for quantileFilter.
prescall: Object of class "1ist" describing parameters for callFilter.

numfilters: Object of class "numeric" giving the number of filters applied.

10 PreFilter-class

Extends

Class "Filter", directly.

Methods
callFilter signature (object = "PreFilter"): extracts slot prescall.
callFilter<- signature (object = "PreFilter", value = "character"): replaces

slot prescall with character vector c(cutoff, samples, condition).
cvFilter signature (object = "PreFilter"): extracts slot cv.

cvFilter<- signature (object = "PreFilter", value = "numeric"): replaces slot
cv with numeric vector c(cutoff, trim, epsilon).

diffFilter signature (object = "PreFilter"): extracts slot difference.

diffFilter<- signature (object = "PreFilter", value = "numeric"): replaces
slot di f ference with numeric vector c(cutoff, trim, epsilon).

gapFilter signature (object = "PreFilter"): extracts slot gap.

gapFilter<- signature (object = "PreFilter", value = "numeric"): replaces
slot gap with numeric vector c(cutoff, window, trim, epsilon).

highFilter signature (object = "PreFilter"): extracts slot hithreshold.

highFilter<- signature (object = "PreFilter", value = "character"): replaces
slot hithreshold with character vector c(cutoff, parameter, condition).

lowFilter signature (object = "PreFilter"): extracts slot lothreshold.

lowFilter<- signature (object = "PreFilter", value = "character"): replaces
slot lothreshold with character vector c(cutoff, parameter, condition).

madFilter signature (object = "PreFilter"): extracts slot mad.

madFilter<- signature (object = "PreFilter", value = "numeric"): replaces
slot mad with numeric vector c(cutoff, epsilon).

quantileFilter signature (object = "PreFilter"): extracts slot quantile.

quantileFilter<- signature (object = "PreFilter", value = "numeric"): replaces
slot quantile with numeric vector c(cutoff, loquantile, hiquantile).

ratioFilter signature (object = "PreFilter"): extracts slot ratio.

ratioFilter<- signature (object = "PreFilter", value = "numeric"): replaces
slot rat io with numeric vector c(cutoff).

varFilter signature (object = "PreFilter"): extracts slot variance.

varFilter<- signature (object = "PreFilter", value = "numeric"): replaces slot
variance with numeric vector c(cutoff, trim, epsilon).

Author(s)

Christian Stratowa

See Also

related classes Filter, UniFilter.

PreFilter-constructor 11

Examples

for demonstration purposes only: initialize all pre-filters
prefltr <- new("PreFilter")

madFilter (prefltr) <- c¢(0.5,0.01)

cvFilter (prefltr) <- ¢(0.3,0.0,0.01)
varFilter (prefltr) <- ¢(0.6,0.02,0.01)
diffFilter (prefltr) <- ¢(2.2,0.0,0.01)
ratioFilter (prefltr) <- c(1.5)

gapFilter (prefltr) <- ¢(0.3,0.05,0.0,0.01)
lowFilter (prefltr) <- c(4.0,3,"samples")
highFilter (prefltr) <- c(14.5,75.0,"percent")
quantileFilter (prefltr) <- ¢ (3.0, 0.05, 0.95)
callFilter (prefltr) <- ¢(0.02,80.0, "percent")
str(prefltr)

PreFilter—-constructor
Constructor for Class PreFilter

Description

Constructor for class PreFilter allows to apply different filters to class ExprTreeSet, i.e. to the
expression level data.frame data.

Usage
PreFilter (mad = character(),
cv = character(),
variance = character (),
difference = character(),
ratio = character (),
gap = character (),
lothreshold = character (),
hithreshold = character (),
quantile = character (),
prescall = character())
Arguments
mad "character" vector describing parameters for madFilter.
cv "character" vector describing parameters for cvFilter.
variance "character" vector describing parameters for varFilter.
difference "character" vector describing parameters for diffFilter.
ratio "character" vector describing parameters for ratioFilter
gap "character" vector describing parameters for gapFilter.

lothreshold "character" vector describing parameters for lowFilter.
hithreshold "character" vector describing parameters for highFilter.
quantile "character" vector describing parameters for quantileFilter.

prescall "character" vector describing parameters for callFilter.

12 PreFilter-constructor

Details

The PreFilter constructor allows to apply the following filters to class ExprTreeSet:

mad: character vector c(cutoff,epsilon).

cv: character vector c(cutoff,trim,epsilon).
variance: character vector c(cutoff,trim,epsilon).
difference: character vector c(cutoff,trim,epsilon).

ratio: character vector c(cutoff).

gap: character vector c(cutoff,window,trim,epsilon).

lothreshold: character vector c(cutoff,parameter,condition).
hithreshold: character vector c(cutoff,parameter,condition).
quantile: character vector c(cutoff,loquantile,hiquantile).
prescall: character vector c(cutoff,samples,condition).

Value

An object of type "PreFilter"

Note

Function PreFilter is used as constructor for class PreFilter so that the user need not know
details for creating S4 classes.

Author(s)

Christian Stratowa

See Also

Filter,UniFilter

Examples

f£ill character vectors within constructor

prefltr <- PreFilter (mad=c(0.5,0.01), prescall=c(0.002, 6,"samples"),
lothreshold=c(6.0,0.02, "mean"), hithreshold=c(10.5,80.0,"percent"))

str (prefltr)

alternatively add character vectors as methods after creation of constructor
prefltr <- PreFilter ()

madFilter (prefltr) <- c¢(0.5,0.01)

gapFilter (prefltr) <- ¢(0.3,0.05,0.0,0.01)
lowFilter (prefltr) <- c(4.0,3,"samples")
highFilter (prefltr) <- c(14.5,75.0, "percent")

str(prefltr)

ProcesSet-class 13

ProcesSet-class Class ProcesSet

Description

This class provides access to class SchemeTreeSet for the derived classes DataTreeSet,
ExprTreeSet and CallTreeSet. It extends class TreeSet.

Objects from the Class

Usually, no objects are created from it.

Slots

scheme: Object of class "SchemeTreeSet " providing access to ROOT scheme file.

data: Objectof class "data.frame". The data.frame can contain the data stored in ROOT data
trees.

params: Object of class "11ist" representing relevant parameters.

setname: Object of class "character" representing the name to the ROOT file subdirectoy
where the ROOT trees are stored, usually one of ‘DataTreeSet’, ‘PreprocesSet’, ‘CallTreeSet’.

settype: Object of class "character" describing the type of treeset stored in setname,
usually one of ‘rawdata’, ‘preprocess’.

rootfile: Object of class "character" representing the name of the ROOT file, including
full path.

filedir: Object of class "character" describing the full path to the system directory where
rootfile is stored.

numtrees: Object of class "numeric" representing the number of ROOT trees stored in subdi-
rectoy setname.

treenames: Object of class "11ist" representing the names of the ROOT trees stored in subdi-
rectoy setname.

Extends

Class "TreeSet", directly.

Methods
boxplot signature(x = "ProcesSet"): creates a boxplot of the data from data.frame
data.
chipName signature (object = "ProcesSet"): extractsslot chipname fromslot scheme.
chipType signature (object = "ProcesSet"): extractsslot chiptype from slot scheme.
export signature (object = "ProcesSet"):exports ROOT trees as text file, see export —-methods.
getTreeData signature (object = "ProcesSet"): exports tree data from ROOT file rootfile,
and saves as data.frame data.
hist signature (x = "ProcesSet"): creates a plot showing the histograms for data.frame

data.

14 ProjectInfo-class

mboxplot signature (x = "ProcesSet"): creates an M-boxplot of the data from data.frame
data.

schemeFile signature (object = "ProcesSet"): extracts the ROOT scheme file from
slot scheme.

schemeFile<- signature (object = "ProcesSet"), value = "character"):re-
places the ROOT scheme file from slot scheme.

schemeSet signature (object = "ProcesSet"): extracts slot scheme.

schemeSet<- signature (object = "ProcesSet"), value = "SchemeTreeSet"):
replaces slot scheme with a different SchemeTreeSet.

validData signature (object = "ProcesSet"): extracts a subset of columns from data.frame
data.

Author(s)

Christian Stratowa

See Also

derived classes DataTreeSet, ExprTreeSet, CallTreeSet.

Examples

showClass ("ProcesSet")

ProjectInfo-class Class Projectlnfo

Description

This class allows to save the relevant project information in the ROOT data file and in class DataTreeSet.

Objects from the Class

Objects can be created by calls of the form

new ("ProjectInfo", submitter=[character], laboratory=[character], contact=[chara

cee).
Alternatively, the constructor ProjectInfo can be used.

Slots

submitter: Object of class "character" representing the name of the submitter.
laboratory: Object of class "character" representing the laboratory of the submitter.
contact: Object of class "character" representing the contact address of the submitter.
project: Object of class "1ist" representing the project information.

author: Object of class "11ist" representing the author information.

dataset: Object of class "11ist" representing the dataset information.

source: Object of class "11ist" representing the sample source information.

sample: Object of class "11ist" representing the sample information.

ProjectInfo-class 15

celline: Object of class "1ist" representing the sample information for cell lines.
primarycell: Object of class "11ist" representing the sample information for primary cells.
tissue: Object of class "1ist" representing the sample information for tissues.

biopsy: Object of class "1ist" representing the sample information for biopsies.
arraytype: Object of class "11ist" representing the array information.

hybridizations: Object of class "data . frame" representing the hybridization information
for each hybridization.

treatments: Object of class "data.frame" representing the treatment information for each

hybridization.
Methods
projectInfo signature (object = "ProjectInfo"): extracts slot project.
projectInfo<- signature (object = "ProjectInfo", value = "character"):re-
places slot project with character vector c(name,date,type,description,comments).
authorInfo signature (object = "ProjectInfo"): extracts slot author.
authorInfo<- signature (object = "ProjectInfo", value = "character"):re-

places slot aut hor with character vector c(lastname, firstname,type,company,department,email,
phone,comments).

datasetInfo signature (object = "ProjectInfo"): extracts slot dataset.
datasetInfo<- signature (object = "ProjectInfo", value = "character"):re-
places slot dat aset with character vector c(name,type,sample,submitter,date,description,comments).
sourcelnfo signature (object = "ProjectInfo"): extracts slot source.
sourcelnfo<- signature (object = "ProjectInfo", value = "character"):re-
places slot source with character vector c(name,type,species,subspecies,description,comments).
samplelnfo signature (object = "ProjectInfo"): extracts slot sample.
samplelnfo<- signature (object = "ProjectInfo", value = "character"):re-

places slot sample with character vector c(name,type,sex,phenotype,genotype,extraction,
isxenograft,xenostrain,xenosex,xenoage,xenoageunit,comments).

cellineInfo signature (object = "ProjectInfo"): extracts slot celline.

cellineInfo<- signature (object = "ProjectInfo", value = "character"):re-
places slot ce11ine with character vector c(name,type,parent,atcc,modification,sex,phenotype,
genotype,extraction,isxenograft,xenostrain,xenosex,xenoage,xenoageunit,comments).

primcelllnfo signature (object = "ProjectInfo"): extracts slot primarycell.

primcelllnfo<- signature (object = "ProjectInfo", value = "character"):re-
places slot primarycell with character vector c(name,type,date,description,sex,phenotype,
genotype,extraction,isxenograft,xenostrain,xenosex,xenoage,xenoageunit,comments).

tissuelnfo signature (object = "ProjectInfo"): extracts slot tissue.

tissuelnfo<- signature (object = "ProjectInfo", value = "character"):re-
places slot t 1 ssue with character vector c(name,type,development,morphology,disease,stage,
donorage,ageunit,status,sex,phenotype,genotype,extraction,isxenograft,xenostrain,xenosex, xenoage,xenoageunit,c

biopsyInfo signature (object = "ProjectInfo"): extracts slot biopsy.

biopsyInfo<- signature (object = "ProjectInfo", value = "character"):re-
places slot bi opsy with character vector c(name,type,morphology,disease,stage,donorage,ageunit,
status,sex,phenotype,genotype,extraction,isxenograft,xenostrain,xenosex,xenoage,xenoageunit,comments).

16 ProjectInfo-constructor

arraylnfo signature (object = "ProjectInfo"): extractsslot arraytype

arraylnfo<- signature (object = "ProjectInfo", value = "character"):re-
places slot arraytype with character vector c(chipname,chiptype,description,comments).

hybridizinfo signature (object = "ProjectInfo"): extractsslothybridizations.

hybridizInfo<- signature (object = "ProjectInfo", value = "character"):re-
places slot hybridizations with vector of character vectors with each containing c(name,type,inputname,date,

treatmentInfo signature (object = "ProjectInfo"): extracts slot treatments.

treatmentInfo<- signature (object = "ProjectInfo", value = "character"):
replaces slot t reatment s with vector of character vectors with each containing c(name,type,concentration,concer

show signature (object = "ProjectInfo"): shows the content of ProjectInfo.

Author(s)

Christian Stratowa

Examples

project <- new("ProjectInfo",submitter="Christian", laboratory="home",contact="email")

projectInfo (project) <- c("TestProject","20060106","Project Type","use Test3 data for
authorInfo (project) <- c("Stratowa","Christian","Project Leader", "Company", "Dept", "cs
datasetInfo (project) <— c("Test3Set","MC", "Tissue", "Stratowa","20060106", "description"
sourcelInfo (project) <- c ("Unknown", "source type","Homo sapiens", "caucasian", "descript
primcellInfo (project) <- c("Mel31l","primary cell",20071123, "extracted from patient", "me
arrayInfo (project) <— c("Test3", "GeneChip", "description", "my comment")
hybridizInfo (project) <- c(c("TestAl","hyb type","TestAl.CEL",20071117, "my prepl", "star
c("TestA2", "hyb type", "TestA2.CEL",20071117, "my prep2", "star
c("TestBl1l", "hyb type", "TestB1.CEL",20071117, "my prepl", "star
c("TestB2", "hyb type", "TestB2.CEL",20071117, "my prep2", "star
treatmentInfo (project) <- c(c("TestAl","DMSO",4.3,"mM", 1.0, "hours", "intravenous", "my con
c("TestA2","DMSO",4.3,"mM", 8.0, "hours", "intravenous", "my con
c("TestB1l", "DrugA2",4.3,"mM", 1.0, "hours", "intravenous", "my c
c("TestB2", "DrugA2",4.3,"mM", 8.0, "hours", "intravenous", "my c

show (project)

ProjectInfo-constructor
Constructor for Class ProjectInfo

Description
Constructor for class ProjectInfo class allows to save the relevant project information in the ROOT
data file and in class DataTreeSet.

Usage

ProjectInfo (submitter = character
laboratory = character
contact = character

(),
(),
)y
project = character (),
author = character ()
dataset = character ()

4

4

ProjectInfo-constructor

source = character (),
sample = character (),
celline = character (),
primarycell = character (),
tissue = character (),
biopsy = character (),
arraytype = character (),
hybridizations = character (),
treatments = character())
Arguments
submitter "character" representing the name of the submitter.
laboratory "character" representing the laboratory of the submitter.
contact "character" representing the contact address of the submitter.
project "character" vector representing the project information.
author "character" vector representing the author information.
dataset "character" vector representing the dataset information.
source "character" vector representing the sample source information.
sample "character" vector representing the sample information.
celline "character" vector representing the sample information for cell lines.
primarycell "character" vector representing the sample information for primary cells.
tissue "character" vector representing the sample information for tissues.
biopsy "character" vector representing the sample information for biopsies.
arraytype "character" vector representing the array information.
hybridizations
"character" vector representing the hybridization information for each hy-
bridization.
treatments "character" vector representing the treatment information for each hybridiza-
tion.
Details

17

The ProjectInfo constructor allows to save the following project information in the ROOT data file

and in class DataTreeSet:

submitter:
laboratory:
contact:
project:
author:
dataset:
source:
sample:
celline:
primarycell:
tissue:
biopsy:
arraytype:
hybridizations:
treatments:

name of the submitter.

laboratory of the submitter.

contact address of the submitter.

character vector c(name,date,type,description,comments).

character vector c(lastname,firstname,type,company,department,email, phone,comments)..
character vector c(name,type,sample,submitter,date,description,comments).

character vector c(name,type,species,subspecies,description,comments).

character vector c(name,type,sex,phenotype,genotype,extraction, isxenograft,xenostrain,xenose
character vector c(name,type,parent,atcc,modification,sex,phenotype, genotype,extraction,isxer
character vector c(name,type,date,description,sex,phenotype, genotype,extraction,isxenograft,x
character vector c(name,type,development,morphology,disease,stage, donorage,ageunit,status,s
character vector c(name,type,morphology,disease,stage,donorage,ageunit, status,sex,phenotype
character vector c(chipname,chiptype,description,comments).

vector of character vectors with each containing c(name,type,inputname,date,preparation,proto
vector of character vectors with each containing c(name,type,concentration,concentrationunit,ti

18 ROOT

Value

An object of type "ProjectInfo"

Note

Function ProjectInfo is used as constructor for class Project Info so that the user need not
know details for creating S4 classes.

Author(s)

Christian Stratowa

See Also

ProjectInfo

Examples

fill character vectors within constructor
project <- ProjectInfo(submitter="Christian", laboratory="home",contact="email",
project=c ("TestProject","20060106", "Project Type","use Test3 data
hybridizations=c (c("TestAl", "hyb type", "TestAl.CEL",20071117,"my ¢
c("TestA2", "hyb type", "TestA2.CEL",20071117, "my ¢
c("TestB1l", "hyb type", "TestB1.CEL",20071117, "my ¢
c("TestB2", "hyb type", "TestB2.CEL",20071117, "my ¢
str (project)

alternatively add character vectors as methods after creation of constructor
authorInfo (project) <- c("Stratowa","Christian", "Project Leader", "Company", "Dept", "cst
datasetInfo (project) <- c("Test3Set","MC", "Tissue", "Stratowa","20060106", "description",
treatmentInfo (project) <- c(c("TestAl","DMSO",4.3,"mM", 1.0, "hours", "intravenous", "my comn
c("TestA2","DMSO",4.3, "mM", 8.0, "hours", "intravenous", "my comn
c("TestB1", "DrugA2",4.3,"mM", 1.0, "hours", "intravenous", "my cc
c("TestB2", "DrugA2",4.3, "mM", 8.0, "hours", "intravenous", "my cc
str (project)

ROOT ROOT An Object-Oriented Data Analysis Framework

Description

ROOT system overview

Details

ROOT is a modular object-oriented framework aimed at solving the data analysis challenges of
high-energy physics. The relevant features of ROOT are as follows:

Architecture: The ROOT architecture is a layered class hierarchy with over 500 classes divided into
different categories. Most of the classes inherit from a common base class TObject, which provides
the default behavior and protocol for all objects.

ROOT Files: Object input/output is handled by class TFile, which has a UNIX-like directory struc-
ture and provides a hierarchical sequential and direct access persistent object store. ROOT files

SchemeTreeSet-class 19

store information in a machine independent format and support on-the-fly data compression. Fur-
thermore, ROOT files are self-describing: for every object stored in TFile, a dictionary describing
the corresponding class is written to the file. A dictionary generator, called ROOTCINT, parses
the class header files and generates a dictionary. Note: TFile can be considered to be the ROOT
analogon to an R environment.

Data Trees: Any object derived from TObject can be written to a file with an associated key TKey.
However, each key has an overhead in the directory structure in memory. To reduce this overhead,
a novel concept, called Trees (class TTree) has been developed. Trees are designed to support very
large numbers of complex objects in a large number of files. A Tree consists of branches (TBranch)
with each branch described by its leaves (TLeaf). Trees allow direct and random access to any entry
of a selected subset of branches. Thus, Trees extend and replace the usual data tables. The concept
of Tree friends allows the joining of many trees as one virtual tree. However, unlike table joins in
an RDBMS, the processing time is independent of the number of tree friends. Note: TTree can be
considered to be the ROOT analogon to an R data.frame.

CINT: CINT is an interactive C/C++ interpreter, which is aimed at processing C/C++ scripts, called
macros. Currently, CINT covers 99% of ANSI C and 95% of ANSI C++. CINT offers a gdb-like
debugger for interpreted programs and allows the automatic compilation of scripts using ACLiC,
the automatic compiler of libraries for CINT. Although available as independent program, CINT
is embedded in ROOT as command line interpreter and macro processor, as well as dictionary
generator.

User interaction: The ROOT system can be accessed from the command line, by writing macros, or
via a graphic user interface (e.g. RootBrowser). Furthermore, it is possible to write libraries and ap-
plications. The ROOT GUI classes allow the development of full-featured standalone applications.
Note: A macro can be considered to be the ROOT analogon of an R script. The RootBrowser can
be opened using function root .browser

Platform independence: The ROOT system is available for most platforms and operating systems,
including Linux, MacOS X, and the major flavors of UNIX and Windows. ROOT and ROOT-
derived applications can be compiled for any supported platform.

Author(s)

The ROOT team http://root.cern.ch/root/Authors.html

References

ROOT User Guide http://root.cern.ch/root/doc/RootDoc.html
ROOT publications http://root.cern.ch/root/Publications.html

Christian Stratowa (2003), Distributed Storage and Analysis of Microarray Data in the Terabyte
Range: An Alternative to BioConductor http://www.ci.tuwien.ac.at/Conferences/
DSC-2003/Proceedings/Stratowa.pdf

SchemeTreeSet-class
Class SchemeTreeSet

Description

This class provides the link to the ROOT scheme file and the ROOT trees contained therein. It
extends class TreeSet.

http://root.cern.ch/root/Authors.html
http://root.cern.ch/root/doc/RootDoc.html
http://root.cern.ch/root/Publications.html
http://www.ci.tuwien.ac.at/Conferences/DSC-2003/Proceedings/Stratowa.pdf
http://www.ci.tuwien.ac.at/Conferences/DSC-2003/Proceedings/Stratowa.pdf

20 SchemeTreeSet-class

Objects from the Class

Objects can be created using the functions import .expr.scheme, import.exon.scheme,
import.genome.scheme or root.scheme.

Slots

chipname: Object of class "character" representing the Affymetrix chip name.

chiptype: Objectofclass "character" representing the chip tpye, either ‘GeneChip’, ‘GenomeChip’
or ‘ExonChip’.

probeinfo: Object of class "1ist" representing chip information, including nrows, ncols,
number of probes, etc.

mask: Object of class "data.frame". The data.frame can contain the mask used to identify the
probes as e.g. PM, MM or control probes.

setname: Object of class "character" representing the name to the ROOT file subdirectoy
where the ROOT scheme trees are stored; it is identical to chipname.

settype: Object of class "character" describing the type of treeset stored in setname, i.e.
‘scheme’.

rootfile: Object of class "character" representing the name of the ROOT scheme file, in-
cluding full path.

filedir: Object of class "character" describing the full path to the system directory where
rootfile is stored.

numtrees: Object of class "numeric" representing the number of ROOT trees stored in subdi-
rectoy setname.

treenames: Object of class "11ist" representing the names of the ROOT trees stored in subdi-
rectoy setname.

Extends

Class "TreeSet", directly.

Methods

attachMask signature (object = "SchemeTreeSet"): exports scheme tree from ROOT
scheme file and and saves as data.frame mask.

chipMask signature (object = "SchemeTreeSet"): extracts data.frame mask.

chipMask<- signature (object = "SchemeTreeSet", value = "data.frame"):
replaces data.frame mask.

chipName signature (object = "SchemeTreeSet"): extracts slot chipname.

chipType signature (object = "SchemeTreeSet"): extracts slot chiptype.

chipType<- signature (object = "SchemeTreeSet", value = "character"):re-

places slot chiptype.

export signature (object = "SchemeTreeSet"): exports ROOT trees as text file, see
export—-methods.

neols signature (object = "SchemeTreeSet"): extracts the physical number of array
columns from slot probeinfo.

nrows signature (object = "SchemeTreeSet"): extracts the physical number of array
rows from slot probeinfo.

TreeSet-class 21

probelnfo signature (object = "SchemeTreeSet"): extracts slot probeinfo.

removeMask signature (object = "SchemeTreeSet"): replaces data.frame mask with
an empty data.frame of dim(0,0).

Author(s)

Christian Stratowa

Examples

showClass ("SchemeTreeSet")

TreeSet-class Class TreeSet

Description

This is the virtual base class for all other classes providing the link to a ROOT file and the ROOT
trees contained therein.

Objects from the Class

A virtual Class: No objects may be created from it.

Slots
setname: Object of class "character" representing the name to the ROOT file subdirectory
where the ROOT trees are stored, usually one of ‘DataTreeSet’, ‘PreprocesSet’, ‘CallTreeSet’.

settype: Object of class "character" describing the type of treeset stored in setname,
usually one of ‘scheme’, ‘rawdata’, ‘preprocess’.

rootfile: Object of class "character" representing the name of the ROOT file, including
full path.

filedir: Object of class "character" describing the full path to the system directory where
rootfile is stored.

numtrees: Object of class "numeric" representing the number of ROOT trees stored in subdi-

rectoy setname.

treenames: Object of class "1ist" representing the names of the ROOT trees stored in subdi-
rectoy setname.

Methods
export signature (object = "TreeSet"):exports ROOT trees as text file, see export —methods.
fileDir signature (object = "TreeSet"): extractsslot filedir.
fileDir<- signature (object = "TreeSet", value = "character"): replacesslot
filedir.
root.browser signature (object = "TreeSet"): opens the ROOT file browser.
rootFile signature (object = "TreeSet"): extracts slot rootfile.
rootFile<- signature (object = "TreeSet", value = "character"): replaces slot

rootfile.

22 UniFilter-class

setName signature (object = "TreeSet"): extracts slot setname.

setName<- signature (object = "TreeSet", value = "character"): replaces slot
setname.

setType signature (object = "TreeSet"): extracts slot settype.

setType<- signature (object = "TreeSet", value = "character"): replaces slot
settype.

treeNames signature (object = "TreeSet"): extracts slot treenames.

Author(s)

Christian Stratowa

See Also

derived classes SchemeTreeSet, DataTreeSet, ExprTreeSet, CallTreeSet.

Examples

showClass ("TreeSet")

UniFilter-class Class UniFilter

Description

Class UniFilter allows to apply different unitest filters to class ExprTreeSet, i.e. to the expres-
sion level data.frame data.

Objects from the Class

Objects can be created by calls of the form new ("UniFilter"™, ...).
Alternatively, the contructor UniFilter can be used.

Slots

foldchange: Object of class "1ist" describing parameters for fcFilter.
prescall: Object of class "11ist" describing parameters for callFilter.
unifilter: Object of class "1ist" describing parameters for unitestFilter.
unitest: Object of class "1ist" describing parameters for uniTest.

numfilters: Object of class "numeric" giving the number of filters applied.

Extends

Class "Filter", directly.

UniFilter-constructor 23

Methods
callFilter signature (object = "UniFilter"): extracts slot prescall.
callFilter<- signature (object = "UniFilter", value = "character"): replaces

slot prescall with character vector c(cutoff, samples, condition).
fcFilter signature (object = "UniFilter"): extracts slot foldchange.

fcFilter<- signature (object = "UniFilter", value = "numeric"): replaces slot
foldchange with numeric vector c(cutoff, direction).

uniTest signature (object = "UniFilter"): extracts slot unitest.

uniTest<- signature (object = "UniFilter", value = "character"): replaces
slot unitest with character vector c(type, alternative, correction, numperm, mu, paired,
conflevel, varequ).

unitestFilter signature (object = "UniFilter"): extracts slotunifilter.

unitestFilter<- signature (object = "UniFilter", value = "character"):re-
places slot unifilter with character vector c(cutoff, variable).

Author(s)

Christian Stratowa

See Also

related classes Filter, PreFilter.

Examples

unifltr <- new("UniFilter", unitest=list ("t.test"))
fcFilter (unifltr) <- c (1.5, "both")

unitestFilter (unifltr) <- c(0.01,"pval")
str(unifltr)

UniFilter-constructor
Constructor for Class UniFilter

Description

Constructor for class UniFilter allows to apply different unitest filters to class ExprTreeSet, i.e.
to the expression level data.frame data.

Usage
UniFilter (unitest = "t.test",
foldchange = character(),
prescall = character(),

unifilter = character())

24 UniFilter-constructor

Arguments
unitest "character" vector describing parameters for uniTest.
foldchange "character" vector describing parameters for fcFilter.
prescall "character" vector describing parameters for callFilter.
unifilter "character" vector describing parameters for unitestFilter.
Details

The UniFilter constructor allows to apply the following unitest filters to class ExprTreeSet:

unitest: character vector c(type,alternative,correction.numperm,mu,paired,conflevel,varequ).
foldchange: character vector c(cutoff,direction).
prescall: character vector c(cutoff,samples,condition).
unifilter: character vector c(cutoff,variable).
Value

An object of type "UniFilter"

Note

Function UniFilter is used as constructor for class UniFilter so that the user need not know
details for creating S4 classes.

Author(s)

Christian Stratowa

See Also

UniFilter,PreFilter

Examples

fill character vectors within constructor

unifltr <- UniFilter (unitest=c("t.test","two.sided", "none",0,0.0,FALSE,0.95,TRUE),
foldchange=c (1.3, "both"),unifilter=c (0.1, "pval"))

str(unifltr)

alternatively add character vectors as methods after creation of constructor
unifltr <- UniFilter ()

fcFilter (unifltr) <- c (1.5, "both")

unitestFilter (unifltr) <- c(0.01, "pval")

str(unifltr)

addData-methods 25

addData-methods Import additional CEL files into a DataTreeSet

Description
Import additional CEL files into a DataTreeSet and update ROOT data file.

Usage

addData (object, celdir = NULL, celfiles = "", celnames = NULL, project
= NULL, verbose = TRUE)

Arguments
object object of class DataTreeSet.
celdir system directory containing the CEL-files for corresponding scheme.
celfiles optional vector of CEL-files to be imported.
celnames optional vector of names which should replace the CEL-file names.
project optional class ProjectInfo.
verbose logical, if TRUE print status information.

Details

Import additional CEL-files and update ROOT data file rootfile.

To import CEL-files from different directories, vector celfiles must contain the full path for
each CEL-file and celdir must be celdir=NULL.
Value

A DataTreeSet object.

Author(s)

Christian Stratowa

See Also

import.data, root.data

Examples

get scheme and import subset of CEL-files from package

scheme.test3 <- root.scheme (paste (.path.package ("xps"), "schemes/SchemeTest3.root", sep="/"

data.test3 <- import.data(scheme.test3, "tmp_test3",celdir=paste (.path.package ("xps"), "rav
celfiles=c ("TestAl.CEL","TestB2.CEL"), verbose=FALSE)

unlist (treeNames (data.test3))
add further subset of CEL-files
data.test3 <- addData (data.test3,celdir=paste(.path.package ("xps"),"raw",sep="/"),

celfiles=c ("TestA2.CEL","TestB1.CEL"), verbose=FALSE)

unlist (treeNames (data.test3))

26 attachBgrd-methods

attachBgrd-methods Attach/Remove Background Intensities

Description

Attach/remove background intensities to/from DataTreeSet.
Usage
attachBgrd (object, treenames = "x")

removeBgrd (object)

Arguments

object Object of class "DataTreeSet™".

treenames Object of class "11ist" representing the names of the ROOT background trees.
Details

Whenever one of the bgcorrect methods will be applied to raw CEL intensities, the background
intensities will be stored in ROOT background trees. However, the background intensities will not
be saved as data.frame bgrd, thus avoiding memory problems. Function attachBgrd allows to
fill slot bgrd on demand.

attachBgrd exports intensities from background trees from ROOT data file and saves as data.frame
bgrd. treenames is a vector of tree names to attach; for t reenames="+" all trees from slot
treenames will be exported and background intensities attached as data.frame bgrd.

removeBgrd removes background intensities from Dat aTreeSet and replaces data.frame bgrd
with an empty data.frame of dim(0,0).

Value

A DataTreeSet object.

Note

Do not use attachBgrd unless you know that your computer has sufficient RAM, especially
when using exon arrays. It may be advisible to use a subset of t reenames only.

Author(s)

Christian Stratowa

See Also

attachInten, removelnten

attachCall-methods 27

attachCall-methods Attach/Remove Detecion Call Measures

Description

Attach/remove detection call and detection p-value to/from CallTreeSet.

Usage
attachCall (object, treenames = "x*")
attachPVval (object, treenames = "x")

removeCall (object)

removePVal (object)

Arguments

object Object of class "CallTreeSet™".

treenames Object of class "1ist " representing the names of the ROOT call trees.
Details

By default detection calls will be saved in class CallTreeSet in slots data and detcall,
respectively, since usually the data . frames obtained as result of e.g. mas5.call are of rea-
sonable size. However, when computing many arrays, especially exon arrays at probeset levels,
it may be better to compute detection calls with slot add.data=FALSE thus avoiding memory
problems. In this case, functions attachCall and attachPVal allow to fill slots detcall
and data, respectively, on demand.

attachCall exports detection calls from call trees from ROOT call file and and saves as data.frame
detcall. treenames is a vector of tree names to attach; for t reenames="x" all trees from
slot t reenames will be exported and detection calls attached as data.frame detcall.

attachPVal exports detection p-values from call trees from ROOT call file and and saves as
data.frame data. treenames is a vector of tree names to attach; for t reenames="x" all trees
from slot t reenames will be exported and detection p-values attached as data.frame data.

removeCall removes detection calls from CallTreeSet and replaces data.frame detcall
with an empty data.frame of dim(0,0).

removePVal removes detection p-values from CallTreeSet and replaces data.frame data
with an empty data.frame of dim(0,0).

Value

A CallTreeSet object.

Note

Do not use attachCall and attachPVal unless you know that your computer has sufficient
RAM, especially when using exon arrays. It may be advisible to use a subset of t reenames only.

Author(s)

Christian Stratowa

28 attachExpr-methods

See Also

attachExpr, removeExpr

Examples

first, load ROOT scheme file and ROOT data file
scheme.test3 <- root.scheme (paste (.path.package ("xps"), "schemes/SchemeTest3.root", sep="/"
data.test3 <- root.data(scheme.test3, paste(.path.package ("xps"), "rootdata/DataTest3_cel.

MASS5 detection call
call.mas5 <- mas5.call(data.test3, "tmp_Test3Call0", tmpdir="",add.data=FALSE, verbose=FALSE

attach data
call.mas5 <- attachPVal (call.masb)
call.mas5 <- attachCall (call.masb)

get data.frames

pval.masb5 <- pvalData(call.masb)
pres.masb <- presCall (call.masb)
head(pval.mas5)

head (pres.masb)

remove data
call.mas5 <- removePVal (call.masb)
call.mas5 <- removeCall (call.masb)

rm(scheme.test3, data.test3)
gc ()

attachExpr-methods Attach/Remove Expression Measures

Description

Attach/remove expression levels to/from ExprTreeSet.
Usage
attachExpr (object, treenames = "x")

removeExpr (object)

Arguments

object Object of class "ExprTreeSet".

treenames Object of class "11ist " representing the names of the ROOT expression trees.
Details

By default expression levels will be saved in class ExprTreeSet as slot data, since usually
the data. frame obtained as result of e.g. rma normalization is of reasonable size. However,
when normalizing many arrays, especially exon arrays at probeset levels, it may be better to com-
pute rma with slot add.data=FALSE thus avoiding memory problems. In this case, function
attachExpr allows to fill slot data on demand.

attachInten-methods 29

attachExpr exports expression levels from expression trees from ROOT expression file and and
saves as data.frame data. treenames is a vector of tree names to attach; for t reenames="x%"
all trees from slot t reename s will be exported and expression levels attached as data.frame data.

removeExpr removes expression levels from ExprTreeSet and replaces data.frame data with
an empty data.frame of dim(0,0).

Value

A ExprTreeSet object.

Note

Do not use attachExpr unless you know that your computer has sufficient RAM, especially
when using exon arrays. It may be advisible to use a subset of t reenames only.

Author(s)

Christian Stratowa

See Also

attachCall, removeCall

Examples
first, load ROOT scheme file and ROOT data file
scheme.test3 <- root.scheme (paste (.path.package ("xps"), "schemes/SchemeTest3.root",sep="/"
data.test3 <- root.data(scheme.test3, paste(.path.package ("xps"),"rootdata/DataTest3_cel.
data.rma <- rma(data.test3,"tmp_Test3RMAO", tmpdir="",background="pmonly", normalize=TRUE, ¢

attach data
data.rma <- attachExpr (data.rma)

get data.frame
expr.rma <- validData (data.rma)
head (expr.rma)

remove data
data.rma <- removeExpr (data.rma)

rm(scheme.test3, data.test3l)
gc ()

attachInten-methods
Attach/Remove Intensities

Description

Attach/remove raw CEL intensities to/from DataTreeSet.
Usage
attachInten(object, treenames = "x")

removelnten (object)

30 attachInten-methods

Arguments

object Object of class "DataTreeSet".

treenames Object of class "11ist" representing the names of the ROOT data trees.
Details

When CEL files will be imported using function import . data, the raw intensities will be stored
in ROOT data trees. However, the intensities will not be saved in class DataTreeSet as slot
data, thus avoiding memory problems. Function attachInten allows to fill slot data on
demand.

attachInten exports intensities from data trees from ROOT data file and and saves as data.frame
data. treenames is a vector of tree names to attach; for t reenames="x" all trees from slot
treenames will be exported and intensities attached as data.frame data.

removeInten removes intensities from DataTreeSet and replaces data.frame data with an
empty data.frame of dim(0,0).

Value

A DataTreeSet object.

Note

Do not use attachInten unless you know that your computer has sufficient RAM, especially
when using exon arrays. It may be advisible to use a subset of t reenames only.

Author(s)

Christian Stratowa

See Also

attachBgrd, removeBgrd

Examples

load existing ROOT scheme file and ROOT data file

scheme.test3 <- root.scheme (paste (.path.package ("xps"), "schemes/SchemeTest3.root",sep="/"
data.test3 <- root.data(scheme.test3, paste(.path.package ("xps"), "rootdata/DataTest3_cel.
dim(intensity (data.test3))

data.test3 <- attachInten (data.test3)
dim(intensity (data.test3))
head(intensity(data.test3))

data.test3 <- removelnten (data.test3)
dim(intensity(data.test3))

attachMask-methods 31

attachMask—-methods Attach/Remove Scheme Mask

Description

Attach/remove scheme mask to/from SchemeTreeSet or to slot scheme of DataTreeSet.

Usage

attachMask (object)

removeMask (object)

Arguments

object Object of class "SchemeTreeSet" or "DataTreeSet".

Details

attachMask exports mask from scheme tree from ROOT scheme file and and saves mask as
data.frame mask of slot scheme.

removeMask removes mask from SchemeTreeSet or from slot scheme of DataTreeSet
and replaces data.frame ma sk with an empty data.frame of dim(0,0).
Value

A DataTreeSet object or SchemeTreeSet.

Note
Do not use at tachMask unless you know that your computer has sufficient RAM, especially for
exon array schemes.

Author(s)

Christian Stratowa

See Also

import.expr.scheme, import.exon.scheme

Examples

load existing ROOT scheme file
scheme.test3 <- root.scheme (paste (.path.package ("xps"), "schemes/SchemeTest3.root", sep="/"
dim(chipMask (scheme.test3))

scheme.test3 <- attachMask (scheme.test3)
dim(chipMask (scheme.test3))
head (chipMask (scheme.test3))

scheme.test3 <- removeMask (scheme.test3)
dim (chipMask (scheme.test3))

32 bgcorrect

bgcorrect Background Correction

Description

Background corrects probe intensities in an object of class DataTreeSet.

Usage
bgcorrect (xps.data, filename = character(0), filedir = getwd(), tmpdir = "", upc
bgcorrect.gc (xps.data, filename = character (0), filedir = getwd(), tmpdir = "",
bgcorrect.mas4 (xps.data, filename = character(0), filedir = getwd(), tmpdir = ""
bgcorrect.mas5 (xps.data, filename = character(0), filedir = getwd(), tmpdir = ""
bgcorrect.rma (xps.data, filename = character(0), filedir = getwd(), tmpdir = "",

xpsBgCorrect (object, ...)

Arguments
xps.data object of class DataTreeSet.
filename file name of ROOT data file.
filedir system directory where ROOT data file should be stored.
tmpdir optional temporary directory where temporary ROOT files should be stored.
update logical. If TRUE the existing ROOT data file £i 1ename will be updated.
select type of probes to select for background correction.
method background method to use.
option type of background correction to use.
exonlevel exon annotation level determining which probes should be used for summariza-
tion; exon/genome arrays only.
params vector of parameters for background method.
verbose logical, if TRUE print status information.
object object of class DataSet.
the arguments described above.
Details

Background corrects probe intensities in an object of class DataTreeSet.

xpsBgCorrect is the DataSet method called by function bgcorrect, containing the same
parameters.

Value

An DataTreeSet

boxplot-methods 33

Author(s)

Christian Stratowa

See Also

exXpress

Examples

first, load ROOT scheme file and ROOT data file
scheme.test3 <- root.scheme (paste (.path.package ("xps"), "schemes/SchemeTest3.root", sep="/"
data.test3 <- root.data(scheme.test3, paste(.path.package ("xps"), "rootdata/DataTest3_cel.

MAS4 sector background
data.bg.mas4 <- bgcorrect.mas4 (data.test3, "tmp_Test3MAS4Bgrd", filedir=getwd (), tmpdir="",v

need to attach background intensities
data.bg.mas4 <- attachBgrd(data.bg.mas4)

get data.frame
bg.mas4 <- validBgrd(data.bg.mas4)
head (bg.mas4)

plot images

if (interactive()) |

image.dev (data.bg.mas4,bg=TRUE, col=rainbow (32))

image (matrix (bg.mas4[,1], ncol=ncols (schemeSet (data.bg.mas4)), nrow=nrows (schemeSet (data.

}

boxplot-methods Box Plots

Description

Produce box-and-whisker plot(s) of the samples.
Usage

boxplot (x, which = "", size = 0, transfo = log2, range = 0, names
= "namepart", ...)

Arguments
X object of class DataTreeSet or ExprTreeSet.
which type of probes to be used, for details see validData.
size length of sequence to be generated as subset.
transfo a valid function to transform the data, usually “log2”, or “0”.
range determines how far the plot whiskers extend out from the box.
names optional vector of sample names.

e optional arguments to be passed to boxplot.

34 boxplot.dev

Details

Creates a boxplot for slot data for an object of class DataTreeSet or ExprTreeSet.

For name s=NULL full column names of slot dat a will be displayed while for names="namepart"
column names will be displayed without name extension. If names is a vector of column names,
only these columns will displayed as boxplot.

Note

For a DataTreeSet object, data must first be attached using method attachInten.

Author(s)

Christian Stratowa

See Also

boxplot .dev, boxplot

Examples

load existing ROOT scheme file and ROOT data file

scheme.test3 <- root.scheme (paste (.path.package ("xps"), "schemes/SchemeTest3.root", sep="/"
data.test3 <- root.data(scheme.test3, paste(.path.package ("xps"), "rootdata/DataTest3_cel.

need to attach scheme mask and probe intensities
data.test3 <- attachMask (data.test3)
data.test3 <- attachInten(data.test3)

if (interactive()) {
boxplot (data.test3)
}

optionally remove mask and data to free memory
data.test3 <- removelInten (data.test3)
data.test3 <- removeMask (data.test3)

rm(scheme.test3, data.test3l)
gc ()

boxplot.dev Box Plots for Device

Description

Produce box-and-whisker plot(s) of the samples for the selected device.

Usage

boxplot.dev(x, which = "", size = 0, transfo = log2, range = 0, names

"namepar

callFilter-methods 35

Arguments
X object of class DataTreeSet or ExprTreeSet.
which type of probes to be used, for details see validData.
size length of sequence to be generated as subset.
transfo a valid function to transform the data, usually Log2, or O.
range determines how far the plot whiskers extend out from the box.
names optional vector of sample names.
mar plot margin.
las style of axis labels.
dev graphics device to plot to, i.e. one of “screen”, “jpeg”,“png”, “pdf” or “ps”.
outfile the name of the output file.
w the width of the device in pixels.
h the height of the device in pixels.
optional arguments to be passed to boxplot.
Details

Produces a boxplot for slot data for an object of class DataTreeSet or ExprTreeSet for the
selected graphics device.

Note

For a DataTreeSet object, data must first be attached using method attachInten.

Author(s)

Christian Stratowa

See Also

boxplot

callFilter—-methods Detection Call Filter

Description

Detection Call Filter.

The cutoff value defines the upper threshold for allowed detection call p-values. If e.g. the
number of samples exceeding this cutoff value is greater than samples then the corresponding
expression dataframe row is flagged, i.e. flag = 0.

The Detection Call Filter flags all rows with: flag = (sum(call[i] >= cutoff) >=
samples)

Usage

callFilter (object)
callFilter (object, value)<-

36 callplot-methods

Arguments

object object of class PreFilter orUniFilter.

value character vector c (cutoff, samples, condition).
Details

The method callFilter initializes the following parameters:

cutoff: the cutoff value for the filter:

cutoff = 1.0: present/absent call is used.

cutoff < 1.0: detection p-value is used as cutoff.
samples: this value depends on the condition used:
condition: condition="samples": number of samples (default):

condition="percent": percent of samples.

Value

An initialized PreFilter or UniFilter object.

Author(s)

Christian Stratowa

Examples

initialize PreFilter

prefltr <- PreFilter()

callFilter (prefltr) <- c¢(0.02,80.0, "percent")
str(prefltr)

initialize UniFilter

unifltr <— UniFilter ()

callFilter (unifltr) <- ¢(0.02,80.0, "percent")
str(unifltr)

callplot-methods Barplot of Percent Present and Absent Calls.

Description

Creates a barplot of percent Present/Marginal/Absent calls.
Usage

callplot (x, beside = TRUE, names = "namepart", col = c("red","green", "blue"),
legend = c("P","M","A"), ...)

Arguments
X object of class CallTreeSet.
beside logical. If FALSE, the columns of height are portrayed as stacked bars, and if

TRUE the columns are portrayed as juxtaposed bars.

cvFilter-methods

names
col

legend

Details

37

optional vector of sample names.
color for P/M/A bars
legend for the plot, defaults to P/M/A.

optional arguments to be passed to barplot.

Creates a barplot of percent Present/Marginal/Absent calls.

For name s=NULL full column names of slot dat a will be displayed while for names="namepart"
column names will be displayed without name extension. If names is a vector of column names,
only these columns will displayed as callplot.

Author(s)

Christian Stratowa

See Also

pmplot

cvFilter-methods Coefficient of Variation Filter

Description

This method initializes the Coefficient of Variation Filter.
The coefficient of variation is the standard deviation divided by the absolute value of the mean.
The CV Filter flags all rows with: flag = (cv >= cutoff)

Usage

Arguments

object

value

Details

cvFilter (object)
cvFilter (object, value)<-

object of class PreFilter.

numeric vector ¢ (cutoff, trim, epsilon).

The method cvFilter initializes the following parameters:

cutoff: the cutoff level for the filter.
trim: the trim value for trimmed mean (default is t rim=0).
epsilon: value to replace mean (defaultis epsilon=0.01):

epsilon > 0: replace mean=0 with epsilon.
epsilon = 0: always set mean=1.

Note, that for epsilon = O the filter flags all rows with: stdev >= cutoff

38 dabg.call

Value

An initialized PreFilter object.

Author(s)

Christian Stratowa

Examples

prefltr <- PreFilter ()
cvFilter (prefltr) <- ¢(0.3,0.0,0.01)
str (prefltr)

dabg.call Detection Above Background Call

Description

Computes the Detection Above Background Call first implemented for the Exon arrays.

Usage
dabg.call (xps.data, filename = character(0), filedir = getwd(),
alphal = 0.04, alpha2 = 0.06,
option = "transcript", exonlevel = "", xps.scheme = NULL, add.data = T

xpsDABGCall (object, ...)

Arguments
xps.data object of class DataTreeSet.
filename file name of ROOT data file.
filedir system directory where ROOT data file should be stored.
alphal a significance threshold in (0,alpha2).
alpha?2 a significance threshold in (alphal,0.5).
option option determining the grouping of probes for summarization, one of ‘tran-
script’, ‘exon’, ‘probeset’; exon arrays only.
exonlevel exon annotation level determining which probes should be used for summariza-

tion; exon/genome arrays only.

xps.scheme optional alternative SchemeTreeSet.

add.data logical. If TRUE call data will be added to slots data and detcall.
verbose logical, if TRUE print status information.
object object of class DataTreeSet.

the arguments described above.

dabg.call 39

Details

This function generates a detection p-value based on comparing the perfect match probe intensity
to the intensity distribution provided by background probes sharing the same GC-content as the PM
probe under consideration. For exon/genome arrays special ‘antigenomic’ background probes of
defined GC-content are used, while for expression arrays the Mismatch probes will be grouped by
their GC-content.

For exon/genome arrays it is necessary to supply opt ion and exonlevel.

Following opt ions are valid for exon arrays only:
transcript: expression levels are computed for transcript clusters, i.e. probe sets containing the same ‘transcript_clu

exon: expression levels are computed for exon clusters, i.e. probe sets containing the same ‘exon_id’, where e:
probeset: expression levels are computed for individual probe sets, i.e. for each ‘probeset_id’.

Following exonlevel annotations are valid for exon arrays:

core: probesets supported by RefSeq and full-length GenBank transcripts.
metacore: core meta-probesets.

extended: probesets with other cDNA support.

metaextended: extended meta-probesets.

full: probesets supported by gene predictions only.

metafull: full meta-probesets.

ambiguous: ambiguous probesets only.

affx: standard AFFX controls.

all: combination of above.

Following exonlevel annotations are valid for whole genome arrays:

core: probesets with category ‘unique’ and ‘mixed’.
metacore: probesets with category ‘unique’ only.

affx: standard AFFX controls.

all: combination of above.

Exon levels can also be combined, with following combinations being most useful:

exonlevel="metacore+affx": core meta-probesets plus AFFX controls
exonlevel="coretextended": probesets with cDNA support
exonlevel="core+textended+full": supported plus predicted probesets

Exon level annotations are described in the Affymetrix whitepaper ‘exon_probeset_trans_clust_whitepaper.pdf’.
In order to use an alternative SchemeTreeSet set the corresponding SchemeTreeSet xps . scheme.

xpsDABGCall is the DataTreeSet method called by function dabg.call, containing the
same parameters.

Value

A CallTreeSet

40 dfw

Note

Yes, it is possible to compute DABG detection call for expression arrays, but it is very slow and
thus not recommended.

Author(s)

Christian Stratowa

References

Affymetrix (2005) Exon Probeset Annotations and Transcript Cluster Groupings, Affymetrix Inc.,
Santa Clara, CA, exon_probeset_trans_clust_whitepaper.pdf.

See Also

mas5.call

Examples

first, load ROOT scheme file and ROOT data file
scheme.test3 <- root.scheme (paste (.path.package ("xps"), "schemes/SchemeTest3.root", sep="/"
data.test3 <- root.data(scheme.test3, paste(.path.package ("xps"), "rootdata/DataTest3_cel.

DABG detection call
call.dabg <- dabg.call (data.test3, "tmp_Test3DABG", verbose=FALSE)

get data.frames

pval.dabg <- pvalData(call.dabg)
pres.dabg <- presCall(call.dabg)
head (pval.dabg)

head (pres.dabg)

plot results

if (interactive()) {
callplot (call.dabg)
}

rm(scheme.test3, data.test3)
gc ()

dfw Distribution Free Weighted Expression Measure

Description

This function converts aDataTreeSet into an ExprTreeSet using the Distribution Free Weighted
Fold Change (DFW) method.

dfw 41
Usage
dfw (xps.data,
filename = character (0),
filedir = getwd(),
tmpdir =",
normalize = TRUE,
m = 3,
n =1,
c = 0.01,
option = "transcript",
exonlevel = "",
Xps.scheme = NULL,
add.data = TRUE,
verbose = TRUE)
Arguments
xps.data object of class DataTreeSet
filename file name of ROOT data file.
filedir system directory where ROOT data file should be stored.
tmpdir optional temporary directory where temporary ROOT files should be stored.
normalize logical. If TRUE normalize data using quantile normalization.
m positive number as exponent of the weighted range WR.
n positive number as exponent of the weighted standard deviation WSD.
c scaling parameter.
option option determining the grouping of probes for summarization, one of ‘tran-
script’, ‘exon’, ‘probeset’; exon arrays only.
exonlevel exon annotation level determining which probes should be used for summariza-

xXps.scheme
add.data

verbose

Details

tion; exon/genome arrays only.
optional alternative SchemeTreeSet.
logical. If TRUE expression data will be included as slot data.

logical, if TRUE print status information.

This function computes the DFW (Distribution Free Weighted Fold Change) expression measure
described in Chen et al. for both expression arrays and exon arrays. For exon arrays it is necessary
to supply the requested opt ion and exonlevel.

Following opt ions are valid for exon arrays:

transcript: expression levels are computed for transcript clusters, i.e. probe sets containing the same ‘transcript_clu
exon: expression levels are computed for exon clusters, i.e. probe sets containing the same ‘exon_id’, where e:
probeset: expression levels are computed for individual probe sets, i.e. for each ‘probeset_id’.

Following exonlevel annotations are valid for exon arrays:

core:
metacore:

probesets supported by RefSeq and full-length GenBank transcripts.
core meta-probesets.

42 dfw

extended: probesets with other cDNA support.
metaextended: extended meta-probesets.

full: probesets supported by gene predictions only.
metafull: full meta-probesets.

affx: standard AFFX controls.

all: combination of above (including affx).

Following exonlevel annotations are valid for whole genome arrays:

core: probesets with category ‘unique’, ‘similar’ and ‘mixed’.
metacore: probesets with category ‘unique’ only.

affx: standard AFFX controls.

all: combination of above (including affx).

Exon levels can also be combined, with following combinations being most useful:

exonlevel="metacore+affy": core meta-probesets plus AFFX controls
exonlevel="core+extended": probesets with cDNA support
exonlevel="core+extended+full": supported plus predicted probesets

Exon level annotations are described in the Affymetrix whitepaper exon_probeset_trans_clust_whitepaper.pdf:
“Exon Probeset Annotations and Transcript Cluster Groupings”.

In order to use an alternative SchemeTreeSet set the corresponding SchemeSet xps . scheme.

Value

An ExprTreeSet

Note

The expression measure obtained with DFW is given in linear scale, analogously to the expression
measures computed with mas5 and rma.

For the analysis of many exon arrays it may be better to define a tmpdir, since this will store only
the results in the main file and not e.g. background and normalized intensities, and thus will reduce
the file size of the main file. For quantile normalization memory should not be an issue, however
DFW depends on RAM unless you are using a temporary file.

Author(s)

Christian Stratowa

References

Chen, Z., McGee M., Liu Q., and Scheuermann, R.H. (2007), A distribution free summarization
method for Affymetrix GeneChip arrays. Bioinformatics 23(3):321-327

See Also

exXpress

diffFilter-methods 43

Examples

first, load ROOT scheme file and ROOT data file
scheme.test3 <- root.scheme (paste (.path.package ("xps"), "schemes/SchemeTest3.root",sep="/"
data.test3 <- root.data(scheme.test3, paste(.path.package ("xps"),"rootdata/DataTest3_cel.

data.dfw <- dfw(data.test3,"tmp_Test3DFW", verbose=FALSE)
get data.frame

expr.dfw <- validData (data.dfw)
head (expr.dfw)

diffFilter-methods Difference Filter

Description

This method initializes the Difference Filter.

The difference is the maximum value minus minimum value for each row of the expression dataframe
divided by the mean value of each row.

The Difference Filter flags all rows with: flag = ((max - min)/mean >= cutoff)

Usage

diffFilter (object)
diffFilter (object, value)<-

Arguments

object object of class PreFilter.

value numeric vector c (cutoff, trim, epsilon).
Details

The method dif fFilter initializes the following parameters:

cutoff: the cutoff level for the filter.

trim: the trim value for trimmed mean (default is t r im=0).

epsilon: value to replace mean (defaultis epsilon=0.01):
epsilon > 0: replace mean=0 with epsilon.
epsilon = 0: always set mean=1.

Note, that for epsilon = O the filter flags all rows with: (max - min) >= cutoff

Value

An initialized PreFilter object.

Author(s)

Christian Stratowa

44 existsROOTFile

Examples

prefltr <- PreFilter ()
diffFilter (prefltr) <- c(2.2,0.0,0.01)
str (prefltr)

existsROOTFile Test for Existing ROOT File

Description

Test if a ROOT file does already exist.

Usage

existsROOTFile (filename, tmp.rm = TRUE)

Arguments

filename name of ROOT file, including full path.

tmp.rm logical, if TRUE then exlude filenames beginning with dQuote(tmp_).
Value

Return TRUE if file filename is an already existing ROOT file.

Note

It is possible to create temporary ROOT files called “tmp” or with £ilename starting with “tmp_"
which can be overwritten. Thus by default temporary files will not be recognized by exi st sROOTFile.
If you want to recognize temporary files, set tmp.rm = TRUE.

Author(s)

Christian Stratowa

See Also

1sROOTFile

Examples

existsROOTFile (paste (.path.package ("xps"), "schemes/SchemeTest3.root", sep="/"))

exonLevel 45

exonLevel Conversion of Parameter exonlevel to Integer

Description

Conversion of parameter exonlevel to an integer vector.

Usage
exonLevel (exonlevel = "", chiptype = "GeneChip", as.sum = TRUE)
Arguments
exonlevel exon annotation level determining which probes should be used for summariza-
tion; exon/genome arrays only.
chiptype chip tpye, one of ‘GeneChip’, ‘GenomeChip’, ‘ExonChip’.
as.sum logical, if TRUE an integer vector of size three will be returned, if FALSE then
the levels will be split into the basic integer representations.
Details

Conversion of parameter exonlevel to an integer; this function is a utility function, which is
usually only used internally.

Following exonlevel annotations are valid for exon arrays:

core: (=8192+1024) probesets supported by RefSeq and full-length GenBank transcripts.
metacore: (=8192) core meta-probesets.

extended: (=4096+512) probesets with other cDNA support.

metaextended: (=4096) extended meta-probesets.

full: (=2048+256) probesets supported by gene predictions only.

metafull: (=2048) full meta-probesets.

ambiguous: (= 1 28) probesets that fall within multiple genes.

affx: (=60) standard AFFX controls.

all: (= l 6316) combination of above (including affx).

Following exonlevel annotations are valid for whole genome arrays:

core: (=8192+1024) probesets with category ‘unique’, ‘similar’ and ‘mixed’.
metacore: (= 8 l 92) probesets with category ‘unique’ only.

affx: (=60) standard AFFX controls.

all: (= 9 2 7 6) combination of above (including affx).

Exon levels can also be combined, with following combinations being most useful:

exonlevel="metacore+affx": core meta-probesets plus AFFX controls
exonlevel="coretextended": probesets with cDNA support
exonlevel="core+extended+full": supported plus predicted probesets

Exon level annotations are described in the Affymetrix whitepaper exon_probeset_trans_clust_whitepaper.pdf:

46

“Exon Probeset Annotations and Transcript Cluster Groupings”.

export

Parameter exonlevel determines not only which probes are used for medianpolish, but also
the probes used for background calculation and for quantile normalization. If you want to use
seperate probes for background calculation, quantile normalization and medianpolish summariza-
tion, you can pass a numeric vector containing three integer values corresponding to the respective
exonlevel. These integers must be the sum of the integers shown above, e.g. you can use
exonlevel=c (16316,8252,8252), where 8252=8192+60 for "metacore+affx"

Value

an integer vector.

Author(s)

Christian Stratowa

See Also
rma, masb

Examples
exonLevel ("core", "GenomeChip")
exonLevel ("all", "GenomeChip")
exonLevel ("core+extended+full", "ExonChip")
exonLevel ("coretextended+full", "ExonChip",
exonlevel (c(16316,8252,8252), "ExonChip")

as.sum=FALSE)

export

Export data as text files

Description

Export data from classes SchemeTreeSet,DataTreeSet, ExprTreeSet,orCallTreeSet

tooutfile.

Usage
export.scheme (xps.scheme, treetype =
export.data (xps.data, treename = "x",
export.expr (xps.expr, treename = "x",
export.call (xps.call, treename = "x",

export (object, ...)

character (0),

treetype

treetype

treetype

varlist = "*", outfile = char

"cel", wvarlist = "x", outfile =

character (0), wvarlist =

"*", ou

character (0), varlist = "x", ou

export 47

Arguments

Xps.scheme an object of type SchemeTreeSet.

xps.data an object of type DataTreeSet.

XPS.expr an object of type ExprTreeSet.

xps.call an object of type CallTreeSet.

treename vector of tree names to export.

treetype type of tree(s) to export, see validTreetype
varlist names of tree leaves to export

outfile name of output file.

sep column separator

as.dataframe if TRUE a data.frame will be returned.
verbose logical, if TRUE print status information.
object object of class DataTreeSet.

arguments t reenames,treetype,varlist,outfile,sep,as.dataframe.

Details

Export data from classes SchemeTreeSet,DataTreeSet,ExprTreeSet,orCallTreeSet
tooutfile.
Parameter varlist lists the parameters to export:

- parameters are separated by ":", e.g. varlist="fInten:fStdev".
-for varlist="x" all valid parameters will be exported.

For class DataTreeSet the following varlist parameters are valid:

fInten: intensities from e.g. tree.cel.

fStdev: standard deviation from e.g. tree.cel.
fNPixels: number of pixels from e.g. tree.cel.

fBg: background values (background trees only).

For classes ExprTreeSet and CallTreeSet varlist cancontain annotation parameters and
parameters of the resulting data.
Following varlist annotation parameters are valid:

fUnitName: unit name (probeset ID).
fTranscriptID: transcript_id (probeset ID).
fName: gene name.

fSymbol: gene symbol.
fAccession: mRNA accession such as Refseq ID.
fEntrezID: entrez ID.
fChromosome: chromosome.

fStart: start position.

fStop: stop position.

fStrand: strand on chromosome.
fCytoBand: cytoband.

Following varlist parameters are valid for ExprTreeSet:

flevel: expression level.

48 export.filter

fsStdev: standard deviation.
fNPairs: number of pairs.

Following varlist parameters are valid for CallTreeSet:
fCall: detection call.

fPValue: detection p-value.

Anexample: varlist="fUnitName: fName: fSymbol:fLevel:fStdev:fEntrezID"

export is a generic method to export data from ROOT trees as text file.

Value

If as.dataframe is TRUE, the data will be imported into the current R session as data. frame.
Otherwise, NULL will be returned.

Author(s)

Christian Stratowa

See Also

export-methods

Examples
load existing ROOT scheme file and ROOT data file
scheme.test3 <- root.scheme (paste (.path.package ("xps"), "schemes/SchemeTest3.root", sep="/"
data.test3 <- root.data(scheme.test3, paste(.path.package ("xps"), "rootdata/DataTest3_cel.

export as table only
export (scheme.test3, treetype="idx", outfile="Test3_idx.txt",verbose=FALSE)

export as table and import as data.frame

ann <- export.scheme (scheme.test3, treetype="ann", outfile="Test3_ann.txt",as.dataframe=1
head (ann)
data <- export.data(data.test3, outfile="Test3_cel.txt",as.dataframe=TRUE, verbose=FALSE)
head (data)
export.filter Export filter data as text files
Description

Export data from classes FilterTreeSet or AnalysisTreeSet tooutfile

Usage

export.filter (xps.fltr, treename = "«", treetype = character(0), varlist = "x",

export.filter 49

Arguments
xps.fltr an object of type FilterTreeSet or AnalysisTreeSet.
treename tree name to export.
treetype type of tree(s) to export, ’pfr’, "uft’ or ’stt’.
varlist names of tree leaves to export.
outfile name of output file.
sep column separator

as.dataframe if TRUE a data.frame will be returned.

verbose logical, if TRUE print status information.

Details

Export data from classes FilterTreeSet, or AnalysisTreeSet to outfile.

Parameter varlist lists the parameters to export:

- parameters are separated by ":", e.g. varlist="fUnitName:fFlag".
-for varlist="x" all valid parameters will be exported.

For class FilterTreeSet the following varlist parameters are valid:

fUnitName: unit name (probeset ID).
fFlag: mask.

For class AnalysisTreeSet varlist can contain annotation parameters and parameters of
the resulting data.
Following varlist annotation parameters are valid:

fUnitName: unit name (probeset ID).
fTranscriptID: transcript_id (probeset ID).
fName: gene name.

fSymbol: gene symbol.
fAccession: mRNA accession such as Refseq ID.
fEntrezID: entrez ID.
fChromosome: chromosome.

fStart: start position.

fStop: stop position.

fStrand: strand on chromosome.
fCytoBand: cytoband.

For class AnalysisTreeSet the following varlist parameters are valid:

mnl: mean of group 1.

mn2: mean of group 2.

fe: fold-change fc=mn2/mnl.
se: standard error.

df: degree of freedom.

stat: t-statistic.

pval: p-value.

nper: number of permutations.
pcha: p-chance.

padj: adjusted p-value.

50 export.root

flag: flag.
mask: only rows with f1ag=1 will be exported.

Value

If as.dataframe is TRUE, the data will be imported into the current R session as data. frame.
Otherwise, NULL will be returned.

Author(s)

Christian Stratowa

See Also

export—-methods

export.root Export data from ROOT file

Description

Export data as text files directly from a ROOT file.

Usage
export.root (datafile = character (0), schemefile = character(0), treeset = charac
Arguments
datafile name of ROOT data file including full path
schemefile name of ROOT scheme file including full path
treeset name of subdirectory in ROOT file where trees are stored
treename name of ROOT tree to export.
treetype type of tree(s) to export, see validTreetype.
varlist names of tree leaves to export.
outfile name of output file.
sep column separator

as.dataframe if TRUE a data.frame will be returned.

verbose logical, if TRUE print status information.

Details

Export data as text files directly from a ROOT file.

Value

If as.dataframe is TRUE, the data will be imported into the current R session as data . frame.
Otherwise, NULL will be returned.

express 51

Author(s)

Christian Stratowa

See Also

export, export-methods

Examples

export data directly from root file

schemefile <- paste(.path.package ("xps"), "schemes/SchemeTest3.root", sep="/")
datafile <- paste(.path.package ("xps"), "rootdata/DataTest3_cel.root", sep="/")
data <- export.root (datafile, schemefile, "DataSet", "x", "cel", "«", "DataOutFile.txt",
head (data)
express Compute expression levels from raw data
Description

This function allows to combine different algorithms to compute expression levels, or to return the
result for different algorithms only.

Usage
express (xps.data,
filename = character (),
filedir = getwd(),
tmpdir = "",

update = FALSE,

background correction
bgcorrect.method = NULL,
bgcorrect.select character (),
bgcorrect.option = character(),
bgcorrect.params list (),

normalization
normalize.method = NULL,
normalize.select character (),

character ()

normalize.option

14
normalize.logbase = character (),
normalize.params = list (),

expression values
summarize.method = NULL,
summarize.select = character(),
summarize.option = character(),
summarize.logbase = character(),
summarize.params = list (),

reference values
reference.index = 0,
reference.method = "mean",

reference.params list (0),

52 express
misc.
exonlevel ",
Xps.scheme = NULL,
add.data = TRUE,
verbose = TRUE)

xpsPreprocess (object, ...)

Arguments

xps.data
filename
filedir
tmpdir
update
bgcorrect

bgcorrect

bgcorrect

bgcorrect

normalize

normalize.

normalize.

normalize

normalize.

summarize.

summarize.

summarize

summarize

summarize.

reference.

reference.

object of class DataTreeSet

file name of ROOT data file.

system directory where ROOT data file should be stored.

optional temporary directory where temporary ROOT files should be stored.

logical. If TRUE the existing ROOT data file £ilename will be updated.

.method

background method to use.

.select

type of probes to select for background correction.

.option

type of background correction to use.

.params

vector of parameters for background method.

.method

normalization method to use.
select

type of probes to select for normalization.
option

normalization option.

.logbase

logarithm base as character, one of ‘0’, ‘log’, ‘log2’, ‘logl0’.
params

vector of parameters for normalization method.
method

summarization method to use.
select

type of probes to select for summarization.

.option

option determining the grouping of probes for summarization, one of ‘tran-
script’, ‘exon’, ‘probeset’; exon arrays only.

.logbase

logarithm base as character, one of ‘0’, ‘log’, ‘log2’, ‘logl0’.
params

vector of parameters for summarization method.
index

index of reference tree to use, or 0.
method

for refindex=0, either trimmed mean or median of trees.

express 53

reference. rarams
vector of parameters for reference method.

exonlevel exon annotation level determining which probes should be used for summariza-
tion; exon/genome arrays only.

Xps.scheme optional alternative SchemeSet.

add.data logical. If TRUE expression data will be included as slot data.
verbose logical, if TRUE print status information.
object object of class DataSet.
cen the arguments described above.
Details

This function allows to combine different algorithms to compute expression levels, or to return the
result for different algorithms only.

xpsPreprocess is the DataSet method called by function express, containing the same
parameters.

Value

An object of type DataTreeSet or ExprTreeSet.

Author(s)

Christian Stratowa

See Also

bgcorrect, normalize, summarize

Examples

load existing ROOT scheme file and ROOT data file
scheme.test3 <- root.scheme (paste (.path.package ("xps"), "schemes/SchemeTest3.root",sep="/"
data.test3 <- root.data(scheme.test3, paste(.path.package ("xps"), "rootdata/DataTest3_cel.

compute rma with a single call to express/()

expr.rma <- express(data.test3,"tmp_Test3Exprs",filedir=getwd (), tmpdir="",update=FALSE,
bgcorrect . .method="rma",bgcorrect.select="none",bgcorrect.option="pmonly:epane
normalize.method="quantile",normalize.select="pmonly",normalize.option="trans
summarize.method="medianpolish", summarize.select="pmonly", summarize.option="t
verbose=FALSE)

get expression data.frame
expr <— exprs (expr.rma)
head (expr)

plot expression levels
if (interactive()) {
boxplot (expr.rma)
boxplot (log2 (expr[,3:6]1))
}

54 exprs-methods

exprs-methods Get/Set Expression Values

Description

Get/set expression values from/for class ExprTreeSet.

Usage
exprs (object)
exprs (object, treenames = NULL) <- value
Arguments
object object of class ExprTreeSet.
treenames character vector containing optional tree names to be used as subset.
value data.frame containing expression values.
Details

Get the expression values from slot data or set slot data to value.

Method exprs returns the expression values from slot data as data . frame, while replacement
method exprs<— allows to replace slot data with a data. frame.

In order to create an ExprTreeSet containing only a subset of slot dat a, first export slot data
using method exprs, create a character vector containing only t reenames to be used in the
subset, and then use replacement method exprs<- to replace slot data with the subset. Slots
treenames and numt rees will be updated automatically.

Note: When creating character vector t reenames it is sufficient to use the name part of the
tree name w/o the extension.

Note: If you do not want to replace your current object, create first a copy of type ExprTreeSet
by simply writing newobj <- oldobj, and use newob] for replacement. This is important
since exprs<- does also update slots t reenames and numt rees as already mentioned.

Author(s)

Christian Stratowa

See Also

pvalData, presCall

Examples

Not run:

load ROOT scheme file and ROOT data file

scheme.test3 <- root.scheme (paste (.path.package ("xps"), "schemes/SchemeTest3.root", sep="/"
data.test3 <- root.data(scheme.test3, paste(.path.package ("xps"), "rootdata/DataTest3_cel.

create an ExprTreeSet
data.rma <- rma(data.test3, "tmp_TestRMA",tmpdir="",background="pmonly",normalize=TRUE, ver

get expression values

farms 55

value <- exprs(data.rma)

selected treenames only
treenames <- c("TestA2", "TestB1l")

make a copy of your object if you do not want to replace it
subset.rma <- data.rma

replace slot data with subset
exprs (subset.rma, treenames) <- value
str (subset.rma)

End (Not run)

farms Factor Analysis for Robust Microarray Summarization Expression
Measure

Description

This function converts a DataTreeSet into an ExprTreeSet using the Factor Analysis for

Robust Microarray Summarization (FARMS) method.

Usage

farms (xps.data,

filename = character (0),

filedir = getwd(),

tmpdir = nm,

normalize = TRUE,

weight = 0.5,

mu = 0.0,

scale =1.0,

tol = 0.00001,

cyc = 100,

weighted = TRUE,

version = "1.3.1",

option = "transcript",

exonlevel = "",

xps.scheme = NULL,

add.data = TRUE,

verbose = TRUE)

Arguments

xps.data object of class DataTreeSet
filename file name of ROOT data file.
filedir system directory where ROOT data file should be stored.
tmpdir optional temporary directory where temporary ROOT files should be stored.
normalize logical. If TRUE normalize data using quantile normalization.
weight hyperparameter, usually setto 0.5 for version="1.3.1" andto 8.0 forversion="1.3.0".

56 farms

mu hyperparameter allowing to correct for potential bias.

scale scaling parameter, usually set to 1.0 for version="1.3.1" and to 2.0 for
version="1.3.0".

tol termination tolerance for EM algorithm.

cyc maximum number of cycles of EM algorithm.

weighted logical, used only with version="1.3.1". Default is TRUE.

version version of original farms package. Currently, version="1.3.1"andversion="1.3.0"

are implemented. Default is version="1.3.1".

option option determining the grouping of probes for summarization, one of ‘tran-
script’, ‘exon’, ‘probeset’; exon arrays only.

exonlevel exon annotation level determining which probes should be used for summariza-
tion; exon/genome arrays only.

xps.scheme optional alternative SchemeTreeSet.

add.data logical. If TRUE expression data will be included as slot data.
verbose logical, if TRUE print status information.
Details

This function computes the FARMS (Factor Analysis for Robust Microarray Summarization) ex-
pression measure described in Hochreiter et al. for both expression arrays and exon arrays.

Parameter version currently allows the user to choose between the original implementation of
FARMS as implemented in package ‘farms_1.3.0" or enhanced FARMS as implemented in package
‘farms_1.3.1°. By default version="1.3.1" is used.

Parameter weight is a hyperparameter which determines the influence of the prior. For version="1.3.1"
the value in the range of [0,1].

Parameter mu is a hyperparameter which allows to quantify different aspects of potential prior
knowledge. Values near zero assume that most genes do not contain a signal and introduce a bias
for loading matrix elements near zero.

Parameter weighted is a logical and indicates whether a weighted mean or a least square fit is
used to summarize the loading matrix. It is applicable only to version="1.3.1".

For exon arrays it is necessary to supply the requested opt ion and exonlevel.
Following opt ions are valid for exon arrays:
transcript: expression levels are computed for transcript clusters, i.e. probe sets containing the same ‘transcript_clu

exon: expression levels are computed for exon clusters, i.e. probe sets containing the same ‘exon_id’, where e:
probeset: expression levels are computed for individual probe sets, i.e. for each ‘probeset_id’.

Following exonlevel annotations are valid for exon arrays:

core: probesets supported by RefSeq and full-length GenBank transcripts.
metacore: core meta-probesets.

extended: probesets with other cDNA support.

metaextended: extended meta-probesets.

full: probesets supported by gene predictions only.

metafull: full meta-probesets.

affx: standard AFFX controls.

all: combination of above (including affx).

farms 57

Following exonlevel annotations are valid for whole genome arrays:

core: probesets with category ‘unique’, ‘similar’ and ‘mixed’.
metacore: probesets with category ‘unique’ only.

affx: standard AFFX controls.

all: combination of above (including affx).

Exon levels can also be combined, with following combinations being most useful:

exonlevel="metacore+affy": core meta-probesets plus AFFX controls
exonlevel="core+extended": probesets with cDNA support
exonlevel="coretextended+full": supported plus predicted probesets

Exon level annotations are described in the Affymetrix whitepaper exon_probeset_trans_clust_whitepaper.pdf:
“Exon Probeset Annotations and Transcript Cluster Groupings”.

In order to use an alternative SchemeTreeSet set the corresponding SchemeSet xps . scheme.

Value

An ExprTreeSet

Note

The expression measure obtained with FARMS is given in linear scale, analogously to the expres-
sion measures computed with mas5 and rma.

For the analysis of many exon arrays it may be better to define a tmpdi r, since this will store only
the results in the main file and not e.g. background and normalized intensities, and thus will reduce
the file size of the main file. For quantile normalization memory should not be an issue, however
DFW depends on RAM unless you are using a temporary file.

Author(s)

Christian Stratowa

References
Hochreiter, S., Clevert D.-A., and Obermayer, K. (2006), A new summarization method for Affymetrix
probe level data. Bioinformatics 22(8):943-949

See Also

exXpress

Examples

first, load ROOT scheme file and ROOT data file
scheme.test3 <- root.scheme (paste (.path.package ("xps"), "schemes/SchemeTest3.root",sep="/"
data.test3 <- root.data(scheme.test3, paste(.path.package ("xps"), "rootdata/DataTest3_cel.

data.farms <- farms(data.test3, "tmp_Test3FARMS", verbose=FALSE)
get data.frame

expr.farms <- validData (data.farms)
head (expr.farms)

58 gapFilter-methods

fcFilter-methods Fold-Change Filter

Description

This method initializes the Fold-Change Filter.

The fold-change is determined by the mean value of group 2 divided by the mean value of group 1.
The Fold-Change Filter flags all rows with: flag = (fc >= cutoff)

Usage

fcFilter (object)
fcFilter (object, value)<-

Arguments

object object of class UniFilter.

value numeric vector ¢ (cutoff, direction)
Details

The method fcFilter initializes the following parameters:

cutoff: the cutoff level for the filter.

direction: direction="both" (default): select up and downregulated genes.
direction="up": select upregulated genes only.
direction="down": select downregulated genes only.

Value

An initialized UniFilter object.

Author(s)

Christian Stratowa

Examples

unifltr <- UniFilter ()
fcFilter (unifltr) <- c (1.5, "both")
str(unifltr)

gapFilter-methods Gap Filter

Description

This method initializes the Gap Filter.

The gapFilter looks for genes that might usefully discriminate between two groups. To do this
we look for a gap in the ordered expression values. The gap should come in the central portion,
thus a parameter window is defined to exclude jumps in the initial window values and the final

getChipName

window values.

The Gap Filter flags all rows with: flag = ((gap[i+l] - gapl[i])/mean >= cutoff)

gapFilter (object)
gapFilter (object, value)<-

Arguments

object object of class PreFilter.

value numeric vector c (cutoff, window, trim, epsilon).
Details

The method gapFilter initializes the following parameters:

cutoff: the cutoff level for the filter.
window: trim value for the ordered expression levels (default is window=0.05).
trim: the trim value for trimmed mean (default is t rim=0).
epsilon: value to replace mean (defaultis epsilon=0.01):
epsilon > O0: replace mean=0 with epsilon.
epsilon = 0: always set mean=1.

Note, that for epsilon = O the filter flags all rows with: (gap[i+1] - gap[i]) >= cutoff

Value

An initialized PreFilter object.

Author(s)

Christian Stratowa

Examples

prefltr <- PreFilter ()
gapFilter (prefltr) <- ¢(0.3,0.05,0.0,0.01)
str (prefltr)

getChipName Get Chip Name

Description

Get chip name from ROOT scheme file.

Usage

getChipName (rootfile)

Arguments

rootfile name of ROOT scheme file, including full path.

60 getChipType

Details

Extracts the chip name directly from ROOT scheme file rootfile.

Value

a character with the chip name.

Author(s)

Christian Stratowa

See Also

getChipType, getNameType

Examples

correct usage
getChipName (paste (.path.package ("xps"), "schemes/SchemeTest3.root", sep="/"))
incorrect usage

getChipName (paste (.path.package ("xps"), "rootdata/DataTest3_cel.root", sep="/"))
getChipType Get Chip Type
Description

Get chip type from ROOT scheme file.

Usage

getChipType (rootfile)

Arguments

rootfile name of ROOT scheme file, including full path.

Details

Extracts the chip type directly from ROOT scheme file rootfile.

Value

s

a character with the chip type, either ‘GeneChip’ or ‘ExonChip’.

Author(s)

Christian Stratowa

See Also

getChipName, getNameType

getDatatype 61

Examples

correct usage

getChipType (paste (.path.package ("xps"), "schemes/SchemeTest3.root", sep="/"))

incorrect usage

getChipType (paste (.path.package ("xps"), "rootdata/DataTest3_cel.root",sep="/"))

getDatatype Get Data Type

Description

Get data type corresponding to tree type.

Usage

getDatatype (treetype)

Arguments

treetype tree type.

Details

Get data type corresponding to tree type. Valid tree types are described in validTreetype.

Value

a character with the correct data type, i.e. ‘rawdata’, ‘preprocess’ or ‘normation’.

Author(s)

Christian Stratowa

See Also

type2Exten, validTreetype

Examples

getDatatype ("cel")
getDatatype ("tbw")

62 getNameType

getNameType Get Chip Name and Type

Description

Get chip name and type from ROOT scheme file.

Usage

getNameType (rootfile)

Arguments

rootfile name of ROOT scheme file, including full path.

Details

Extracts the chip name and type directly from ROOT scheme file rootfile.

Value

a 1ist with parameters:

chipname chip name.
chiptype chip type, either ‘GeneChip’ or ‘ExonChip’.
Author(s)

Christian Stratowa

See Also

getChipName, getChipType

Examples

correct usage

getNameType (paste (.path.package ("xps"), "schemes/SchemeTest3.root",sep="/"))

incorrect usage

getNameType (paste (.path.package ("xps"), "rootdata/DataTest3_cel.root", sep="/"))

getNumberTrees 63

getNumberTrees Get Number of Trees

Description

Get number of trees stored in a ROOT file.

Usage

getNumberTrees (rootfile, treetype = "x", setname = NULL)
Arguments

rootfile name of ROOT file, including full path.

treetype tree type.

setname name of ROOT subdirectory containing trees.
Details

Extracts the number of trees of t reetype stored in ROOT file rootfile.

Valid tree types are listed in validTreetype. For treetype="x" the total number of trees in
root file are returned.

If setname is provided, only trees in subdirectory setname are counted.

Value

Number of trees.

Author(s)

Christian Stratowa

Examples

getNumberTrees (paste (.path.package ("xps"), "schemes/SchemeTest3.root", sep="/"))
getNumberTrees (paste (.path.package ("xps"), "rootdata/DataTest3_cel.root", sep="/"))

getProbeInfo Get Probe Information

Description

Get GeneChip probe information from root scheme file.

Usage

getProbelInfo (rootfile)

64 getTreeData-methods

Arguments

rootfile name of ROOT scheme file, including full path.

Details

Extracts GeneChip probe information directly from ROOT scheme file rootfile.

Value

a 11ist with parameters:

nrows physical number of rows in the array.
ncols physical number of columns in the array.
nprobes number of probes on the array.
ncontrols number of controls on the array.
ngenes number of genes on the array.

nunits number of units on the array.

nprobesets umber of probesets on the array.

naffx number of AFFX controls on the array.

Author(s)

Christian Stratowa

Examples

getProbeInfo (paste (.path.package ("xps"), "schemes/SchemeTest3.root", sep="/"))

getTreeData—-methods
Export Tree Data

Description

Exports tree data from ROOT data file and and saves as data. frame.

Usage
getTreeData (object, treetype = "cel", varlist = "fInten")
Arguments
object Object of class "ProcesSet".
treetype type of tree to export, see validTreetype
varlist names of tree leaves to export.
Details

Exports tree leaves from ROOT data file and and saves as data . frame.

getTreeNames 65

Value

A data.frame.

Author(s)

Christian Stratowa

See Also

export

getTreeNames Get Tree Names

Description

Get tree names stored in a ROOT file.

Usage

getTreeNames (rootfile, treetype = "x", setname = NULL, gettitle = FALSE)
Arguments

rootfile name of ROOT file, including full path.

treetype tree type.

setname name of ROOT subdirectory containing trees.

gettitle If TRUE the titles of the trees will be returned.
Details

Extracts the tree names of t reetype stored in ROOT file rootfile.

Valid tree types are listed in validTreetype. For treetype="«" names for all trees in
rootfile are returned.

If setname is provided, only tree names in subdirectory set name are returned.

Value

A vector of tree names. For gettit1le=TRUE a vector of tree titles.

Author(s)

Christian Stratowa

Examples

getTreeNames (paste (.path.package ("xps"), "schemes/SchemeTest3.root", sep="/"))
getTreeNames (paste (.path.package ("xps"), "schemes/SchemeTest3.root", sep="/"), "scm")
getTreeNames (paste (.path.package ("xps"), "rootdata/DataTest3_cel.root",sep="/"))

66 highFilter-methods

highFilter—-methods Upper Threshold Filter

Description

This method initializes the Upper Threshold Filter.

The cutoff value defines the upper threshold for allowed expression levels. If e.g. the number of
samples exceeding this cutoff value is greater than parameter then the corresponding dataframe
row is flagged, i.e. flag = 0.

The Upper Threshold Filter flags all rows with: flag = (sum(expression[i] <= cutoff)
>= parameter)

Usage

highFilter (object)
highFilter (object, value)<-

Arguments

object object of class PreFilter.

value character vector c (cutoff, parameter, condition).
Details

The method highFilter initializes the following parameters:

cutoff: the upper threshold level for the filter.

parameter: this value depends on the condition used:

condition: condition="samples": number of samples (default):
condition="percent": percent of samples.
condition="mean": mean value of samples.
condition="percentile": percentile of samples.

Value

An initialized PreFilter object.

Author(s)

Christian Stratowa

Examples

prefltr <- PreFilter()
highFilter (prefltr) <- c(14.5,75.0, "percent")
str (prefltr)

hist-methods 67

hist-methods Density Estimate

Description

Plot the density estimates for each sample.

Usage
hist (x, which = "", size = 0, transfo = log2, ylab = "density", xlab

= "log intensity", type = "1", col = 1:6, ...)
Arguments

X object of class DataTreeSet or ExprTreeSet.

which type of probes to be used, for details see validData.

size length of sequence to be generated as subset.

transfo a valid function to transform the data, usually “log2”, or “0”.

ylab a title for the y axis.

xlab a title for the x axis.

type type for the plot.

col colors to use for the different arrays.

optional arguments to be passed to plot.

Details

Plots the non-parametric density estimates using values contained in the columns of slot data.

For aDataTreeSet object, data must first be attached using method attachInten.

Note

For exon array raw data only a limited number of samples can be displayed as density plot due to
memory limitations. To display all samples it is proposed to use function root . density instead.

Author(s)

Christian Stratowa

Examples

load existing ROOT scheme file and ROOT data file
scheme.test3 <- root.scheme (paste (.path.package ("xps"), "schemes/SchemeTest3.root", sep="/"
data.test3 <- root.data(scheme.test3, paste(.path.package ("xps"), "rootdata/DataTest3_cel.

need to attach scheme mask and probe intensities
data.test3 <- attachMask (data.test3)
data.test3 <- attachInten (data.test3)

if (interactive()) {
hist (data.test3)
t

68 image-methods

optionally remove mask and data to free memory
data.test3 <- removelnten (data.test3)
data.test3 <- removeMask (data.test3)

image-methods Display an Image

Description

Creates an image for each sample.

Usage
image (x, bg = FALSE, transfo = log2, col = gray((0:64)/64), names
= "namepart", xlab = "", ylab = "", ...)
Arguments
X object of class DataTreeSet.
bg logical. If FALSE, intensities from slot dat a will be used; if TRUE, background
intensities from slot bgrd will be used.
transfo a valid function to transform the data, usually “log2”, or “0”.
col color range for intensities.
names optional vector of sample names.

optional arguments to be passed to image.

Details

Creates an image for each array. For bgrd=TRUE the distribution of the computed background
intensities will be shown; this can be useful to see potential density gradients caused by hybridiza-
tion conditions. For the computation of background intensities see function bgcorrect; it is
suggested to use bgcorrect .mas4 to identify density gradients.

For name s=NULL full column names of slot dat a will be displayed while for names="namepart"

column names will be displayed without name extension. If names is a vector of column names,
only these columns will displayed as image.

Note

Data must first be attached to class DataTreeSet using method attachInten.

Author(s)

Christian Stratowa

See Also

image.dev, image

image.dev 69

image.dev Image for Device

Description

Creates an image for each sample for the selected device.

Usage
image.dev (x, bg = FALSE, transfo = log2, col = gray((0:64)/64), names = "namepar
Arguments
X object of class DataTreeSet.
bg logical. If FALSE, intensities from slot dat a will be used; if TRUE, background
intensities from slot bgrd will be used.
transfo a valid function to transform the data, usually “log2”, or “0”.
col color range for intensities.
names optional vector of sample names.
xlab a title for the x axis.
ylab a title for the y axis.
mar plot margins.
dev graphics device to plot to, i.e. one of “screen”, “jpeg”,“png”, “pdf” or “ps”.
outfile the name of the output file.
w the width of the device in pixels.
h the height of the device in pixels.
optional arguments to be passed to image.
Details

Creates an image for each array for the selected graphics device.

For bgrd=TRUE the distribution of the computed background intensities will be shown; this can
be useful to see potential density gradients caused by hybridization conditions. For the computation
of background intensities see function bgcorrect; it is suggested to use bgcorrect .mas4 to
identify density gradients.

For name s=NULL full column names of slot dat a will be displayed while for names="namepart"
column names will be displayed without name extension. If names is a vector of column names,
only these columns will displayed as image.

Note

Data must first be attached to class DataTreeSet using method attachInten.

Author(s)

Christian Stratowa

70 import.data

See Also

image-methods, image

Examples
first, load ROOT scheme file and ROOT data file
scheme.test3 <- root.scheme (paste (.path.package ("xps"), "schemes/SchemeTest3.root", sep="/"
data.test3 <- root.data(scheme.test3, paste(.path.package ("xps"), "rootdata/DataTest3_cel.

need to attach scheme mask and data
data.test3 <- attachMask (data.test3)
data.test3 <- attachInten(data.test3)

if (interactive()) {
image.dev (data.test3)
}

to avoid memory comsumption of R remove data:
data.test3 <- removelnten (data.test3)
data.test3 <- removeMask (data.test3)

import.data Import CEL files into a DataTreeSet

Description

Import the Affymetrix CEL files into a ROOT file and create S4 class DataTreeSet

Usage

import.data (xps.scheme,

filename = character (0),
filedir = getwd(),
celdir = NULL,
celfiles = "«",

celnames = NULL,

project = NULL,

verbose = TRUE)

Arguments

Xps.scheme a SchemeTreesSet containing the correct scheme for the CEL-files

filename file name of ROOT data file.

filedir system directory where ROOT data file should be stored.

celdir system directory containing the CEL-files for corresponding scheme.
celfiles optional vector of CEL-files to be imported.

celnames optional vector of names which should replace the CEL-file names.
project optional class ProjectInfo.

verbose logical, if TRUE print status information.

import.data 71

Details

import.data is used to import CEL-files from directory celdir into a ROOT data file. To
import only a subset of CEL-files, list these CEL-files as vector celfiles.

To import CEL-files from different directories, vector cel1files must contain the full path for
each CEL-file and celdir must be celdir=NULL.

Currently, the following types of Affymetrix CEL-files can be imported: text (version 3), xml,
binary (xda), generic (agcc,calvin)

An S4 class DataTreeSet will be created, serving as R wrapper to the ROOT data file filename.

Use function root .data to access the ROOT data file from new R sessions to avoid creating a
new ROOT data file for every session.

Value

A DataTreeSet object.

Note

As mentioned above, use function root . data to access the ROOT data file from new R sessions
to avoid creating a new ROOT data file for every R session.

Do not separate £ ilename of ROOT files with dots, use underscores, e.g. donotuse filename="Data.Test3"
butuse filename="Data_Test3" or filename="DataTest3" instead.

To every ROOT data file the extension “_cel” is attached to £ilename to easily recognize ROOT
data files containing the raw CEL data, e.g. for filename="Data_Test3" the final name is
“Data_Test3_cel.root”. Extension “root” is added automatically, so that ROOT is able to recognize
the file as ROOT file.

Once a ROOT file is created it can not be overwritten, it must be deleted manually first. Only ROOT
files called “tmp” or with £ilename starting with “tmp_" will be re-created automatically.

If CEL-file names contain dots and/or colons as characters, these characters will be replaced by
underscores. It is recommended to use parameter ce Ilnames to create shorter CEL names and to
replace special characters.

Author(s)

Christian Stratowa

See Also

root .data, DataTreeSet

Examples

get scheme and import CEL-files from package

scheme.test3 <- root.scheme (paste (.path.package ("xps"), "schemes/SchemeTest3.root", sep="/"
data.test3 <- import.data (scheme.test3,"tmp_data_test3",celdir=paste(.path.package ("xps")
unlist (treeNames (data.test3))

import only subset of CEL-files

subdata.test3 <- import.data(scheme.test3, "tmpdt_data_test3",celdir=paste(.path.package ("
celfiles=c("TestAl.CEL", "TestB2.CEL"), verbose=FALSE)

unlist (treeNames (subdata.test3))

72

import.exon.scheme

import.exon.scheme Import CLE PGF and annotation files into a SchemeTreeSet

Description

Import the Affymetrix CLF, PGF, and probeset and transcript annotation files into a ROOT file and

create S4 class SchemeTreeSet

Usage

import.exon.scheme (filename = character (0),
filedir = getwd(),
layoutfile = character(0),
schemefile = character(0),
probeset = character (0),
transcript = character(0),
control = """,
add.mask = FALSE,
verbose = TRUE)

logical. If TRUE mask information will be included as slot mask.

Arguments
filename file name of ROOT scheme file.
filedir system directory where ROOT scheme file should be stored.
layoutfile name of CLF-file, including full path.
schemefile name of PGF-file, including full path.
probeset name of probeset annotation-file, including full path.
transcript name of transcript annotation-file, including full path.
control optional name of controls.ps-file, including full path.
add.mask
verbose logical, if TRUE print status information.

Details

import.exon.scheme is used to import all information for an Affymetrix exon array into a
ROOT scheme file, including CLF and PGF-files, and the current Afymetrix probeset and transcript

annotation files.

An S4 class SchemeTreeSet will be created, serving as R wrapper to the ROOT scheme file

filename.

Since a new ROOT scheme file needs only to be created when new annotation files are available
from the Affymetrix website, it is recommended to store all ROOT scheme files in a commonly
accessible system directory filedir.

Use function root . scheme to access the ROOT scheme file from new R sessions to avoid creating
anew ROOT scheme file for every session.

Value

A SchemeTreeSet object.

import.exon.scheme 73

Warning

The current version of ‘xps’ should be able to import all Affymetrix exon array annotation files up
to November 2008. However, since Affymetrix is still changing the headers and/or columns of the
annotation files, future annotation files may require adaptation of the source code, thus the current
version of ‘xps’ may not be able to read these files.

Note

As mentioned above, use function root .scheme to access the ROOT scheme file from new R
sessions to avoid creating a new ROOT scheme file for every R session.

Do not separate £ ilename of ROOT files with dots, use underscores, e.g. donotuse £ilename="Scheme.HuEx10:
butuse filename="Scheme_HuEx10stv2r2_na27" instead. Extension “root” is added au-
tomatically, so that ROOT is able to recognize the file as ROOT file.

Do not set add . mask=TRUE unless you know that your computer has sufficient RAM.

Do not add item cont rol unless you want to use one of the old annotation files where the probeset
annotation file does not contain the AFFX controls.

Author(s)

Christian Stratowa

See Also

import.expr.scheme, root.scheme, SchemeTreeSet

Examples
Not run:
define paths
scmdir <- "/common/path/schemes"

libdir <= "/my/path/Affy/libraryfiles"
anndir <- "/my/path/Affy/Annotation"

create scheme for HuEx-1_0O-st-v2.r2 Exon array

scheme.huex10stv2r2.na27 <- import.exon.scheme ("Scheme_ HuEx10stv2r2_na27",filedir=scmdir,
layoutfile=paste (libdir, "HuEx-1_0-st-v2_libraryfile/HuEx—-1_0-
schemefile=paste (libdir, "HuEx-1_0-st-v2_libraryfile/HuEx-1_0-
probeset=paste (anndir, "HuEx-1_0-st-v2.na27.hgl8.probeset.csv"
transcript=paste (anndir, "HuEx-1_0-st-v2.na27.hgl8.transcript.

access ROOT scheme file from new R session
scheme.huex10stv2r2 <- root.scheme (paste (scmdir, "Scheme_HuEx10stv2r2_na27.root", sep="/"))

create scheme for HuGene-1_0-st-vl.r4 as exon array

scheme.hugenelOstvlr4.na27 <- import.exon.scheme ("Scheme_HuGenelOstvlr4_na27_2",filedir=s
layoutfile=paste (libdir, "HuGene-1_0-st-vl.r4.analysis-1ib-{
schemefile=paste (libdir, "HuGene-1_0-st-vl.r4.analysis-1lib—f
probeset=paste (anndir, "HuGene-1_0-st-vl1.na27.2.hgl8.probese
transcript=paste (anndir, "HuGene-1_0-st-v1l.na27.hgl8.transcz

access ROOT scheme file from new R session
scheme.hugenelOstvlrd <- root.scheme (paste (scmdir, "Scheme_HuGenelOstvlrd_na27_2.root", ser

create scheme for HuEx-1_0-st-v2.r2 Exon array with the old annotation file

74

import.expr.scheme

scheme.huex10stv2r2.0ld <- import.exon.scheme ("Scheme_ HuEx10stv2r2_old",filedir=scmdir,

layoutfile=paste (libdir, "HuEx-1_0-st-v2_libraryfile/HuEx—1_0-z¢
schemefile=paste (libdir, "HuEx-1_0-st-v2_libraryfile/HuEx—-1_0-=¢
probeset=paste (anndir, "HuEx-1_0-st-probeset—-annot.csv", sep="/"
transcript=paste (anndir, "HuEx-1_0O-st-transcript-annot.csv", ser
control=paste (libdir, "HuEx-1_0-st-v2_libraryfile/HuEx-1_0-st-z

End (Not run)

import.expr.scheme Import CDE probe and annotation files into a SchemeTreeSet

Description

Import the Affymetrix CDF, probe and annotation files into a ROOT file and create S4 class Scheme-

TreeSet
Usage
import.expr.scheme (filename = character (0),
filedir = getwd(),
schemefile = character(0),
probefile = character (0),
annotfile = character(0),
chipname = NULL,
add.mask = FALSE,
verbose = TRUE)
Arguments
filename file name of ROOT scheme file.
filedir system directory where ROOT scheme file should be stored.
schemefile name of CDF-file, including full path.
probefile name of probe-file, including full path.
annotfile name of annotation-file, including full path.
chipname optional chip name when using an alternative CDF-file.
add.mask logical. If TRUE mask information will be included as slot mask.
verbose logical, if TRUE print status information.
Details

import.expr.scheme is used to import all information for an Affymetrix expression array into
a ROOT scheme file, including CDF-file, the corresponding probe file, and the current Afymetrix

annotation file.

Usually, chipname is extracted from the name of the CDF-file, however, when using an alternative
CDF-file, e.g. from BrainArray or AffyProbeMiner, a chipname must be supplied which starts
with (or contains) the exact Affymetrix chip name.

An S4 class SchemeTreeSet will be created, serving as R wrapper to the ROOT scheme file

filename.

import.expr.scheme 75

Since a new ROOT scheme file needs only to be created when a new annotation file is available from
the Affymetrix website, it is recommended to store all ROOT scheme files in a commonly accessible
system directory filedir.

Use function root . scheme to access the ROOT scheme file from new R sessions to avoid creating
anew ROOT scheme file for every session.

Value

A SchemeTreeSet object.

Note

As mentioned above, use function root . scheme to access the ROOT scheme file from new R
sessions to avoid creating a new ROOT scheme file for every R session.

Do not separate £i1ename of ROOT files with dots, use underscores, e.g. donotuse filename="Scheme.Test3.1
butuse filename="Scheme_Test3_na27" orsimply filename="SchemeTest3na27"

instead. Extension “root” is added automatically, so that ROOT is able to recognize the file as ROOT

file.

For a few probesets, parsing the Affymetrix annotation files will provide ambiguous results. Setting
verbose=11 will list these probesets.

Author(s)

Christian Stratowa

See Also

import.exon.scheme, import.genome.scheme, root.scheme, SchemeTreeSet

Examples

Not run:

define paths

scmdir <- "/common/path/schemes"
libdir <- "/my/path/Affy/libraryfiles"
anndir <- "/my/path/Affy/Annotation"

create scheme for Test3 GeneChip

scheme.test3.na27 <- import.expr.scheme ("Scheme_Test3_na27",filedir=scmdir,
schemefile=paste (libdir, "Test3.CDF", sep="/"),
probefile=paste (libdir, "Test3_probe.tab", sep="/"),
annotfile=paste (anndir, "Test3.na27.annot.csv", sep="/"))

access ROOT scheme file from new R session
scheme.test3 <- root.scheme (paste (scmdir, "Scheme_Test3_na27.root", sep="/"))

create scheme for HG-U133_Plus_2 GeneChip

scheme.hgul33p2.na27 <- import.expr.scheme ("Scheme_HGU133p2_na27",filedir=scmdir,
schemefile=paste (libdir, "HG-U133_Plus_2.cdf", sep="/"),
probefile=paste (libdir, "HG-U133-PLUS_probe.tab", sep="/"),
annotfile=paste (anndir, "HG-U133_Plus_2.na27.annot.csv",sep="/"))

access ROOT scheme file from new R session

scheme.hgul33p2 <- root.scheme (paste (scmdir, "Scheme_HGU133p2_na27.root",sep="/"))

End (Not run)

76

import.genome.scheme

import.genome. scheme

Import CLF, PGF and annotation files into a SchemeTreeSet

Description

Import the Affymetrix CLF, PGF and transcript annotation files into a ROOT file and create S4 class

SchemeTreeSet
Usage
import.genome.scheme (filename = character (0),
filedir = getwd(),
layoutfile = character(0),
schemefile = character (0),
transcript = character(0),
add.mask = FALSE,
verbose = TRUE)
Arguments
filename file name of ROOT scheme file.
filedir system directory where ROOT scheme file should be stored.
layoutfile name of CLF-file, including full path.
schemefile name of PGF-file, including full path.
transcript name of transcript annotation-file, including full path.
add.mask logical. If TRUE mask information will be included as slot mask.
verbose logical, if TRUE print status information.
Details

import.genome.scheme is used to import all information for an Affymetrix whole genome
array into a ROOT scheme file, including CLF and PGF-files, and the current Afymetrix transcript

annotation files.

An S4 class SchemeTreeSet will be created, serving as R wrapper to the ROOT scheme file

filename.

Since a new ROOT scheme file needs only to be created when new annotation files are available
from the Affymetrix website, it is recommended to store all ROOT scheme files in a commonly
accessible system directory filedir.

Use function root . scheme to access the ROOT scheme file from new R sessions to avoid creating
anew ROOT scheme file for every session.

Value

A SchemeTreeSet object.

import.genome.scheme 77

Warning

The current version of ‘xps’ is able to import all Affymetrix genome array annotation files up to
November 2008, i.e. all files of release 3 (r3) and earlier. However, in January 2009 Affymetrix has
updated all CLF, PGF and annotation files to release 4 (r4) and added a new probeset annotation
file, thus in effect changing the whole genome arrays to exon arrays!

Thus, for release 4 (r4) files, function import . genome . scheme can no longer be used, but you
must use function import .exon. scheme instead (see examples).

Note

As mentioned above, use function root . scheme to access the ROOT scheme file from new R
sessions to avoid creating a new ROOT scheme file for every R session.

Do not separate £ilename of ROOT files with dots, use underscores, e.g. donotuse £ilename="Scheme . HuGene:
but use filename="Scheme_HuGenelOstwvl_na27" instead. Extension “root” is added au-
tomatically, so that ROOT is able to recognize the file as ROOT file.

Do not set add . mask=TRUE unless you know that your computer has sufficient RAM.

Do not add item control unless you want to use one of the old annotation files where the probeset
annotation file does not contain the AFFX controls.

Author(s)

Christian Stratowa

See Also

import.exon.scheme, root.scheme, SchemeTreeSet

Examples
Not run:
define paths
scmdir <- "/common/path/schemes"

libdir <- "/my/path/Affy/libraryfiles"
anndir <- "/my/path/Affy/Annotation"

create scheme for HuGene-1_0-st-vl whole genome array

scheme.hugenelOstvlr3.na27 <- import.genome.scheme ("Scheme_ HuEx10stvlr3_na27", filedir=scn
layoutfile=paste (libdir, "HuGene-1_0-st-vl.r3.analysis_libre
schemefile=paste (libdir, "HuGene-1_0-st-vl.r3.analysis_libre
transcript=paste (anndir, "HuGene-1_0-st-vl.na27.hgl8.transcr

access ROOT scheme file from new R session
scheme.hugenelOstvlr3 <- root.scheme (paste (scmdir, "Scheme_HuEx10stvlr3_na27.root",sep="/"
End (Not run)

78 ini.call

ini.call Informative/Non-Informative Call

Description

Computes the Informative/Non-Informative Call for the exclusion of non-informative probe sets.

Usage
ini.call (xps.data,
filename = character (0),
filedir = getwd(),
tmpdir =,
weight = 0.5,
mu = 0.0,
scale =1.0,
tol = 0.00001,
cyc = 100,
alphal = 0.4,
alpha?2 = 0.0,
version = "1.3.1",
option = "transcript",
exonlevel = "",
xps.scheme = NULL,
add.data = TRUE,
verbose = TRUE)
xpsINICall (object, ...)
Arguments
xps.data object of class DataTreeSet
filename file name of ROOT data file.
filedir system directory where ROOT data file should be stored.
tmpdir optional temporary directory where temporary ROOT files should be stored.
weight hyperparameter, usually set to 0.5 for version="1.3.1" andto 8.0 forversion="1.3.0".
mu hyperparameter allowing to correct for potential bias.
scale scaling parameter, usually set to 1.0 for version="1.3.1" and to 2.0 for
version="1.3.0".
tol termination tolerance for EM algorithm.
cyc maximum number of cycles of EM algorithm.
alphal a significance threshold in (0,alpha2).
alpha?2 a significance threshold in (alphal,1.0).
version version of original farms package. Currently, version="1.3.1"and version="1.3.0"
are implemented. Default is version="1.3.1".
option option determining the grouping of probes for summarization, one of ‘tran-

script’, ‘exon’, ‘probeset’; exon arrays only.

ini.call

exonlevel

xps.scheme
add.data
verbose

object

Details

79

exon annotation level determining which probes should be used for summariza-
tion; exon/genome arrays only.

optional alternative SchemeTreeSet.

logical. If TRUE call data will be added to slots data and detcall.
logical, if TRUE print status information.

object of class DataTreeSet.

the arguments described above.

In contrast to mas5.call this function quantifies the signal-to-noise ratio for each probe set, as
described in Talloen et al. Thus, the returned p-values and detection calls have a different meaning:

The p-value that is returned estimates the signal-to-noise ratio (SNR):

P-values (SNR) of less than 0.5 indicate that there is more signal than noise and the corresponding
genes are considered to be ‘informative’ for further analysis. In contrast, values greater than 0.5
indicate ‘non-informative’ genes.

The informative call is computed by thresholding the p-value as in:

call “P” if p-value < alphal
call “M” if alphal <= p-value < alpha2
call “A” if alpha2 <= p-value

Here “P” should be considered as informative “I”, “M” as marginally informative, and “A” as non-

informative “NI”.

The defaults for alphal=0.4 and alpha2=0. 6 are set to allow “M” calls. In order to get the
same results as package ‘farms_1.3.1°, you need to set alphal=0.5 and alpha2=0.5.

For exon/genome arrays it is necessary to supply opt ion and exonlevel.

Following options are valid for exon arrays only:

transcript: expression levels are computed for transcript clusters, i.e. probe sets containing the same ‘transcript_clu
exon: expression levels are computed for exon clusters, i.e. probe sets containing the same ‘exon_id’, where e:
probeset: expression levels are computed for individual probe sets, i.e. for each ‘probeset_id’.

Following exonlevel annotations are valid for exon arrays:

core:
metacore:
extended:

probesets supported by RefSeq and full-length GenBank transcripts.
core meta-probesets.
probesets with other cDNA support.

metaextended: extended meta-probesets.

full:
metafull:
ambiguous:
affx:

all:

probesets supported by gene predictions only.
full meta-probesets.

ambiguous probesets only.

standard AFFX controls.

combination of above.

Following exonlevel annotations are valid for whole genome arrays:

core: probesets with category ‘unique’ and ‘mixed’.

metacore: probesets with category ‘unique’ only.

affx: standard AFFX controls.
all: combination of above.

80 ini.call

Exon levels can also be combined, with following combinations being most useful:

exonlevel="metacore+affy": core meta-probesets plus AFFX controls
exonlevel="coretextended": probesets with cDNA support
exonlevel="core+extended+full": supported plus predicted probesets

Exon level annotations are described in the Affymetrix whitepaper ‘exon_probeset_trans_clust_whitepaper.pdf’.
In order to use an alternative SchemeTreeSet set the corresponding SchemeTreeSet xps . scheme.

xpsINICall is the DataTreeSet method called by function ini.call, containing the same
parameters.

Value

A CallTreeSet

Note

Since I/NI-calls distinguish only between informative and non-informative genes, the calls are iden-
tical for all samples.

Author(s)

Christian Stratowa

References

Talloen, W., Clevert D.-A., Hochreiter, S., Amaratunga, D., Bijnens, J., Kass, S., and Gohlmann,
H.W.H. (2006), I/NI-calls for the exclusion of non-informative genes: a highly effective filtering
tool for microarray data. Bioinformatics 23(21):2897-2902

See Also

farms,mas5.call

Examples

first, load ROOT scheme file and ROOT data file
scheme.test3 <- root.scheme (paste (.path.package ("xps"), "schemes/SchemeTest3.root",sep="/"
data.test3 <- root.data(scheme.test3, paste(.path.package ("xps"), "rootdata/DataTest3_cel.

I/NI call
call.ini <- ini.call (data.test3,"tmp_Test3INI", verbose=FALSE)

get data.frames

snr.ini <- pvalData(call.ini)
inf.ini <- presCall(call.ini)
head (snr.ini)

head (inf.ini)

plot results

if (interactive()) {
callplot(call.ini)

}

initialize-methods 81

rm(scheme.test3, data.test3)
gc ()

initialize-methods Initialize Classes

Description

Initialize S4 classes.

Methods

Internal method to initialize S4 classes.

isROOTFile Test for ROOT File

Description

Test if a file is a valid ROOT file.

Usage

1isROOTFile (filename)

Arguments

filename name of ROOT file, including full path.

Value

Return TRUE if file £ilename is a valid ROOT file.

Author(s)

Christian Stratowa

See Also

existsROOTFile

Examples

1isROOTFile (paste (.path.package ("xps"), "schemes/SchemeTest3.root", sep="/"))

82 madFilter-methods

lowFilter-methods Lower Threshold Filter

Description

This method initializes the Lower Threshold Filter. The cutof £ value defines the lower threshold
for allowed expression levels. If e.g. the number of samples lower than this cutoff value is greater
than parameter then the corresponding dataframe row is flagged, i.e. flag = 0.

The Lower Threshold Filter flags all rows with: flag = (sum(expression[i] >= cutoff)
>= parameter)

Usage

lowFilter (object)
lowFilter (object, value)<-

Arguments

object object of class PreFilter.

value character vector c (cutoff, parameter, condition).
Details

The method 1owFilter initializes the following parameters:

cutoff: the lower threshold level for the filter.

parameter: this value depends on the condition used:

condition: condition="samples": number of samples (default):
condition="percent": percent of samples.
condition="mean": mean value of samples.
condition="percentile": percentile of samples.

Value

An initialized PreFilter object.

Author(s)

Christian Stratowa

Examples

prefltr <- PreFilter()
lowFilter (prefltr) <- c(4.0,3,"samples")
str (prefltr)

madFilter—-methods Median Absolute Deviation Filter

mas4 83

Description

This method initializes the Median Absolute Deviation Filter.
The MAD Filter flags all rows with: flag = (mad >= cutoff)
Usage

madFilter (object)
madFilter (object, value)<-

Arguments

object object of class PreFilter.

value numeric vector ¢ (cutoff, epsilon).
Details

The method madFilter initializes the following parameters:
cutoff: the cutoff level for the filter.

epsilon: value to replace mean (defaultis epsilon=0.01).

Note, that epsilon has no effect on mad.

Value

An initialized PreFilter object.

Author(s)

Christian Stratowa

Examples

prefltr <- PreFilter()
madFilter (prefltr) <- c¢(0.5,0.01)
str(prefltr)

mas4 MAS 4.0 Expression Measure

Description

This function converts a DataTreeSet into an ExprTreeSet using the XPS implementation
of Affymetrix’s MAS 4.0 expression measure.

Usage
mas4 (xps.data,
filename = character (0),
filedir = getwd (),
tmpdir = n"n,
normalize = FALSE,

84 mas4

sc = 500,

option = "transcript",
exonlevel = "",

update = FALSE,
Xps.scheme = NULL,
add.data = TRUE,

verbose = TRUE)

xpsMAS4 (object, ...)

Arguments

xps.data object of class DataTreeSet

filename file name of ROOT data file.

filedir system directory where ROOT data file should be stored.

tmpdir optional temporary directory where temporary ROOT files should be stored.

normalize logical. If TRUE scale normalization is used after an ExprTreeSet is ob-
tained.

sc value at which all arrays will be scaled to.

option option determining the grouping of probes for summarization, one of ‘tran-
script’, ‘exon’, ‘probeset’; exon arrays only.

exonlevel exon annotation level determining which probes should be used for summariza-
tion; exon/genome arrays only.

update logical. If TRUE the existing ROOT data file £ilename will be updated.

xps.scheme

optional alternative SchemeTreeSet.

add.data logical. If TRUE expression data will be included as slot data.
verbose logical, if TRUE print status information.
object object of class DataTreeSet.
arguments filename,filedir,tmpdir,option,exonlevel,xps.scheme.
Details

This function computes the Affymetrix MAS 4.0 expression measure, i.e. the ‘Average Difference’
expression level, as implemented in XPS.

If normalize=TRUE then the expression levels will be scaled to sc. For sc=0 the expression
levels will be scaled to the mean expression level.

xpsMAS4 is the DataTreeSet method called by function mas4, however, expression levels will
not be scaled to a common mean expression level.

For further details see mas5.

Value

An ExprTreeSet

Note

In contrast to function mas4, expression levels computed with xpsMAS4 will not be scaled to a
common mean expression level.

mas5 85

Author(s)

Christian Stratowa

References

Affymetrix (1999) GeneChip Expression Analysis Algorithm Tutorial, Affymetrix Inc., Santa Clara,
CA.

See Also

xpsMAS4, express

Examples

first, load ROOT scheme file and ROOT data file

scheme.test3 <- root.scheme (paste (.path.package ("xps"), "schemes/SchemeTest3.root",sep="/"
data.test3 <- root.data(scheme.test3, paste(.path.package ("xps"), "rootdata/DataTest3_cel.
data.mas4 <- mas4 (data.test3,"tmp_Test3MAS4", tmpdir="",normalize=TRUE, sc=500, update=TRUE

get data.frame
expr.mas4 <- validData (data.mas4)
head (expr.mas4)

plot results (negative expression values!)
if (interactive()) {

boxplot (expr.mas4)

}

rm(scheme.test3, data.test3)
gc ()

masb MAS 5.0 Expression Measure

Description

This function converts a DataTreeSet into an ExprTreeSet using the XPS implementation
of Affymetrix’s MAS 5.0 expression measure.

Usage
masb5 (xps.data,

filename = character (0),
filedir = getwd(),
tmpdir = ",
normalize = FALSE,
sc = 500,
option = "transcript",
exonlevel = "",
update = FALSE,

Xps.scheme NULL,

86

add.data

verbose

mas5

TRUE,
TRUE)

XpsMASS (object, ...)

Arguments

xps.data
filename
filedir
tmpdir

normalize

SC

option

exonlevel

update
Xps.scheme
add.data
verbose

object

Details

object of class DataTreeSet.

file name of ROOT data file.

system directory where ROOT data file should be stored.

optional temporary directory where temporary ROOT files should be stored.

logical. If TRUE scale normalization is used after an ExprTreeSet is ob-
tained.

value at which all arrays will be scaled to.

option determining the grouping of probes for summarization, one of ‘tran-
script’, ‘exon’, ‘probeset’; exon arrays only.

exon annotation level determining which probes should be used for summariza-
tion; exon/genome arrays only.

logical. If TRUE the existing ROOT data file £ilename will be updated.
optional alternative SchemeTreeSet.

logical. If TRUE expression data will be included as slot data.

logical, if TRUE print status information.

object of class DataTreeSet.

arguments filename,filedir,tmpdir,option,exonlevel,xps.scheme.

This function computes the Affymetrix MAS 5.0 expression measure as implemented in XPS. Al-
though this implementation is based on the Affymetrix ‘sadd_whitepaper.pdf’, it can be used to
compute an expression level for both expression arrays and exon arrays. For exon arrays it is nec-
essary to supply the requested opt ion and exonlevel.

Following options are valid for exon arrays:

transcript: expression levels are computed for transcript clusters, i.e. probe sets containing the same ‘transcript_clu
exon: expression levels are computed for exon clusters, i.e. probe sets containing the same ‘exon_id’, where e:
probeset: expression levels are computed for individual probe sets, i.e. for each ‘probeset_id’.

Following exonlevel annotations are valid for exon arrays:

core:
metacore:
extended:

probesets supported by RefSeq and full-length GenBank transcripts.
core meta-probesets.
probesets with other cDNA support.

metaextended: extended meta-probesets.

full:
metafull:
affx:
all:

probesets supported by gene predictions only.
full meta-probesets.

standard AFFX controls.

combination of above (including affx).

mas5 87

Following exonlevel annotations are valid for whole genome arrays:

core: probesets with category ‘unique’, ‘similar’ and ‘mixed’.
metacore: probesets with category ‘unique’ only.

affx: standard AFFX controls.

all: combination of above (including affx).

Exon levels can also be combined, with following combinations being most useful:

exonlevel="metacore+affx": core meta-probesets plus AFFX controls
exonlevel="core+extended": probesets with cDNA support
exonlevel="coretextended+full": supported plus predicted probesets

Exon level annotations are described in the Affymetrix whitepaper ‘exon_probeset_trans_clust_whitepaper.pdf’.

If normalize=TRUE then the expression levels will be scaled to sc. For sc=0 the expression
levels will be scaled to the mean expression level.

If update=TRUE then the existing ROOT file £i1lename will be updated, however, this is usually
only recommended as option for function express.

In order to use an alternative SchemeTreeSet set the corresponding SchemeTreeSet xps . scheme.

xpsMASS is the DataTreeSet method called by function ma s 5, however, expression levels will
not be scaled to a common mean expression level.

Value

An ExprTreeSet

Note

In contrast to function mas5, expression levels computed with xpsMASS will not be scaled to a
common mean expression level.

Author(s)

Christian Stratowa

References

Affymetrix (2002) Statistical Algorithms Description Document, Affymetrix Inc., Santa Clara, CA,
whitepaper. http://www.affymetrix.com/support/technical/whitepapers/sadd_
whitepaper.pdf

Affymetrix (2005) Exon Probeset Annotations and Transcript Cluster Groupings, Affymetrix Inc.,
Santa Clara, CA, exon_probeset_trans_clust_whitepaper.pdf.

See Also

exXpress

http://www.affymetrix.com/support/technical/whitepapers/sadd_whitepaper.pdf
http://www.affymetrix.com/support/technical/whitepapers/sadd_whitepaper.pdf

88 mas5.call

Examples

first, load ROOT scheme file and ROOT data file
scheme.test3 <- root.scheme (paste (.path.package ("xps"), "schemes/SchemeTest3.root",sep="/"
data.test3 <- root.data(scheme.test3, paste(.path.package ("xps"), "rootdata/DataTest3_cel.

data.mas5 <- mas5(data.test3, "tmp_Test3MASSH", tmpdir="",normalize=TRUE, sc=500, update=TRUE,

get data.frame
expr.mas5 <- validData (data.masb5)
head (expr.masb)

plot results

if (interactive()) {
boxplot (data.masb)
boxplot (log2 (expr.masb))
}

rm(scheme.test3, data.test3)
gc ()

mas5.call MAS 5.0 Absolute Detection Call

Description

Performs the Wilcoxon signed rank-based gene expression presence/absence detection algorithm
first implemented in the Affymetrix Microarray Suite version 5.

Usage
masb5.call (xps.data,
filename = character(0), filedir = getwd(), tmpdir = "",
tau = 0.015, alphal = 0.04, alpha2 = 0.06, ignore.saturated = TRUE,
option = "transcript", exonlevel = "", xps.scheme = NULL, add.data = T
xpsMAS5Call (object, ...)
Arguments
xps.data object of class DataTreeSet.
filename file name of ROOT data file.
filedir system directory where ROOT data file should be stored.
tmpdir optional temporary directory where temporary ROOT files should be stored.
tau a small positive constant.
alphal a significance threshold in (0,alpha2).
alpha?2 a significance threshold in (alphal,0.5).

ignore.saturated
logical. If TRUE do the saturation correction described in the paper, with a
saturation level of 46000.

mas5.call 89

option option determining the grouping of probes for summarization, one of ‘tran-
script’, ‘exon’, ‘probeset’; exon arrays only.

exonlevel exon annotation level determining which probes should be used for summariza-
tion; exon/genome arrays only.

Xps.scheme optional alternative SchemeTreeSet.

add.data logical. If TRUE call data will be added to slots data and detcall.
verbose logical, if TRUE print status information.
object object of class DataTreeSet.

the arguments described above.

Details

This function performs the hypothesis test:

HO: median(Ri) = tau, corresponding to absence of transcript H1: median(Ri) > tau, corresponding
to presence of transcript

where Ri = (PMi - MMi) / (PMi + MMi) for each i a probe-pair in the probe-set represented by data.
The p-value that is returned estimates the usual quantity:
Pr(observing a more "present looking" probe-set than data | data is absent)

Small p-values imply presence while large ones imply absence of transcript. The detection call is
computed by thresholding the p-value as in:

call “P” if p-value < alphal
call “M” if alphal <= p-value < alpha2
call “A” if alpha2 <= p-value

The defaults for tau, alphal and alpha2 correspond to those in MASS5.0 for expression arrays.
However, when using this function for exon or whole genome arrays, new values for alphal and
alpha?2 must be determined. The recommended function for exon/genome arrays is dabg.call.

In order to use an alternative SchemeTreeSet set the corresponding SchemeTreeSet xps . scheme.

xpsMAS5Call is the DataTreeSet method called by function mas5.call, containing the
same parameters.

Value

A CallTreeSet

Author(s)

Christian Stratowa

References

Liu, W. M. and Mei, R. and Di, X. and Ryder, T. B. and Hubbell, E. and Dee, S. and Webster,
T. A. and Harrington, C. A. and Ho, M. H. and Baid, J. and Smeekens, S. P. (2002) Analysis of
high density expression microarrays with signed-rank call algorithms, Bioinformatics, 18(12), pp.
1593-1599.

Liu, W. and Mei, R. and Bartell, D. M. and Di, X. and Webster, T. A. and Ryder, T. (2001) Rank-
based algorithms for analysis of microarrays, Proceedings of SPIE, Microarrays: Optical Technolo-
gies and Informatics, 4266.

Affymetrix (2002) Statistical Algorithms Description Document, Affymetrix Inc., Santa Clara, CA,
whitepaper. http://www.affymetrix.com/support/technical/whitepapers/sadd_
whitepaper.pdf

http://www.affymetrix.com/support/technical/whitepapers/sadd_whitepaper.pdf
http://www.affymetrix.com/support/technical/whitepapers/sadd_whitepaper.pdf

90 mboxplot-methods

See Also

dabg.call

Examples

first, load ROOT scheme file and ROOT data file
scheme.test3 <- root.scheme (paste (.path.package ("xps"), "schemes/SchemeTest3.root", sep="/"
data.test3 <- root.data(scheme.test3, paste(.path.package ("xps"), "rootdata/DataTest3_cel.

MASS5 detection call
call.mas5 <- mas5.call(data.test3, "tmp_Test3Call", tmpdir="",verbose=FALSE)

get data.frames

pval.masb5 <- pvalData(call.masb)
pres.masb <- presCall (call.masb)
head(pval.mas5)

head (pres.masb)

plot results

if (interactive()) {

callplot (call.mas5, beside=FALSE, ylim=c(0,125))
}

rm(scheme.test3, data.test3)
gc ()

mboxplot-methods Box Plots of Relative M Values

Description

Produce boxplots of relative M values for the set of arrays.

Usage
mboxplot (x, which = "", size = 0, transfo = log2, method = "mean",

range = 0, ylim = c(-1,1), outline = FALSE, names = "namepart", ...)
Arguments

X object of class DataTreeSet or ExprTreeSet.

which type of probes to be used, for details see validData.

size length of sequence to be generated as subset.

transfo a valid function to transform the data, usually “log2”, or “0”.

method method to create the reference data, “mean” or “median”.

range determines how far the plot whiskers extend out from the box.

ylim range for the plotted y values.

outline if out line is not true, the outliers are not drawn.

names optional vector of sample names.

optional arguments to be passed to boxplot.

metaProbesets 91

Details

Create boxplots of M plots, where M is determined relative to a pseudo-mean reference chip.

For name s=NULL full column names of slot data will be displayed while for names="namepart"
column names will be displayed without name extension. If names is a vector of column names,
only these columns will displayed as boxplot.

Note

For aDataTreeSet object, data must first be attached using method attachInten.

Author(s)

Christian Stratowa

See Also

boxplot .dev, boxplot

Examples

load existing ROOT scheme file and ROOT data file
scheme.test3 <- root.scheme (paste (.path.package ("xps"), "schemes/SchemeTest3.root",sep="/"
data.test3 <- root.data(scheme.test3, paste(.path.package ("xps"),"rootdata/DataTest3_cel.

need to attach scheme mask and probe intensities
data.test3 <- attachMask (data.test3)
data.test3 <- attachInten (data.test3)

if (interactive()) {
mboxplot (data.test3, ylim=c(-6,6))
}

optionally remove mask and data to free memory
data.test3 <- removelInten (data.test3)
data.test3 <- removeMask (data.test3)

metaProbesets Create MetaProbeset File for APT

Description

Create MetaProbeset File for APT function “apt-probeset-summarize”.

Usage

metaProbesets (xps.scheme, infile = character(0), outfile = character(0), exonlev

Arguments

Xps.scheme exon SchemeTreeSet.
infile Name of file containing exon transcript_cluster_ids.
outfile Name of resulting file containing meta probeset definitions.

exonlevel exon annotation level determining which probes should be used.

92 mvaplot-methods

Details

This function allows to create a metaprobeset file for APT function “apt-probeset-summarize” to
be used with option “-m”. The infile must contain exon transcript_cluster_ids, one per line, e.g.
one can export the rownames (data.rma)

The resulting file may be useful if you want to compare results created with xps to results created
with APT function “apt-probeset-summarize”.

Value

None.

Author(s)

Christian Stratowa

Examples

Not run:

first, load ROOT exon scheme file:

scmdir <- "/Volumes/GigaDrive/CRAN/Workspaces/Schemes"

scheme.exon <- root.scheme (paste(scmdir, "Scheme_HuEx10stv2r2_na25.root", sep="/"))

metaProbesets (scheme.exon, "metacore.txt", "metacoreList.mps", "metacore")
End (Not run)

mvaplot-methods M vs A Plot

Description

Produce scatter plots of M values vs A values of the samples.

Usage
mvaplot (x, transfo = log2, method = "median", names = "namepart",
ylim = c(-6,6), ...)
Arguments
x object of class ExprTreeSet.
transfo a valid function to transform the data, usually “log2”, or “0”.
method method to compute M, “mean” or “median”.
names optional vector of sample names.
ylim range for the plotted M values.
optional arguments to be passed to plot.
Details

Produces mvaplots for slot dat a for an object of class ExprTreeSet.

For name s=NULL full column names of slot dat a will be displayed while for names="namepart"
column names will be displayed without name extension. If names is a vector of column names,
only these columns will displayed as mvaplot.

mvaplot.dev

Author(s)

Christian Stratowa

See Also

mvaplot.dev

93

mvaplot.dev

MvA Scatter Plot for Device

Description

Produce scatter plots of M values vs A values of the samples for the selected device.

Usage
mvaplot.dev(x, transfo = log2, method = "median", names = "namepart",
Arguments
x object of class ExprTreeSet.
transfo a valid function to transform the data, usually “log2”, or “0”.
method method to compute M, “mean” or “median”.
names optional vector of sample names.
ylim range for the plotted M values.
xlab a title for the x axis.
ylab a title for the y axis.
pch either an integer specifying a symbol or a single character to be used in plotting
points.
mar plot margin.
dev graphics device to plot to, i.e. one of “screen”, “jpeg”,“png”, “pdf” or “ps”.
outfile the name of the output file.
w the width of the device in pixels.
h the height of the device in pixels.
optional arguments to be passed to plot.
Details

Produces mvaplots for slot data for an object of class ExprTreeSet for the selected graphics

device.

For name s=NULL full column names of slot dat a will be displayed while for names="namepart"
column names will be displayed without name extension. If names is a vector of column names,
only these columns will displayed as mvaplot.

Author(s)

Christian Stratowa

ylim

c (-

94 normalize

See Also
mvaplot
normalize Normalization on Affymetrix Probe Level Data or on Expression Lev-
els
Description

Functions that allow to normalize Affymetrix arrays both at the probe level (“low-level normaliza-
tion”) and/or at the expression level (“high-level normalization™).

Usage
normalize (xps.data, filename = character(0), filedir = getwd(), tmpdir = "", upc
normalize.constant (xps.data, filename = character(0), filedir = getwd(), tmpdir
normalize.lowess (xps.data, filename = character(0), filedir = getwd(), tmpdir =
normalize.quantiles (xps.data, filename = character(0), filedir = getwd(), tmpdir
normalize.supsmu(xps.data, filename = character(0), filedir = getwd(), tmpdir =

xpsNormalize (object, ...)

Arguments

xps.data object of class DataTreeSet or ExprTreeSet.

filename file name of ROOT data file.

filedir system directory where ROOT data file should be stored.

tmpdir optional temporary directory where temporary ROOT files should be stored.

update logical. If TRUE the existing ROOT data file £ilename will be updated.

select type of probes to select for normalization.

method normalization method to use.

option option determining the grouping of probes for normalization, and the selection
of the probes.

logbase logarithm base as character, one of ‘0’, ‘log’, ‘log2’, ‘logl0’.

exonlevel exon annotation level determining which probes should be used for summariza-
tion; exon/genome arrays only.

refindex index of reference tree to use, or 0.

refmethod for refindex=0, either trimmed mean or median of trees.

params vector of parameters for normalization method.

add.data logical. If TRUE expression data will be included as slot data.

verbose logical, if TRUE print status information.

object object of class DataTreeSet or ExprTreeSet.

the arguments described above.

pm-methods 95

Details

Functions that allow to normalize Affymetrix arrays both at the probe level (“low-level normaliza-
tion”) and/or at the expression level (‘“high-level normalization™).

xpsNormalize are the DataTreeSet or ExprTreeSet methods, respectively, called by
function normalize, containing the same parameters.

Value

An object of type DataTreeSet or ExprTreeSet.

Warning

Functions normalize.lowess and normalize.supsmu have only be tested for objects
of type ExprTreeSet but not for objects of type DataTreeSet, i.e. for probe level intensities.

Author(s)

Christian Stratowa

See Also

express

Examples

first, load ROOT scheme file and ROOT data file
scheme.test3 <- root.scheme (paste (.path.package ("xps"), "schemes/SchemeTest3.root", sep="/"
data.test3 <- root.data(scheme.test3, paste(.path.package ("xps"), "rootdata/DataTest3_cel.

RMA background

data.bg.rma <- bgcorrect.rma (data.test3, "tmp_Test3NormRMA", filedir=getwd (), tmpdir="", verk
normalize quantiles

data.qu.rma <- normalize.quantiles(data.bg.rma, "tmp_Test3NormRMA", filedir=getwd (), tmpdirs=
summarize medianpolish

data.mp.rma <- summarize.rma (data.qu.rma, "tmp_Test3NormRMA", filedir=getwd (), tmpdir="", upc
pm-methods Methods for accessing perfect matches and mismatches
Description

Methods for accessing perfect match (PM) and mismatch (MM) probes.

Usage
pm(object, which = "pm")
mm (object, which = "mm")
Arguments
object object of class DataTreeSet.

which type of perfect match or mismatch probes to be returned.

96 pm-methods

Details
For expression arrays all the perfect match (pm) or mismatch (mm) probes on the arrays the object
represents are returned as data.frame.

For exon arrays, pm returns the probes of the different exon levels as data.frame, i.e. which can
have one of the following values:

core: probesets supported by RefSeq and full-length GenBank transcripts.
metacore: core meta-probesets.

extended: probesets with other cDNA support.

metaextended: extended meta-probesets.

full: probesets supported by gene predictions only.

metafull: full meta-probesets.

affx: standard AFFX controls.

For whole genome arrays, pm returns the probes of the different exon levels as data.frame, i.e.
which can have one of the following values:

core: probesets with category ‘unique’ and ‘mixed’.
metacore: probesets with category ‘unique’ only.
affx: standard AFFX controls.

For exon/genome arrays, mm returns the background probes as data.frame, i.e. which is either
“genomic” or “antigenomic”.

Value

A data.frame.

Author(s)

Christian Stratowa

See Also

validData

Examples

load existing ROOT scheme file and ROOT data file
scheme.test3 <- root.scheme (paste (.path.package ("xps"), "schemes/SchemeTest3.root", sep="/"
data.test3 <- root.data(scheme.test3, paste(.path.package ("xps"), "rootdata/DataTest3_cel.

need to attach scheme mask and probe intensities
data.test3 <- attachMask (data.test3)
data.test3 <- attachInten (data.test3)

pm <- pm(data.test3)
mm <— mm(data.test3)
head (pm)
head (mm)

optionally remove mask and data to free memory
data.test3 <- removelnten (data.test3)
data.test3 <- removeMask (data.test3)

pmplot-methods 97

pmplot-methods Barplot of PM and MM Intensities.

Description

Creates a barplot of mean perfect match and mismatch intensities.
Usage

pmplot (x, which = "", size = 0, transfo = NULL, method = "mean", names
= "namepart", beside = TRUE, col = c("red", "blue"), legend = c("pPM","MM"),
.)

Arguments
X object of class DataTreeSet.
which type of probes to be used, for details see validData.
size length of sequence to be generated as subset.
transfo a valid function to transform the data, usually “log2”, or “0”.
method method to compute average intensities, “mean” or “median”.
names optional vector of sample names.
beside logical. If FALSE, mean intensities are portrayed as stacked bars, and if TRUE
the columns are portrayed as juxtaposed bars.
col color of PM, MM bars.
legend a vector of text used to construct a legend for the plot, or a logical indicating
whether a legend should be included.
optional arguments to be passed to barplot.
Details

Produces barplots of mean perfect match and mismatch intensities for slot data for an object of
class ExprTreeSet.

For name s=NULL full column names of slot dat a will be displayed while for names="namepart"
column names will be displayed without name extension. If names is a vector of column names,
only these columns will displayed as pmplot.

Note

Data must first be attached to class DataTreeSet using method attachInten.

Author(s)

Christian Stratowa

See Also

boxplot.dev,boxplot, barplot

98 prefilter

Examples
load existing ROOT scheme file and ROOT data file
scheme.test3 <- root.scheme (paste (.path.package ("xps"), "schemes/SchemeTest3.root",sep="/"
data.test3 <- root.data(scheme.test3, paste(.path.package ("xps"),"rootdata/DataTest3_cel.

need to attach scheme mask and probe intensities
data.test3 <- attachMask (data.test3)
data.test3 <- attachInten (data.test3)

if (interactive()) {
pmplot (data.test3)
}

optionally remove mask and data to free memory
data.test3 <- removelnten (data.test3)
data.test3 <- removeMask (data.test3)

prefilter Function for Applying a PreFilter to an ExprTreeSet

Description

This function applies a PreFilter to an ExprTreeSet.

Usage
prefilter (xps.expr,

filename = character (0),
filedir = getwd(),
filter = NULL,
minfilters = 999,

logbase = "log2",
treename = "PreFilter",
xps.call = NULL,

verbose = TRUE)

xpsPreFilter (object, ...)

Arguments
XPS.exXpr object of class ExprTreeSet
filename file name of ROOT filter file.
filedir system directory where ROOT filter file should be stored.
filter object of class PreFilter.
minfilters minimum number of initialized filter methods to satisfy (default is all filters).
logbase convert data to logarithm of base: "0", "1og", "log2" (default), "1og10"
treename tree name to be used in ROOT filter file.
xps.call optional object of class CallTreeSet.
verbose logical, if TRUE print status information.
object object of class ExprTreeSet

same arguments as function prefilter.

presCall-methods 99

Details
This function applies the different filters initialized with constructor PreFiltertothe ExprTreeSet
XPS.expr.

Slotminfilters determines the minimum number of initialized filters, which must be satisfied so
that the mask issetto flag=1. Forminfilters=1 atleast one filter must be satisfied, equivalent
to logical ‘OR’; forminfilters=999 all filters must be satisfied, equivalent to logical ‘AND’.

If method callFilter wasinitialized with constructor PreFilterthenCallTreeSet xps.call
must be supplied, usually created with function mas5.call.

Value

AFilterTreeSet

Author(s)

Christian Stratowa

See Also

PreFilter,unifilter

Examples

first, load ROOT scheme file and ROOT data file
scheme.test3 <- root.scheme (paste (.path.package ("xps"), "schemes/SchemeTest3.root", sep="/"
data.test3 <- root.data(scheme.test3, paste(.path.package ("xps"), "rootdata/DataTest3_cel.

second, create an ExprTreeSet

data.rma <- rma(data.test3,"tmp_TestRMA", tmpdir="",background="pmonly", normalize=TRUE, ver
note: do not copy/paste this code, it is necessary only because R CMD check fails sinc
data.rma@rootfile <- paste(.path.package ("xps"), "rootdata/tmp_Test3RMA.root", sep="/")
data.rma@Rfiledir <- paste(.path.package ("xps"),"rootdata", sep="/")

third, construct a PreFilter
prefltr <- PreFilter (mad=c(0.5,0.01),lothreshold=c(6.0,0.02,"mean"),hithreshold=c(10.5, 8C

finally, create a FilterTreeSet
rma.pfr <- prefilter (data.rma,"tmp_Test3Prefilter",getwd(),prefltr,2,verbose=FALSE)
str(rma.pfr)

presCall-methods Get/Set Present Call Values

Description

Get/set present call values from/for class CallTreeSet.
Usage

presCall (object)
presCall (object, treenames

NULL) <- wvalue

pvalData (object)
pvalData (object, treenames

NULL) <- wvalue

100 presCall-methods

Arguments
object object of class CallTreeSet.
treenames character vector containing optional tree names to be used as subset.
value data. frame containing present call values.

Details

Get the p-values from slot dat a or present calls from slot det call, orsetslotdataordetcall,
respectively, to value.

Method presCall returns the present calls from slot detcall as data. frame, while replace-
ment method presCall<- allows to replace slot detcall witha data.frame.

Method pvalData returns the p-values from slot data as data.frame, while replacement
method pvalData<- allows to replace slot data witha data. frame.

In order to create an CallTreeSet containing only a subset of e.g. slot data, first export slot
data using method pvalData, create a character vector containing only t reenames to be
used in the subset, and then use replacement method pvalData<- to replace slot data with the
subset. Slots treenames and numtrees will be updated automatically for pvalData<- but
not for presCall<-.

Note: When creating character vector t reenames it is sufficient to use the name part of the
tree name w/o the extension.

Note: If you do not want to replace your current object, create first a copy of type CallTreeSet
by simply writing newobj <- oldobj, and use newob Jj for replacement.
Author(s)

Christian Stratowa

See Also

exprs

Examples

Not run:

load ROOT scheme file and ROOT data file

scheme.test3 <- root.scheme (paste (.path.package ("xps"), "schemes/SchemeTest3.root",sep="/"
data.test3 <- root.data(scheme.test3, paste(.path.package ("xps"), "rootdata/DataTest3_cel.

create an CallTreeSet
call.mas5 <- mas5.call (data.test3, "tmp_TestMAS5Call", tmpdir="", verbose=FALSE)

get p-values
value <- pvalData(call.masb5)

selected treenames only
treenames <- c("TestA2", "TestB1l")

make a copy of your object if you do not want to replace it
subset.call <- call.mas5

replace slot data with subset
exprs (subset.call, treenames) <- value

ratioFilter-methods 101

str (subset.call)
End (Not run)

quantileFilter-methods
Quantile Filter

Description

This method initializes the Quantile Filter.

The Quantile Filter flags all rows with: flag = (quantile[high]/quantile[low] >=
cutoff)

Usage

quantileFilter (object)
quantileFilter (object, wvalue)<-

Arguments

object object of class PreFilter.

value numeric vector c (cutoff, loquantile, hiquantile).
Details

The method quantileFilter initializes the following parameters:

cutoff: the cutoff level for the filter.
loquantile: value for low quantile (defaultis loquantile=0.05).
hiquantile: value for high quantile (defaultis hiquantile=0.95).

Value

An initialized PreFilter object.

Author(s)

Christian Stratowa

Examples

prefltr <- PreFilter ()
quantileFilter (prefltr) <- ¢ (3.0, 0.05, 0.95)
str (prefltr)

ratioFilter—-methods
Ratio Filter

102 rawCELName-methods

Description

This method initializes the Ratio Filter. The ratio is the maximum value divided by minimum value
for each row of the expression dataframe.
The Ratio Filter flags all rows with: flag = (max/min >= cutoff)

Usage

ratioFilter (object)
ratioFilter (object, wvalue)<-

Arguments
object object of class PreFilter.
value numeric value ¢ (cutoff).
Details

The method ratioFilter initializes the following parameters:

cutoff: the cutoff level for the filter.

Value

An initialized PreFilter object.

Author(s)

Christian Stratowa

Examples

prefltr <- PreFilter()
ratioFilter (prefltr) <- c(1.5)
str(prefltr)

rawCELName-methods Method for getting names of the raw CEL-files

Description

Method for getting names (and full path) of the original CEL-files.

Usage
rawCELName (object, treename = "x", fullpath = TRUE)
Arguments
object object of class DataTreeSet.
treename treename, for which the name of the original CEL-file should be returned.

fullpath logical, if TRUE return full path.

rma 103

Details

Since CEL-files can be imported with import . data using alternative ce Lnames, method rawCELName
allows to return the original name and optionally the full path for each CEL-file.

Value

A character vector.

Author(s)

Christian Stratowa

See Also

import.data

Examples

load existing ROOT scheme file and ROOT data file
scheme.test3 <- root.scheme (paste (.path.package ("xps"), "schemes/SchemeTest3.root",sep="/"
data.test3 <- root.data(scheme.test3, paste(.path.package ("xps"), "rootdata/DataTest3_cel.

rawCELName (data.test3)

rawCELName (data.test3, treename = "TestA2.cel", fullpath = FALSE)
rma Robust Multi-Array Average Expression Measure
Description

This function converts a DataTreeSet into an ExprTreeSet using the robust multi-array av-
erage (RMA) expression measure.

Usage
rma (xps.data,

filename = character (0),
filedir = getwd(),
tmpdir = """,
background = "pmonly",
normalize = TRUE,
option = "transcript",
exonlevel = "",
xps.scheme = NULL,
add.data = TRUE,
verbose = TRUE)

xpsRMA (object, ...)

xXps.scheme

Arguments

xps.data object of class DataTreeSet.

filename file name of ROOT data file.

filedir system directory where ROOT data file should be stored.

tmpdir optional temporary directory where temporary ROOT files should be stored.

background probes used to compute background, one of ‘pmonly’, ‘mmonly’, ‘both’; for
genome/exon arrays one of ‘genomic’, ‘antigenomic’

normalize logical. If TRUE normalize data using quantile normalization.

option option determining the grouping of probes for summarization, one of ‘tran-
script’, ‘exon’, ‘probeset’; exon arrays only.

exonlevel exon annotation level determining which probes should be used for summariza-

tion; exon/genome arrays only.

optional alternative SchemeTreeSet.

add.data logical. If TRUE expression data will be included as slot data.
verbose logical, if TRUE print status information.
object object of class DataTreeSet.
the arguments described above.
Details

This function computes the RMA (Robust Multichip Average) expression measure described in
Irizarry et al. for both expression arrays and exon arrays. For exon arrays it is necessary to supply
the requested option and exonlevel.

Following options are valid for exon arrays:

transcript: expression levels are computed for transcript clusters, i.e. probe sets containing the same ‘transcript_clu
exon: expression levels are computed for exon clusters, i.e. probe sets containing the same ‘exon_id’, where e:
probeset: expression levels are computed for individual probe sets, i.e. for each ‘probeset_id’.

Following exonlevel annotations are valid for exon arrays:

core: probesets supported by RefSeq and full-length GenBank transcripts.
metacore: core meta-probesets.

extended: probesets with other cDNA support.

metaextended: extended meta-probesets.

full: probesets supported by gene predictions only.

metafull: full meta-probesets.

affx: standard AFFX controls.

all: combination of above (including affx).

Following exonlevel annotations are valid for whole genome arrays:

core: probesets with category ‘unique’, ‘similar’ and ‘mixed’.
metacore: probesets with category ‘unique’ only.

affx: standard AFFX controls.

all: combination of above (including affx).

rma 105

Exon levels can also be combined, with following combinations being most useful:

exonlevel="metacore+affx": core meta-probesets plus AFFX controls
exonlevel="coretextended": probesets with cDNA support
exonlevel="core+extended+full": supported plus predicted probesets

Exon level annotations are described in the Affymetrix whitepaper exon_probeset_trans_clust_whitepaper.pdf:
“Exon Probeset Annotations and Transcript Cluster Groupings”.

In order to use an alternative SchemeTreeSet set the corresponding SchemeSet xps . scheme.

xpsRMA is the DataSet method called by function rma, containing the same parameters.

Value

An ExprTreeSet

Note

In contrary to other implementations of RMA the expression measure is given to you in linear scale,
analogously to the expression measures computed with mas5 and mas4.

It is also possible to skip background correction by setting parameter background="none".

For the analysis of many exon arrays it may be better to define a tmpdir, since this will store only
the results in the main file and not e.g. background and normalized intensities, and thus will reduce
the file size of the main file. For quantile normalization memory should not be an issue, however
medianpolish depends on RAM unless you are using a temporary file.

Parameter exonlevel determines not only which probes are used for medianpolish, but also
the probes used for background calculation and for quantile normalization. If you want to use
seperate probes for background calculation, quantile normalization and medianpolish summariza-
tion, you can pass a numeric vector containing three integer values corresponding to the respective
exonlevel,e.g. youcanuse exonlevel=c (16316, 8252,8252), see function exonLevel
for more details.

Author(s)

Christian Stratowa

References

Rafael. A. Irizarry, Benjamin M. Bolstad, Francois Collin, Leslie M. Cope, Bridget Hobbs and Ter-
ence P. Speed (2003), Summaries of Affymetrix GeneChip probe level data Nucleic Acids Research
31(4):el5

Bolstad, B.M., Irizarry R. A., Astrand M., and Speed, T.P. (2003), A Comparison of Normalization
Methods for High Density Oligonucleotide Array Data Based on Bias and Variance. Bioinformatics
19(2):185-193

Irizarry, RA, Hobbs, B, Collin, F, Beazer-Barclay, YD, Antonellis, KJ, Scherf, U, Speed, TP (2003)
Exploration, Normalization, and Summaries of High Density Oligonucleotide Array Probe Level
Data. Biostatistics .Vol. 4, Number 2: 249-264

See Also

exXpress

106 root.browser-methods

Examples

first, load ROOT scheme file and ROOT data file
scheme.test3 <- root.scheme (paste (.path.package ("xps"), "schemes/SchemeTest3.root",sep="/"
data.test3 <- root.data(scheme.test3, paste(.path.package ("xps"),"rootdata/DataTest3_cel.

data.rma <- rma(data.test3, "tmp_Test3RMA", tmpdir="",background="pmonly",normalize=TRUE, ve

get data.frame
expr.rma <- validData (data.rma)
head (expr.rma)

plot results

if (interactive()) {
boxplot (data.rma)
boxplot (log2 (expr.rma))
}

rm(scheme.test3, data.test3)
gc ()

Not run:

examples using Affymetrix human tissue dataset (see also xps/examples/script4exon.R)
first, load ROOT scheme file and ROOT data file from e.g.:

scmdir <- "/Volumes/GigaDrive/CRAN/Workspaces/Schemes"

datdir <- "/Volumes/GigaDrive/CRAN/Workspaces/ROOTData"

1. example - expression array, e.g. HG-U1l33_Plus_2:
scheme.ul33p2 <- root.scheme (paste (scmdir, "Scheme_HGU133p2_na25.root", sep="/"))
data.ul33p2 <- root.data (scheme.ul33p2, paste(datdir,"HuTissuesU1l33P2_cel.root",sep="/"

workdir <- "/Volumes/GigaDrive/CRAN/Workspaces/Exon/hutissues/ul33p2"
data.rma <- rma(data.ul33p2, "MixU133P2RMA", filedir=workdir, tmpdir="",
background="pmonly", normalize=TRUE)

2. example - whole genome array, e.g. HuGene-1_0-st-vl:
scheme.genome <- root.scheme (paste (scmdir,"Scheme_HuGenelOstvlr3_na25.root", sep="/"))
data.genome <- root.data (scheme.genome, paste(datdir,"HuTissuesGenome_cel.root", sep="/"

workdir <- "/Volumes/GigaDrive/CRAN/Workspaces/Exon/hutissues/hugene"
data.g.rma <- rma(data.genome, "HuGeneMixRMAMetacore", filedir=workdir, tmpdir="",
background="antigenomic", normalize=T, exonlevel="metacoret+affx")

3. example - exon array, e.g. HuEx-1_0-st-v2:
scheme.exon <- root.scheme (paste(scmdir, "Scheme_HuEx10stv2r2_na25.root", sep="/"))

data.exon <- root.data (scheme.exon, paste(datdir,"HuTissuesExon_cel.root",sep="/"))
workdir <- "/Volumes/GigaDrive/CRAN/Workspaces/Exon/hutissues/exon"
data.x.rma <- rma (data.exon, "MixRMAMetacore", filedir=workdir,tmpdir="",background="antige

normalize=T,option="transcript", exonlevel="metacore")
End(Not run)

root.browser—-methods
Open the ROOT object browser

root.call 107

Description

Open the ROOT object browser to see all objects stored in a ROOT file including ROOT trees.

Usage

root.browser (object)

Arguments

object an object of type SchemeTreeSet,DataTreeSet,ExprTreeSet,orCallTreeSet

Note

Always select menu item “Quit ROOT” from menu “File” to close the ROOT browser, otherwise
you are in the CINT C/C++ interpreter from ROOT. To exit CINT, you need to type “.q”.

Author(s)

Christian Stratowa

root.call Create class CallTreeSet accessing ROOT detection call file

Description

Create class CallTreeSet accessing ROOT detection call file.

Usage

root.call (xps.scheme, rootfile = character(0), treetype = character (0), treename

Arguments

Xps.scheme A SchemeTreeSet containing the correct scheme for the ROOT data file.

rootfile name of ROOT data file, including full path.

treetype tree type.

treenames optional character vector of tree names to get only subset of trees.
Details

An S4 class CallTreeSet will be created, serving as R wrapper to the existing ROOT detection
call file rootfile.

Parameter t reet ype must be supplied to identify the ROOT trees for slots data and detcall.
Valid tree types are listed in validTreetype.

To get the names of all trees with their extensions t reetype, which are stored in rootfile,
you can call function get TreeNames first.

If the CallTreeSet should only handle a subset of the trees stored in root £11e, the tree names
must be supplied as vector t reenames.

108 root.data

Value

A CallTreeSet object.

Author(s)

Christian Stratowa

See Also

root.data, root .expr

Examples

first, load ROOT scheme file and ROOT data file
scheme.test3 <- root.scheme (paste (.path.package ("xps"), "schemes/SchemeTest3.root",sep="/"
data.test3 <- root.data(scheme.test3, paste(.path.package ("xps"), "rootdata/DataTest3_cel.

MASS5 detection call
detcall.mas5 <- mas5.call (data.test3,"tmp_Test3CallAll", tmpdir="", verbose=FALSE)

use subset of trees
sub.call <- root.call (scheme.test3, "tmp_Test3CallAll.root", "dc5", c("TestA2", "TestB1l")

root.data Create class DataTreeSet accessing ROOT data file

Description

Create class DataTreeSet accessing ROOT data file.

Usage

root.data (xps.scheme, rootfile = character(0), celnames = "x")

Arguments

Xps.scheme A SchemeTreeSet containing the correct scheme for the ROOT data file.

rootfile name of ROOT data file, including full path.
celnames optional character vector of tree names to get only subset of trees.
Details

An S4 class DataTreeSet will be created, serving as R wrapper to the existing ROOT data file
rootfile.

If the DataTreeSet should only handle a subset of the trees stored in root £11e, the tree names
must be supplied as vector celnames.

To get the names of all trees stored in root £ile you can call function get TreeNames first.

Value

A DataTreeSet object.

root.density

Note

109

Use root .data to access the ROOT data file from new R sessions to avoid creating a new ROOT
data file for every R session.

Author(s)

Christian Stratowa

See Also

import.data,DataTreeSet

Examples

get scheme and import CEL-files from package
scheme.test3 <- root.scheme (paste (.path.package ("xps"), "schemes/SchemeTest3.root",sep="/"
data.test3 <- import.data(scheme.test3, "tmp_datatest3",celdir=paste (.path.package ("xps"),

use subset of CEL-files

subdata.test3 <- root.data(scheme.test3, "tmp_datatest3_cel.root",

root.density

ROOT Density Plot

Description

Creates a ROOT density plot for one or all ROOT tree(s).

Usage
root.density(x, treename = "x", logbase = "log2", canvasname = "DensityPlot",
Arguments
X object of class DataTreeSet or ExprTreeSet.
treename name of tree, must be present in root £ile of object x.
logbase usually “log2”, or “0”, determines if leaf data should be converted to log.
canvasname name of ROOT canvas
save.as gaphics tye for saving canvas, one of “ps”, “eps”, “pdf”, “jpg”, “gif”, “png”,
“tiff”
w the width of the canvas in pixels.
h the height of the canvas in pixels.
Details

Creates a ROOT density plot for one or all tree(s) present in rootfile.

By selecting menu “File->Save->canvasname.xxx” you can save the figure as e.g. *gif, *.jpg, *.pdf,
*.ps or even as C++ macro.

Alternatively, you can save the plot by setting save.as. However, this will close the canvas
immediately after opening it.

celnames=c ("TestAl.cel"

S3

110 root.expr

Note

Always select menu item “Quit ROOT” from menu “File” to close the ROOT canvas, otherwise you
are in the CINT C/C++ interpreter from ROOT. To exit CINT, you need to type “.q”.

Author(s)

Christian Stratowa

See Also

root.histlD

Examples

Not run:

first, load ROOT scheme file and ROOT data file

scheme.test3 <- root.scheme (paste (.path.package ("xps"), "schemes/SchemeTest3.root", sep="/"
data.test3 <- root.data(scheme.test3, paste(.path.package ("xps"), "rootdata/DataTest3_cel.

root.density(data.test3, "x")
root.density(data.test3, "TestAl.cel")
root.density(data.test3, "TestAl.cel", save.as="png")
End(Not run)

root.expr Create class ExprTreeSet accessing ROOT expression file

Description

Create class ExprTreeSet accessing ROOT expression file.

Usage

root.expr (xps.scheme, rootfile = character(0), treetype = character (0), treename

Arguments

xps.scheme A SchemeTreeSet containing the correct scheme for the ROOT data file.

rootfile name of ROOT data file, including full path.

treetype tree type.

treenames optional character vector of tree names to get only subset of trees.
Details

An S4 class ExprTreeSet will be created, serving as R wrapper to the existing ROOT expression
file rootfile.

Parameter t reet ype must be supplied to identify the ROOT trees for slot data. Valid tree types
are listed in validTreetype.

To get the names of all trees with their extensions t reetype, which are stored in rootfile,
you can call function get TreeNames first.

If the ExprTreeSet should only handle a subset of the trees stored in root £11e, the tree names
must be supplied as vector t reenames.

root.graph1D 111

Value

A ExprTreeSet object.

Author(s)

Christian Stratowa

See Also

root.data, root.call

Examples

first, load ROOT scheme file and ROOT data file
scheme.test3 <- root.scheme (paste (.path.package ("xps"), "schemes/SchemeTest3.root", sep="/"
data.test3 <- root.data(scheme.test3, paste(.path.package ("xps"), "rootdata/DataTest3_cel.

rma
all.rma <- rma(data.test3,"tmp_Test3RMAAll", tmpdir="",background="pmonly",normalize=TRUE,

use subset of trees
sub.rma <- root.expr (scheme.test3, "tmp_Test3RMAAll.root", "mdp", c("TestA2.mdp", "TestBI

root.graphlD ROOT 1D-Graph

Description

Creates a ROOT 1D-graph for a ROOT tree.

Usage
root.graphlD (x, treename = character (0), logbase = "log2", option = "P", canvasr
Arguments
x object of class DataTreeSet or ExprTreeSet.
treename name of tree, must be present in root £ile of object x.
logbase usually “log2”, or “0”, determines if leaf data should be converted to log.
option ROOT TGraph::PaintGraph option, usually one of “P”, “*” “L”.
canvasname name of ROOT canvas
save.as gaphics tye for saving canvas, one of “ps”, “eps”, “pdf”, “jpg”, “gif”, “png”,
“tiff”
w the width of the canvas in pixels.

the height of the canvas in pixels.

112 root.graph2D

Details

Creates a ROOT 1D-graph for tree t reename present in rootfile.

By selecting menu “File->Save->canvasname.xxx” you can save the figure as e.g. *gif, *.jpg, *.pdf,
*.ps or even as C++ macro.

Alternatively, you can save the plot by setting save.as. However, this will close the canvas
immediately after opening it.

Note
Always select menu item “Quit ROOT” from menu “File” to close the ROOT canvas, otherwise you
are in the CINT C/C++ interpreter from ROOT. To exit CINT, you need to type “.q”.

Author(s)

Christian Stratowa

See Also

root.graph2D

Examples

Not run:

first, load ROOT scheme file and ROOT data file

scheme.test3 <- root.scheme (paste (.path.package ("xps"), "schemes/SchemeTest3.root", sep="/"
data.test3 <- root.data(scheme.test3, paste(.path.package ("xps"), "rootdata/DataTest3_cel.

root.graphlD (data.test3, "TestAl.cel")
End (Not run)

root .graph2D ROOT 2D-Graph

Description

Creates a ROOT 2D-graph for a ROOT tree.

Usage

root.graph2D (x, treenamel = character(0), treename2 = character(0),logbase = "lc
Arguments

X object of class DataTreeSet or ExprTreeSet.

treenamel name of first tree, must be present in root £ile of object x.

treename?2 name of second tree, must be present in root £i1le of object x.

logbase usually “log2”, or “0”, determines if leaf data should be converted to log.

option ROOT TGraph::PaintGraph option, usually one of “P”, “*” “L”.

canvasname name of ROOT canvas

root.hist1D 113

save.as gaphics tye for saving canvas, one of “ps”, “eps”, “pdf”, “jpg”, “gif”, “png”,
“tiff”
w the width of the canvas in pixels.

the height of the canvas in pixels.

Details

Creates a ROOT 2D-graph for trees t reenamel and t reename?2 present in rootfile.

By selecting menu “File->Save->canvasname.xxx” you can save the figure as e.g. *gif, *.jpg, *.pdf,
*.ps or even as C++ macro.

Alternatively, you can save the plot by setting save.as. However, this will close the canvas
immediately after opening it.

Note
Always select menu item “Quit ROOT” from menu “File” to close the ROOT canvas, otherwise you
are in the CINT C/C++ interpreter from ROOT. To exit CINT, you need to type “.q”.

Author(s)

Christian Stratowa

See Also

root.graphlD, root .mvaplot

Examples

Not run:

first, load ROOT scheme file and ROOT data file

scheme.test3 <- root.scheme (paste (.path.package ("xps"), "schemes/SchemeTest3.root", sep="/"
data.test3 <- root.data(scheme.test3, paste(.path.package ("xps"), "rootdata/DataTest3_cel.

root.graph2D (data.test3, "TestAl.cel", "TestBl.cel")
End (Not run)

root.hist1D ROOT 1D-Histogram

Description

Creates a ROOT 1D-histogram for a ROOT tree.

Usage

root.histlD(x, treename = character(0), logbase = "log2", type = "hist", option

114 root.hist1D

Arguments
X object of class DataTreeSet or ExprTreeSet.
treename name of tree, must be present in root £ile of object x.
logbase usually “log2”, or “0”, determines if leaf data should be converted to log.
type ROOT 1D-hist or density, i.e. “hist” or “density”.
option ROOT 1D-hist option only, usually one of “HIST”, “B”, “C”, “E”.
canvasname name of ROOT canvas
save.as gaphics tye for saving canvas, one of “ps”, “eps”, “pdf”, “jpg”, “gif”, “png”,
“tift”
w the width of the canvas in pixels.

the height of the canvas in pixels.

Details

Creates a ROOT 1D-histogram for tree t reename present in rootfile.

By selecting menu “File->Save->canvasname.xxx” you can save the figure as e.g. *gif, *.jpg, *.pdf,
*.ps or even as C++ macro.

Alternatively, you can save the plot by setting save.as. However, this will close the canvas
immediately after opening it.

Note

Always select menu item “Quit ROOT” from menu “File” to close the ROOT canvas, otherwise you
are in the CINT C/C++ interpreter from ROOT. To exit CINT, you need to type “.q”.

Author(s)

Christian Stratowa

See Also

root .hist2D, root.hist3D

Examples

Not run:

first, load ROOT scheme file and ROOT data file

scheme.test3 <- root.scheme (paste (.path.package ("xps"), "schemes/SchemeTest3.root",sep="/"
data.test3 <- root.data(scheme.test3, paste(.path.package ("xps"), "rootdata/DataTest3_cel.

root.histlD (data.test3, "TestAl.cel")
root.histlD (data.test3, "TestAl.cel", type="density")
End (Not run)

root.hist2D 115

root.hist2D ROOT 2D-Histogram

Description

Creates a ROOT 2D-histogram for a ROOT tree.

Usage
root.hist2D(x, treenamel = character (0), treename2 = character(0), logbase = "loc
Arguments
X object of class DataTreeSet or ExprTreeSet.
treenamel name of first tree, must be present in root £ile of object x.
treename? name of second tree, must be present in root £i1le of object x.
logbase usually “log2”, or “0”, determines if leaf data should be converted to log.
option ROOT hist TH2 option, usually one of “SCAT”, “COLZ”, “BOX”, “SURF2”,
“SURF3”.
canvasname name of ROOT canvas
save.as gaphics tye for saving canvas, one of “ps”, “eps”, “pdf”, “jpg”, “gif”, “png”,
“tiff”

the width of the canvas in pixels.

the height of the canvas in pixels.

Details

Creates a ROOT 2D-histogram for trees t reenamel and t reename?2 present in rootfile.

By selecting menu “File->Save->canvasname.xxx” you can save the figure as e.g. *gif, *.jpg, *.pdf,
*.ps or even as C++ macro.

Alternatively, you can save the plot by setting save.as. However, this will close the canvas
immediately after opening it.

Note

Always select menu item “Quit ROOT” from menu “File” to close the ROOT canvas, otherwise you
are in the CINT C/C++ interpreter from ROOT. To exit CINT, you need to type “.q”.

Author(s)

Christian Stratowa

See Also

root.histlD, root.hist3D

116 root.hist3D

Examples

Not run:

first, load ROOT scheme file and ROOT data file

scheme.test3 <- root.scheme (paste (.path.package ("xps"), "schemes/SchemeTest3.root",sep="/"
data.test3 <- root.data(scheme.test3, paste(.path.package ("xps"), "rootdata/DataTest3_cel.

root.hist2D (data.test3, "TestAl.cel", "TestBl.cel", option="COLZ")
End (Not run)

root.hist3D ROOT 3D-Histogram

Description

Creates a ROOT 3D-histogram for a ROOT tree.

Usage
root.hist3D(x, treenamel = character(0), treename?2 = character(0), treename3 = C
Arguments
X object of class DataTreeSet or ExprTreeSet.
treenamel name of first tree, must be present in root £ile of object x.
treename?2 name of second tree, must be present in root £ile of object x.
treename3 name of third tree, must be present in root £ile of object x.
logbase usually “log2”, or “0”, determines if leaf data should be converted to log.
option ROOT hist TH3 option, usually one of “HIST”, “SCAT”, “BOX”".
canvasname name of ROOT canvas
save.as gaphics tye for saving canvas, one of “ps”, “eps”, “pdf”, “jpg”, “gif”, “png”,
“tif 99
w the width of the canvas in pixels.
h the height of the canvas in pixels.
Details

Creates a ROOT 3D-histogram for trees t reenamel, treename?2 and treename3 present in
rootfile. By selecting menu “File->Save->canvasname.xxx” you can save the figure as e.g.
*gif, *.jpg, *.pdf, *.ps or even as C++ macro.

By moving the mouse into the middle of the canvas, the cursor changes and you can rotate the 3D-
histogram. By selecting menu “View->View With->OpenGL” the OpenGL viewer opens, where
you can rotate the 3D-histogram interactively.

Alternatively, you can save the plot by setting save.as. However, this will close the canvas
immediately after opening it.

Note

Always select menu item “Quit ROOT” from menu “File” to close the ROOT canvas, otherwise you
are in the CINT C/C++ interpreter from ROOT. To exit CINT, you need to type “.q”.

root.image 117

Author(s)

Christian Stratowa

See Also

root.histlD, root.hist2D

Examples

Not run:

first, load ROOT scheme file and ROOT data file

scheme.test3 <- root.scheme (paste (.path.package ("xps"), "schemes/SchemeTest3.root", sep="/"
data.test3 <- root.data(scheme.test3, paste(.path.package ("xps"), "rootdata/DataTest3_cel.

root.hist3D (data.test3, "TestAl.cel", "TestB2.cel", "TestBl.cel", option="BOX")
End (Not run)

root.image ROOT Image

Description

Creates a ROOT image for a ROOT tree.

Usage

root.image (x, treename = character(0), leafname = "fInten", logbase = "log2", or
Arguments

X object of class DataTreeSet.

treename name of tree, must be present in root £ile of object x.

leafname leaf name of tree, usual “fInten” or “fBg”.

logbase usually “log2”, or “0”, determines if leaf data should be converted to log.

option ROOT graph option, usually. one of “COL”, “COLZ".

zlim size limits ¢(min,max) of leafname.

canvasname name of ROOT canvas

save.as gaphics tye for saving canvas, one of “ps”, “eps”, “pdf”, “jpg”, “gif”, “png”,
“tiff”
w the width of the device in pixels.

h the height of the device in pixels.

118 root.mvaplot

Details

Creates a ROOT image for tree t reename present in rootfile.

To zoom-in move the mouse cursor to the x-axis (y-axis) until it changes to a hand and click-drag
to select an axis-range. To unzoom move the mouse cursor to the x-axis (y-axis) until it changes to
a hand and right-click to select “Unzoom”.

By selecting menu “File->Save->canvasname.xxx” you can save the figure as e.g. *gif, *.jpg, *.pdf,
*.ps or even as C++ macro.

Alternatively, you can save the plot by setting save.as. However, this will close the canvas
immediately after opening it.

Note

Always select menu item “Quit ROOT” from menu “File” to close the ROOT canvas, otherwise you
are in the CINT C/C++ interpreter from ROOT. To exit CINT, you need to type “.q”.

Author(s)

Christian Stratowa

See Also

image-methods, image

Examples

Not run:

first, load ROOT scheme file and ROOT data file

scheme.test3 <- root.scheme (paste (.path.package ("xps"), "schemes/SchemeTest3.root", sep="/"
data.test3 <- root.data(scheme.test3, paste(.path.package ("xps"), "rootdata/DataTest3_cel.

root.image (data.test3, "TestAl.cel")
root.image (data.test3, "TestAl.cel", save.as="png")
End (Not run)

root.mvaplot ROOT M vs A Plot

Description

Creates a ROOT M vs A plot for a ROOT tree.

Usage

root .mvaplot (x, treenamel = character (0), treename2 = character(0),logbase = "lc

root.mvaplot 119

Arguments
X object of class ExprTreeSet or DataTreeSet.
treenamel name of first tree, must be present in root £ile of object x.
treename?2 name of second tree, must be present in root £i1le of object x.
logbase usually “log2”, or “0”, determines if leaf data should be converted to log.
option ROOT TGraph::PaintGraph option, usually one of “P”, “*”.
canvasname name of ROOT canvas
save.as gaphics tye for saving canvas, one of “ps”, “eps”, “pdf”, “jpg”, “gif”, “png”,
“tiff”
w the width of the canvas in pixels.

the height of the canvas in pixels.

Details

Creates a ROOT M vs A plot for trees t reenamel and t reename?2 present in rootfile.

By selecting menu “File->Save->canvasname.xxx” you can save the figure as e.g. *gif, * jpg, *.pdf,
*.ps or even as C++ macro.

Alternatively, you can save the plot by setting save.as. However, this will close the canvas
immediately after opening it.

Note
Always select menu item “Quit ROOT” from menu “File” to close the ROOT canvas, otherwise you
are in the CINT C/C++ interpreter from ROOT. To exit CINT, you need to type “.q”.

Author(s)

Christian Stratowa

See Also

root.graphlD

Examples

Not run:

first, load ROOT scheme file and ROOT data file

scheme.test3 <- root.scheme (paste (.path.package ("xps"), "schemes/SchemeTest3.root", sep="/"
data.test3 <- root.data(scheme.test3, paste(.path.package ("xps"), "rootdata/DataTest3_cel.

compute RMA
data.rma <- rma(data.test3,"Test3RMA", tmpdir="",background="pmonly",normalize=TRUE)

root.mvaplot (data.rma, "TestAl.mdp", "TestBl.mdp")
End (Not run)

120 root.profile

root.profile ROOT Profile Plot

Description

Creates a ROOT profile plot, i.e. a plot of parallel coordinates

Usage

root.profile(x, treename = "x", varlist = NULL, as.log = TRUE, globalscale = TRU
Arguments

X S4 object, usually of class DataTreeSet or ExprTreeSet.

treename name of tree, usually all trees present in root £ile of object x.

varlist leaf name of tree, usual “fInten” or “fLevel”.

as.log logical indicating if var1ist should be drawn as logarithmic data.

globalscale logical indicating if all axes should be drawn at the same scale.

boxes logical indicating if box-and-whisker plots should be drawn.

ylim size limits ¢(min,max) of varlist.

canvasname name of ROOT canvas

save.as gaphics tye for saving canvas, one of “ps”, “eps”, “pdf”, “jpg”, “gif”, “png”,
“tiff”
the width of the device in pixels.

the height of the device in pixels.

Details

Creates a ROOT profile plot for all trees treename="+" present in rootfile. In this case
varlist must be the name of one tree leaf only; for var1ist=NULL leaf "fInten" will be used
for class DataTreeSet and leaf "fLevel" will be used for class ExprTreeSet. If treename
is the name of one tree only then varlist can contain up to all leaves of the tree, separated by
colons, e.g. varlist="fLevel:fStdev".

For boxes=TRUE the profile plot draws box-and-whisker plots and can thus be considered the
equivalent of the usual boxplot.

A ROQT profile plot, i.e. a plot of parallel coordinates, is drawn in a “TreeViewer”, a graphic user
interface designed to handle ROOT trees. You can activate context menus by right-clicking on items
or inside the right panel.

The “TreeViewer” is explained in http://root.cern.ch/root/html/TTreeViewer.
html.

By selecting menu “File->Save->canvasname.xxx” you can save the figure as e.g. *gif, *.jpg, *.pdf,
* ps or even as C++ macro.

Alternatively, you can save the plot by setting save.as. However, this will close the canvas
immediately after opening it.

http://root.cern.ch/root/html/TTreeViewer.html
http://root.cern.ch/root/html/TTreeViewer.html

root.scheme 121

Note

Always select menu item “Quit ROOT” from menu “File” to close the ROOT tree viewer, otherwise
you are in the CINT C/C++ interpreter from ROOT. To exit CINT, you need to type “.q”.

Author(s)

Christian Stratowa

Examples

Not run:

first, load ROOT scheme file and ROOT data file

scheme.test3 <- root.scheme (paste (.path.package ("xps"), "schemes/SchemeTest3.root",sep="/"
data.test3 <- root.data(scheme.test3, paste(.path.package ("xps"), "rootdata/DataTest3_cel.

root.profile(data.test3)
End (Not run)

root.scheme Create class SchemeTreeSet accessing ROOT scheme file

Description

Create class SchemeTreeSet accessing ROOT scheme file.

Usage

root.scheme (rootfile = character(0), add.mask = FALSE)

Arguments

rootfile name of ROOT scheme file, including full path.

add.mask if TRUE mask information will be included as slot mask.

Details
An S4 class SchemeTreeSet will be created, serving as R wrapper to the ROOT scheme file
rootfile.

Value

A SchemeTreeSet object.

Note

Use this function to access the ROOT scheme file from new R sessions to avoid creating a new ROOT
scheme file for every R session.

Do not set add . mask=TRUE for exon arrays unless you know that your computer has sufficient
RAM.

122 summarize

Author(s)

Christian Stratowa

See Also

import.expr.scheme, import.exon.scheme, SchemeTreeSet

Examples

create class SchemeSet to access the ROOT scheme file for the Test3 GeneChip
scheme.test3 <- root.scheme (paste (.path.package ("xps"), "schemes/SchemeTest3.root", sep="/"
str (scheme.test3)

Not run:

scheme set for existing human root exon scheme file

scheme.huex10stv2r2.na22 <- root.scheme ("/my/path/schemes/Scheme_HuEx10stv2r2_na22.root")
End (Not run)

summarize Probe Set Summarizing Functions

Description

Converts Affymetrix probe level data to expression levels by summarizing the probe set values into
one expression measure and a standard error for this summary.

Usage
summarize (xps.data, filename = character(0), filedir = getwd(), tmpdir = "", upc
summarize.mas4 (xps.data, filename = character(0), filedir = getwd(), tmpdir = ""
summarize.mas5 (xps.data, filename = character(0), filedir = getwd(), tmpdir = ""
summarize.rma (xps.data, filename = character(0), filedir = getwd(), tmpdir = "",

xpsSummarize (object, ...)

Arguments
xps.data object of class DataTreeSet.
filename file name of ROOT data file.
filedir system directory where ROOT data file should be stored.
tmpdir optional temporary directory where temporary ROOT files should be stored.
update logical. If TRUE the existing ROOT data file £ilename will be updated.
select type of probes to select for summarization.
method summarization method to use.
option option determining the grouping of probes for summarization, one of ‘tran-

script’, ‘exon’, ‘probeset’; exon arrays only.

summarize 123

logbase logarithm base as character, one of ‘0’, ‘log’, ‘log2’, ‘logl0’.

exonlevel exon annotation level determining which probes should be used for summariza-
tion; exon/genome arrays only.

params vector of parameters for summarization method.

xps.scheme optional alternative SchemeTreeSet.

add.data logical. If TRUE expression data will be included as slot data.
verbose logical, if TRUE print status information.
object object of class DataTreeSet.

e the arguments described above.

Details

Converts Affymetrix probe level data to expression levels by summarizing the probe set values into
one expression measure and a standard error for this summary.

xpsSummarize is the DataTreeSet method called by function summarize, containing the
same parameters.

Value

An ExprTreeSet.

Author(s)

Christian Stratowa

See Also

express

Examples

first, load ROOT scheme file and ROOT data file
scheme.test3 <- root.scheme (paste (.path.package ("xps"), "schemes/SchemeTest3.root", sep="/"
data.test3 <- root.data(scheme.test3, paste(.path.package ("xps"), "rootdata/DataTest3_cel.

RMA background

data.bg.rma <- bgcorrect.rma (data.test3, "tmp_Test3RMA", filedir=getwd (), tmpdir="", verboses=
normalize quantiles

data.qu.rma <- normalize.quantiles(data.bg.rma, "tmp_Test3RMA", filedir=getwd (), tmpdir="",1
summarize medianpolish

data.mp.rma <- summarize.rma (data.qu.rma,"tmp_Test3RMA", filedir=getwd(),tmpdir="",updates=

get expression data.frame
expr.rma <- exprs(data.mp.rma)
head (expr.rma)

plot expression levels

if (interactive()) {

boxplot (data.mp.rma)

boxplot (log2 (expr.rmal[,3:6]))
}

124 type2Exten

type2Exten Convert Method Type to Tree Extension

Description

Convert Method Type to Tree Extension.

Usage

type2Exten (type, datatype)

Arguments
type method type.
datatype data type.
Details

For every dat atype different methods, i.e. algorithms exist which can be applied. Valid datatypes
are ‘preprocess’ and ‘normation’.

For datatype ‘preprocess’ the following methods can be applied:

mean: trimmed mean
median: median
quantile: quantile
tukeybiweight: tukey biweight
medianpolish: median polish

For datatype ‘normation’ the following methods can be applied:

mean: trimmed mean
median: median
quantile: quantile
lowess: lowess
supsmu: supsmu

The tree extensions are described in validTreetype.

Value

A character with the correct tree extension.

Author(s)

Christian Stratowa

See Also

getDatatype, validTreetype

uniTest-methods

Examples

125

type2Exten ("quantile", "preprocess")
type2Exten ("medianpolish", "preprocess")
type2Exten ("supsmu", "normation")

uniTest-methods A Two-Group Unitest

Description

Unitest performs a a two group uni-test such as the t . test on each row of the expression dataframe.
The Unitest returns a dataframe containing the results of the test.

Usage

uniTest (object)
uniTest (object, wvalue)<-

Arguments

object

value

Details

object of class UniFilter.

character vector c (type, alternative, correction, numperm, mu,
paired, conflevel, wvarequ)

The method uniTest initializes the following parameters:

type:
alternative:
correction:

numperm:
mu:

paired:
conflevel:
varequ:

Value

a character string specifying the type of test: currently "t . test" (default) or "normal.test".
a character string specifying the alternative hypothesis, must be one of "two.sided" (default), "
a correction to adjust p-values for multiple comparisons:

correction="none": no correction (default).

correction="bonferroni": Bonferroni correction.

correction="BH" or "fdr": correction for false discovery rate (Benjamini & Hochberg).
correction="BY": correction for false discovery rate (Benjamini & Yekutieli).
correction="hochberg": Hochberg correction.

correction="holm": Holm correction.

correction="wy": Westfall-Young step-down adjusted p-chance (E.Manduchi).

optional number of permutations used to determine p-chance (default is 0).

a number indicating the true value of the difference in means for a two sample test (default is 0).

a logical indicating whether you want a paired uni-test (default is FALSE).

confidence level of the interval (default is 0.95).

a logical variable indicating whether to treat the two variances as being equal. If TRUE then the poc

An initialized UniFilter object.

Author(s)

Christian Stratowa

126 unifilter

References

Benjamini, Y., and Hochberg, Y. (1995). Controlling the false discovery rate: a practical and pow-
erful approach to multiple testing. Journal of the Royal Statistical Society Series B, 57, 289-300.
Benjamini, Y., and Yekutieli, D. (2001). The control of the false discovery rate in multiple testing
under dependency. Annals of Statistics 29, 1165-1188.

Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scandinavian Journal of
Statistics, 6, 65-70.

Westfall P.H. and Young S.S. (1993) Resampling-based multiple testing:examples and methods for
p-value adjustment. Wiley series in probability and mathematical statistics; Wiley.

Dudoit S., Yang Y.H., Callow M.J., Speed T.P. (2000) Statistical methods for identifying differ-
entially expressed genes in replicated cDNA microarray experiments. Technical report 578; UC
Berkeley.

Manduchi E. (2000) Software: tpWY, see: http://www.cbil.upenn.edu/tpWY/

Examples

unifltr <- UniFilter ()
uniTest (unifltr) <- c("t.test","two.sided", "none",0,0.0,FALSE,0.98, TRUE)
str(unifltr)

unifilter Function for Applying an UniFilter to an ExprTreeSet

Description

This function applies an UniFilter to an ExprTreeSet.

Usage
unifilter (xps.expr,
filename = character (0),
filedir = getwd (),
filter = NULL,
minfilters = 999,
logbase = "log2",
group = character (0),
treename = "UniTest",
xps.fltr = NULL,
xps.call = NULL,
update = FALSE,
verbose = TRUE)
xpsUniFilter (object, ...)
Arguments
XPS.expr object of class ExprTreeSet.
filename file name of ROOT filter file.

filedir system directory where ROOT filter file should be stored.

http://www.cbil.upenn.edu/tpWY/

unifilter 127

filter object of class UniFilter.

minfilters minimum number of initialized filter methods to satisfy (default is all filters).

logbase convert data to logarithm of base: "0", "1og", "log2" (default), "1ogl10"
group a character vector assigning the trees of xps .expr to one of two groups.
treename tree name to be used in ROOT filter file.

xps.fltr optional object of class FilterTreeSet.

xps.call optional object of class CallTreeSet.

update logical. If TRUE the existing ROOT filter file £i1ename will be updated.
verbose logical, if TRUE print status information.

object object of class ExprTreeSet.

same arguments as function unifilter.

Details

This function applies the different filters initialized with constructor UniFilter tothe ExprTreeSet
XPS.expr.

Slotminfilters determines the minimum number of initialized filters, which must be satisfied so
that the mask is setto flag=1. Forminfilters=1 atleast one filter must be satisfied, equivalent
to logical ‘OR’; forminfilters=999 all filters must be satisfied, equivalent to logical ‘AND’.

If pre-filtering should be done before applying function unifilter then a FilterTreeSet
xps . £1tr must be supplied, created with function prefilter.

If method callFilter wasinitialized with constructor UniFilterthenCallTreeSet xps.call
must be supplied, usually created with function mas5.call.

Value

An AnalysisTreeSet

Note

Internally, slot group will be converted to integer values using as . integer (as. factor (group)),

thus group=c ("GrpA", "GrpA", "GrpB", "GrpB") will result in a fold-change of fc=mean (GrpB) /mean (Gr
Author(s)

Christian Stratowa

See Also

UniFilter,prefilter

Examples

first, load ROOT scheme file and ROOT data file
scheme.test3 <- root.scheme (paste (.path.package ("xps"), "schemes/SchemeTest3.root",sep="/"
data.test3 <- root.data(scheme.test3, paste(.path.package ("xps"), "rootdata/DataTest3_cel.

second, create an ExprTreeSet
data.rma <- rma(data.test3,"tmp_Test3_RMA", tmpdir="",background="pmonly", normalize=TRUE, v
note: do not copy/paste this code, it is necessary only because R CMD check fails sinc

128 unitestFilter-methods

data.rma@rootfile <- paste(.path.package ("xps"),"rootdata/tmp_Test3RMA.root", sep="/")
data.rma@Rfiledir <- paste(.path.package ("xps"),"rootdata", sep="/")

third, construct an UniFilter
unifltr <- UniFilter (unitest=c("t.test","two.sided", "none",0,0.0,FALSE,0.95,TRUE), foldche

finally, create an AnalysisTreeSet

rma.ufr <- unifilter (data.rma,"tmp_Test3Unifilter",getwd(),unifltr,group=c ("GrpA", "GrpA",
str(rma.ufr)

unitestFilter-methods
Unitest Filter

Description

This method initializes the Unitest Filter.

Applying an unitest such as the t . test to two groups returns the p-value for the test and the value
of the t-statistic. The Unitest Filter allows to select only rows satisfying e.g. a certain p-value as
cutoff.

The Unitest Filter flags all rows with: flag = (variable <= cutoff)
Usage

unitestFilter (object)
unitestFilter (object, value)<-

Arguments

object object of class UniFilter.

value character vector ¢ (cutoff, variable).
Details

The method unitestFilter initializes the following parameters:

cutoff: the cutoff level for the filter.

variable: variable="pval" (default): p-value.
variable="stat": univariate statistic.
variable="padj": optional adjusted p-value.
variable="pcha": optional p-value obtained by permutations.

Value

An initialized UniFilter object.

Author(s)

Christian Stratowa

Examples

unifltr <- UniFilter ()

validData-methods 129

unitestFilter (unifltr) <- c(0.01,"pval")
str(unifltr)

validData-methods Extract Subset of Data

Description
Extracts a subset of valid data from data.frame data.
Usage
validData (object, which = "")

Arguments
object object of class DataTreeSet.
which type of probes to be returned.
Details

For expression arrays, validData returns all the perfect match or mismatch probes on the arrays
the object represents as data.frame, i.e. which can have the following values:

pm: perfect match probes.
mm: mismatch probes.
both: both perfect match and mismatch probes.

For exon arrays, validData returns the probes of the different exon levels as data.frame, i.e.
which can have one of the following values:

core: probesets supported by RefSeq and full-length GenBank transcripts.
metacore: core meta-probesets.

extended: probesets with other cDNA support.

metaextended: extended meta-probesets.

full: probesets supported by gene predictions only.

metafull: full meta-probesets.

affx: standard AFFX controls.

all: combination of above.

genomic: genomic background probes.

antigenomic: antigenomic background probes.

Value

A data.frame.

Author(s)

Christian Stratowa

See Also

pm, mm

130 validTreetype

validTreetype Validate Tree Type

Description

Validate tree type for corresponding data type.

Usage

validTreetype (treetype, datatype)

Arguments
treetype tree type.
datatype data type.
Details

Every ROOT tree has an extension, which describes the type of data stored in this tree. For example,
‘TestAl.cel’ is the tree name that stores the CEL-file data for ‘TestA1.CEL’.

Trees with datatype="scheme" have the following extensions:
scm: scheme tree containing (X,y)-coordinates and mask for UNIT_ID.
idx: unit tree containing UnitName (i.e. probeset id), NumCells, NumAtoms, UnitType, for
UNIT_ID.

prb: probe tree containing probe sequences.

ann: transcript annotation tree.

anx: exon annotation tree; exon arrays only.

anp: probeset annotation tree; exon arrays only.

cxy: coordinate tree containing CLF-file information; exon arrays only.
exn: exon tree; exon arrays only.

pbs: probeset tree; exon arrays only.

Trees with datatype="rawdata" have the following extensions:
cel: data tree containing CEL-file data.

Trees with datatype="preprocess" have the following extensions:

int: intensity tree containing background-corrected intensities.

sbg: background tree containing MAS4 sector background levels.

wbg: background tree containing MASS weighted sector background levels.

rbg: background tree containing RMA background levels.

gbg: background tree containing GC-content background levels.

cmn: cell tree containing preprocessed intensities using algorithm ‘mean’.

cmd: cell tree containing preprocessed intensities using algorithm ‘median’.

clw: cell tree containing preprocessed intensities using algorithm ‘lowess’.

css: cell tree containing preprocessed intensities using algorithm ‘supsmu’.

cqu: cell tree containing preprocessed intensities using algorithm ‘quantile’.

dc5: detection tree containing MASS detection call and p-value.

dab: detection tree containing DABG detection call and p-value.

amn: expression tree containing expression levels computed with ‘arithmetic mean’.
gmn: expression tree containing expression levels computed with ‘geometric mean’.
wmn: expression tree containing expression levels computed with ‘weighted mean’.
wdf: expression tree containing expression levels computed with ‘weighted difference’.

varFilter-methods

adf: expression tree containing expression levels computed with ‘average difference’.
thbw: expression tree containing expression levels computed with ‘tukey biweight’.
mdp: expression tree containing expression levels computed with ‘median polish’.

Trees with datatype="normation" have the following extensions:

tmn: expression tree after normalization using algorithm ‘trimmed mean’.

med: expression tree after normalization using algorithm ‘median’.

ksm: expression tree after normalization using algorithm ‘kernel smoother’.

low: expression tree after normalization using algorithm ‘lowess’.

sup: expression tree after normalization using algorithm ‘supsmu’.

qua: expression tree after normalization using algorithm ‘quantile’.

mdp: expression tree after normalization using algorithm ‘median polish’.
Value

Returns the valid t reetype, otherwise an error message is returned.

Note

Not all tree types are used in the current package.

Author(s)

Christian Stratowa

See Also

getDatatype, type2Exten

Examples

validTreetype ("prb", "scheme")
validTreetype ("cel", "rawdata")
validTreetype ("tbw", "preprocess")

131

varFilter—-methods Variance Filter

Description

This method initializes the Variance Filter.
The Variance Filter flags all rows with: flag = (var/mean >= cutoff)

Usage

varFilter (object)
varFilter (object, value)<-
Arguments

object object of class PreFilter.

value numeric vector ¢ (cutoff, trim, epsilon).

132 volcanoplot-methods

Details

The method varFilter initializes the following parameters:

cutoff: the cutoff level for the filter.

trim: the trim value for trimmed mean (default is t r im=0).

epsilon: value to replace mean (defaultis epsilon=0.01):
epsilon > 0: replace mean=0 with epsilon.
epsilon = 0: always set mean=I.

Note, that for epsilon = O the filter flags all rows with: variance >= cutoff

Value

An initialized PreFilter object.

Author(s)

Christian Stratowa

Examples

prefltr <- PreFilter ()
varFilter (prefltr) <- c¢(0.6,0.02,0.01)
str (prefltr)

volcanoplot-methods
Volcano Plot

Description

Produce a scatter plot of fold-change values vs p-values, called volcano plot.

Usage
volcanoplot (x, labels = "", p.value = "pval", mask = FALSE, show.cutoff
= TRUE, cex.text = 0.7, col.text = "blue", col.cutoff = "grey", xlim
= NULL, xlab = "Log2(Fold-Change)", ylab = "-LoglO(P-Value)", pch =
L, o)
Arguments
X object of class AnalysisTreeSet.
labels optional transcript labels to be drawn at plotting points.
p.value type of p-value, 'pval’ for p-value, ’padj’ for adjusted p-value, or 'pcha’ for
p-chance.
mask logical, if TRUE draw only points for transcripts satisfying the univariate test.

show.cutoff logical, if TRUE draw lines indicating cutoff.
cex.text magnification to be used for optional 1abels.

col.text color to be used for optional 1abels.

xps-package 133

col.cutoff color to be used for lines indicating cutoff, if show.cutoff=TRUE.

xlim optional range for the plotted fold-change values.

xlab label of x-axis.

ylab label of y-axis.

pch either an integer specifying a symbol or a single character to be used as the

default in plotting points.

optional arguments to be passed to plot.

Details

Produces a volcano plot for slot data for an object of class AnalysisTreeSet.

It is possible to label the points of the volcano plot, whereby the following 1abels parameters are

valid:
fUnitName: unit name (probeset ID).
fName: gene name.
fSymbol: gene symbol.
fChromosome: chromosome.
fCytoBand: cytoband.

Author(s)
Christian Stratowa
xps—-package xps Package Overview

Description

xps Package Overview

Details

Important data classes: SchemeTreeSet, DataTreeSet, ExprTreeSet, CallTreeSet,
FilterTreeSet,AnalysisTreeSet. Full help on methods and associated functions is avail-
able from within class help pages.

Additional data classes: ProjectInfo, PreFilter,UniFilter.

The package handles pre-processing, normalization, filtering and analysis of Affymetrix GeneChip
expression arrays, including exon array systems (Exon 1.0 ST: core, extended, full probesets) and
gene array systems (Gene 1.0 ST) on computers with 1 GB RAM only. It imports Affymetrix .CDF,
.CLF, .PGF and .CEL as well as Affymetrix annotation files, and computes e.g. RMA, MASS,
FARMS, DFW, MAS5-calls, DABG-calls, I/NI-calls. It is an R wrapper to XPS (eXpression Pro-
filing System), which is based on ROOT, an object-oriented framework developed at CERN. Thus,
the prior installation of ROOT is a prerequisite for the usage of this package, see the README
file. However, no knowledge of ROOT is required. ROOT is licensed under LGPL and can be
downloaded from http://root.cern.ch.

Author(s)

Christian Stratowa (cstrato@aon.at)

http://root.cern.ch

134

xpsOptions

xpsOptions xps Options

Description

Options for xps

Usage

xpsOptions (debug=FALSE)

Arguments

debug logical, if TRUE, print debug information.

Details

Currently only used to set debug to FALSE or TRUE.

Value

A global variable debug. xps can be set to TRUE.

Author(s)

Christian Stratowa

Index

*Topic classes

AnalysisTreeSet-class, |

CallTreeSet-class,?2
DataTreeSet-class,4
ExprTreeSet-class, 6
Filter-class,7
FilterTreeSet-class, 8
PreFilter-class,9
ProcesSet-class, 13
ProjectInfo-class, 14
SchemeTreeSet—-class, 19
TreeSet-class, 21
UniFilter-class, 22
+Topic device
boxplot.dev, 34
image.dev, 69
mvaplot.dev, 93
root.density, 109
root.graphlD, 111
root.graph2D, 112
root.hist1D, 113
root.hist2D, 115
root.hist3D, 116
root.image, 117
root .mvaplot, 118
root.profile, 120
+Topic manip
bgcorrect, 32
dabg.call, 38
dfw, 40
ex1stsROOTFile, 44
exonlevel, 45
export, 46
export.filter, 48
export.root, 50
express, 51
farms, 55
getChipName, 59
getChipType, 60
getDatatype, 61
getNameType, 62
getNumberTrees, 63
getProbelInfo, 63

getTreeNames, 65
import.data, 70
import.exon.scheme, 72
import.expr.scheme, 74
import.genome. scheme, 76
ini.call,78
1sROOTFile, 81

mas4, 83

masb, 85

mas5.call, 88
metaProbesets, 91
normalize, 94
prefilter, 98
PreFilter—-constructor, 11

ProjectInfo-constructor, 16

rma, 103
root.call, 107
root.data, 108
root .expr, 110
root.scheme, 121
summarize, 122
type2Exten, 124
unifilter, 126
UniFilter—-constructor, 23
validTreetype, 130
xpsOptions, 134

*Topic methods

addData-methods, 25
attachBgrd-methods, 26
attachCall-methods, 27
attachExpr-methods, 28
attachInten-methods, 29
attachMask—-methods, 31
boxplot-methods, 33
callFilter—-methods, 35
callplot-methods, 36
cvFilter—-methods, 37
diffFilter—-methods, 43
exprs-methods, 54
fcFilter—-methods, 58
gapFilter—-methods, 58
getTreeData-methods, 64
highFilter-methods, 66

136

hist-methods, 67
image-methods, 68
initialize-methods, 81
lowFilter—-methods, 82
madFilter-methods, 82
mboxplot-methods, 90
mvaplot-methods, 92
pm-methods, 95
pmplot-methods, 97
presCall-methods, 99
quantileFilter-methods, 101
ratioFilter-methods, 101
rawCELName-methods, 102
root .browser-methods, 106
uniTest-methods, 125
unitestFilter-methods, 128
validData-methods, 129
varFilter-methods, 131
volcanoplot-methods, 132

*Topic misc
ROOT, 18

xTopic package
xps—-package, 133

addData (addData-methods), 25
addData,DataTreeSet—-method
(DataTreeSet—-class), 4
addData-methods, 25
AnalysisTreeSet, 9,48, 49,127,132, 133
AnalysisTreeSet
(AnalysisTreeSet—-class), 1
AnalysisTreeSet—-class, 1
arrayInfo (ProjectInfo-class), 14
arrayInfo,ProjectInfo-method
(ProjectInfo-class), 14
arrayInfo<- (ProjectInfo-class),
14

(ProjectInfo-class), 14
attachBgrd, 30
attachBgrd (attachBgrd-methods),
26
attachBgrd,DataTreeSet-method
(DataTreeSet—-class), 4
attachBgrd-methods, 26
attachcCall, 29
attachCall (attachCall-methods),
27
attachCall,CallTreeSet-method
(CallTreeSet—-class),2
attachCall-methods, 27
attachExpr, 28

INDEX

attachExpr (attachExpr—-methods),
28
attachExpr, ExprTreeSet—-method
(ExprTreeSet-class), 6
attachExpr-methods, 28
attachInten, 26, 34, 35, 67-69, 91, 97
attachInten
(attachInten—-methods), 29
attachInten,DataTreeSet-method
(DataTreeSet—class), 4
attachInten-methods, 29
attachMask (attachMask—-methods),
31
attachMask,DataTreeSet-method
(DataTreeSet—class), 4
attachMask, SchemeTreeSet-method
(SchemeTreeSet—class), 19
attachMask-methods, 31
attachPVal (attachCall-methods),
27
attachPVal,CallTreeSet-method
(CallTreeSet—class),2
attachPVal-methods
(attachCall-methods), 27
authorInfo (ProjectInfo-class), 14
authorInfo,ProjectInfo-method
(ProjectInfo-class), 14
authorInfo<- (ProjectInfo-class),
14

authorInfo<—,ProjectInfo, character-method

(ProjectInfo-class), 14

background (DataTreeSet—-class), 4

background, DataTreeSet-method
(DataTreeSet—-class), 4

background<- (DataTreeSet—-class),
4

background<—-,DataTreeSet,data.frame-method
arrayInfo<—,ProjectInfo, character-method

(DataTreeSet—-class), 4
barplot, 97
bgcorrect, 5, 26, 32, 53, 68, 69
bgcorrect .mas4, 68, 69
bgtreeNames (DataTreeSet—-class), 4
bgtreeNames,DataTreeSet—-method
(DataTreeSet—-class), 4
biopsyInfo (ProjectInfo-class), 14
biopsyInfo,ProjectInfo-method
(ProjectInfo-class), 14
biopsyInfo<- (ProjectInfo-class),
14

biopsyInfo<—-,ProjectInfo, character-method

(ProjectInfo-class), 14
boxplot, 13,34, 35,91, 97

INDEX 137

boxplot (boxplot-methods), 33 chipType, ProcesSet-method
boxplot,ProcesSet-method (ProcesSet-class), 13
(ProcesSet-class), 13 chipType, SchemeTreeSet-method
boxplot-methods, 33 (SchemeTreeSet—-class), 19
boxplot.dev, 34, 34,91, 97 chipType<- (SchemeTreeSet—-class),
19
callFilter, 11, 24,99, 127 chipType<—, SchemeTreeSet, character-method
callFilter (callFilter-methods), (SchemeTreeSet-class), 19
35 cvFilter, I/
callFilter,PreFilter-method cvFilter (cvFilter-methods), 37
(PreFilter-class),9 cvFilter,PreFilter-method
callFilter,UniFilter—-method (PreFilter—-class),9
(UniFilter-class),22 cvFilter—-methods, 37

callFilter-methods, 35
callFilter<-

(callFilter—-methods), 35
callFilter<—,PreFilter,character—-method

PreFil -cl

(PreFilter-class),9 dabg.call, 2,38, 89, 90

11Filter<—,UniFilt h ter—-meth
ca i e? g niFilter, character-me %ata.frame,65,%i]29
(UniFilter—class),22

Info (P j Info-cl
callplot (callplot-methods), 36 datasetInfo(Projectinfo-class),

14
callplot,CallTreeSet—-method dat tInfo.p et Inf thod
(CallTreeSet—-class),?2 atasetinto,rrojectintormetno

callplot-methods, 36 (ProjectInfo-class), 14

CallTreeSet,6-8, 13, 14, 22,27, 36, 39, datasetInfo<-

46, 47, 80, 89, 99, 100, 107, 127, 133 (ProjectInfo-class), 14
CallTreeSet (CallTreeSet—class),? datasetInfo<—,ProjectInfo,character-method

(ProjectInfo-class), 14

callTreeset

(FilterTreeSet—class), 8 DataTreeSet, 3,7, 13, 14,16, 17, 22, 26,
callTreeset,FilterTreeSet-method 29-35,40, 41,46, 47, 53, 55, 67-69,

(FilterTreeSet—class). 8 71,83, 85, 90, 91, 95, 97, 103, 104,
CallTreeSet-class,?2 107-109, 111, 112, 114-117, 119,
cellinelInfo (ProjectInfo-class), 120, 133

14 DataTreeSet (DataTreeSet—-class),4
DataTreeSet-class,4
debug.xps (xpsOptions), 134

cvFilter<-(cvFilter—-methods), 37
cvFilter<—,PreFilter, numeric-method
(PreFilter—class),9

cellinelInfo,ProjectInfo-method
(ProjectInfo-class), 14

cellineInfo<- dfw, 40
(ProjectInfo-class), 14 diffFilter, I/

cellineInfo<—,ProjectInfo,character—mé@ﬁggilter(diffFilterfmethOdsL
(ProjectInfo-class), 14 43

chipMask (SchemeTreeSet-class), 19 diffFilter,PreFilter-method
chipMask, SchemeTreeSet-method (PreFilter-class),9
(SchemeTreeSet-class), 19 diffFilter-methods, 43
chipMask<- (SchemeTreeSet-class), diffFilter<-
19 (diffFilter-methods), 43
chipMask<-, SchemeTreeSet, data.frame-médfdd ilter<-,PreFilter, numeric-method
(SchemeTreeSet-class), 19 (PreFilter-class),9
chipName (SchemeTreeSet—-class), 19
chipName, ProcesSet-method ex1stsROOTFile, 44, 81
(ProcesSet-class), 13 exonLevel, 45, 105
chipName, SchemeTreeSet-method export, 46,51, 65
(SchemeTreeSet—-class), 19 export, ProcesSet-method

chipType (SchemeTreeSet-class), 19 (ProcesSet-class), 13

138

export, SchemeTreeSet-method
(SchemeTreeSet-class), 19
export, TreeSet-method
(TreeSet—-class), 21
export-methods, 48, 50, 51
export-methods, 13, 20, 21
export-methods (export), 46
export.call (export), 46
export.data (export), 46
export .expr (export), 46
export.filter, 48
export.root, 50
export.scheme (export), 46
express, 6, 33,42,51, 57,85, 87, 95, 105,
123
exprs, 100
exprs (exprs—-methods), 54
exprs, ExprTreeSet-method
(ExprTreeSet-class), 6
exprs-methods, 54
exprs<- (exprs-methods), 54

INDEX

fileDir<- (TreeSet-class), 21
fileDir<—, TreeSet, character—-method
(TreeSet—-class), 21
Filter, 10, 12,22, 23
Filter-class,7
FilterTreeSet, 2,48, 49,99, 127, 133
FilterTreeSet
(FilterTreeSet—-class), 8
filterTreeset
(AnalysisTreeSet—-class), 1
filterTreeset,AnalysisTreeSet-method
(AnalysisTreeSet—-class), 1
FilterTreeSet-class,$§

gapFilter, 11

gapFilter (gapFilter-methods), 58

gapFilter,PreFilter-method
(PreFilter-class),9

gapFilter—-methods, 58

gapFilter<- (gapFilter—-methods),
58

exprs<-,ExprTreeSet,data.frame-method gapFilter<-,PreFilter, numeric-method

(ExprTreeSet—-class), 6
ExprTreeSet, I, 3,6,8, 9, 11-14, 22-24,
28, 29, 33-35, 40,42, 46, 47, 53-55,
57,67, 83-85, 87, 90, 92-95, 97-99,
103, 105, 107, 109-112, 114-116,
119, 120, 123, 126, 127, 133
ExprTreeSet (ExprTreeSet—-class), 6
exprTreeset
(FilterTreeSet—-class), 8
exprTreeset,FilterTreeSet-method
(FilterTreeSet-class), 8
ExprTreeSet-class,6
exprType (ExprTreeSet—class), 6
exprType, ExprTreeSet-method
(ExprTreeSet-class), 6
exprType<- (ExprTreeSet—-class), 6

(PreFilter-class),9
getChipName, 59, 60, 62
getChipType, 60, 60, 62
getDatatype, 61, 124, 131
getNameType, 60, 62
getNumberTrees, 63
getProbelInfo, 63
getTreeData

(get TreeData-methods), 64
getTreeData,AnalysisTreeSet-method

(AnalysisTreeSet—-class), 1
getTreeData,FilterTreeSet-method

(FilterTreeSet—-class),8
getTreeData,ProcesSet—-method

(ProcesSet—-class), 13
getTreeData-methods, 64

exprType<-, ExprTreeSet, character-methggtTreeNames, 65, 107, 108, 110

(ExprTreeSet—-class), 6

farms, 55, 80

fcFilter, 24

fcFilter (fcFilter—-methods), 58

fcFilter,UniFilter—-method
(UniFilter—-class), 22

fcFilter-methods, 58

fcFilter<-(fcFilter—-methods), 58

fcFilter<—,UniFilter,character-methodhighFilter<-,PreFilter,character-method

(UniFilter—class), 22
fileDir (TreeSet-class), 21
fileDir, TreeSet-method

(TreeSet—-class), 21

highFilter, I/

highFilter (highFilter-methods),
66

highFilter,PreFilter—-method
(PreFilter—-class),9

highFilter-methods, 66

highFilter<-
(highFilter—-methods), 66

(PreFilter—-class),9
hist (hist-methods), 67
hist,ProcesSet-method

(ProcesSet-class), 13

INDEX 139

hist-methods, 67
hybridizInfo (ProjectInfo-class),

intensity<- (DataTreeSet—-class), 4
intensity<-,DataTreeSet,data.frame-method

14
hybridizInfo,ProjectInfo-method

(ProjectInfo-class), 14
hybridizInfo<-

(ProjectInfo-class), 14

(DataTreeSet—-class), 4
1sROOTFile, 44, 81

lowFilter, 11
lowFilter (lowFilter-methods), 82

hybridizInfo<-,ProjectInfo, character-mentfddter,PreFilter-method

(ProjectInfo-class), 14

image, 68, 70, 118
image (image—-methods), 68
image,DataTreeSet-method
(DataTreeSet—-class), 4
image-methods, 70, 118
image-methods, 68
image.dev, 68, 69
import.data,4, 25, 30,70, 103, 109
import.exon.scheme, 20, 31,72, 75, 77,
122
import.expr.scheme, 20, 31, 73,74, 122
import.genome.scheme, 20, 75,76
ini.call, 78
initialize(initialize-methods),

81

initialize,AnalysisTreeSet—-method

(initialize-methods), 81
initialize,CallTreeSet-method
(initialize-methods), 81
initialize,DataTreeSet-method
(initialize-methods), 81
initialize,ExprTreeSet-method
(initialize-methods), 81
initialize,Filter-method
(initialize-methods), 81
initialize,FilterTreeSet-method
(initialize-methods), 81
initialize,PreFilter—-method
(initialize-methods), 81
initialize,ProcesSet-method
(initialize-methods), 81
initialize,ProjectInfo-method
(initialize-methods), 81
initialize, SchemeTreeSet-method
(initialize-methods), 81
initialize, TreeSet-method
(initialize-methods), 81
initialize,UniFilter-method
(initialize-methods), 81
initialize-methods, 81
intensity (DataTreeSet-class), 4
intensity,DataTreeSet-method
(DataTreeSet—-class), 4

(PreFilter—-class),9
lowFilter—-methods, 82
lowFilter<- (lowFilter—-methods),

82

lowFilter<—,PreFilter, character-method

(PreFilter-class),9

madFilter, /]

madFilter (madFilter—-methods), 82

madFilter,PreFilter—-method
(PreFilter—-class),9

madFilter-methods, 82

madFilter<- (madFilter-methods),
82

madFilter<—,PreFilter, numeric—method

(PreFilter—class),9
mas4, 6, 83, 105
masb5, 6, 42, 46, 57, 84, 85, 105
mas5.call, 2,27,40,79, 80, 88,99, 127
mboxplot (mboxplot-methods), 90
mboxplot,ProcesSet—-method
(ProcesSet-class), 13
mboxplot-methods, 90
metaProbesets, 91
mm, 129
mm (pm-methods), 95
mm, DataTreeSet-method
(DataTreeSet—class), 4
mm-methods (pm—-methods), 95
mvaplot, 94
mvaplot (mvaplot-methods), 92
mvaplot, ExprTreeSet-method
(ExprTreeSet—class), 6
mvaplot-methods, 92
mvaplot.dev, 93, 93

ncols (SchemeTreeSet—-class), 19

ncols,DataTreeSet-method
(DataTreeSet—-class), 4

ncols, SchemeTreeSet-method
(SchemeTreeSet—-class), 19

normalize, 6, 53, 94

normType (ExprTreeSet—class), 6

normType, ExprTreeSet—-method
(ExprTreeSet-class), 6

140

normType<- (ExprTreeSet—-class), 6

normType<—, ExprTreeSet, character-method

(ExprTreeSet—-class), 6
nrows (SchemeTreeSet-class), 19
nrows,DataTreeSet-method
(DataTreeSet—-class), 4
nrows, SchemeTreeSet-method
(SchemeTreeSet-class), 19
numberFilters (Filter-class),7
numberFilters,Filter-method
(Filter—class),7

pm, 129

pm (pm—methods), 95

pm, DataTreeSet-method
(DataTreeSet—-class), 4

pm-methods, 95

pmplot, 37

pmplot (pmplot-methods), 97

pmplot,DataTreeSet-method
(DataTreeSet—-class), 4

pmplot-methods, 97

PreFilter, 7-9, 12,23, 24, 36, 38, 43, 66,
82, 83,98, 99, 101, 102, 132, 133

PreFilter
(PreFilter-constructor), 11

prefilter,§,98, 127

PreFilter-class,9

PreFilter—-constructor, 11

presCall, 54

presCall (presCall-methods), 99

presCall,CallTreeSet—-method
(CallTreeSet—-class),?2

presCall-methods, 99

presCall<- (presCall-methods), 99

INDEX

ProjectInfo
(ProjectInfo-constructor),
16
projectInfo (ProjectInfo-class),
14
projectInfo,DataTreeSet-method
(DataTreeSet—-class), 4
projectInfo,ProjectInfo-method
(ProjectInfo-class), 14
ProjectInfo-class, 14
ProjectInfo-constructor, 16
projectInfo<-
(ProjectInfo-class), 14

projectInfo<—-,DataTreeSet,ProjectInfo-method

(DataTreeSet—-class), 4

projectInfo<—,ProjectInfo,character-method

(ProjectInfo-class), 14
pvalData, 54
pvalData (presCall-methods), 99
pvalData,CallTreeSet—-method
(CallTreeSet—-class),?2
pvalData—-methods
(presCall-methods), 99
pvalData<- (presCall-methods), 99

pvalData<—-,CallTreeSet,data.frame-method

(CallTreeSet—-class),?2

quantileFilter, 1]
quantileFilter
(quantileFilter—-methods),
101
quantileFilter,PreFilter-method
(PreFilter—-class),9
quantileFilter-methods, 101

presCall<f,CallTreeSet,data.framefmetﬁ%@ntileFilter<_

(CallTreeSet—-class),?2
primcellInfo (ProjectInfo-class),
14
primcellInfo,ProjectInfo-method
(ProjectInfo-class), 14
primcellInfo<-
(ProjectInfo-class), 14

(quantileFilter—-methods),
101

quantileFilter<-,PreFilter,numeric-method

(PreFilter-class),9

ratioFilter, 1/
ratioFilter

primcellInfo<-,ProjectInfo,character-method (ratioFilter-methods), 101

(ProjectInfo-class), 14
probelnfo (SchemeTreeSet—-class),
19
probelInfo, SchemeTreeSet-method
(SchemeTreeSet-class), 19
ProcesSet, 14, 6-9
ProcesSet (ProcesSet-class), 13
ProcesSet-class, 13
ProjectInfo, 14,18, 25,70, 133

ratioFilter,PreFilter-method
(PreFilter—-class),9

ratioFilter—-methods, 101

ratioFilter<-—
(ratioFilter—-methods), 101

ratioFilter<—,PreFilter, numeric-method

(PreFilter—-class),9
rawCELName (rawCELName-methods),
102

INDEX

rawCELName, DataTreeSet—-method
(DataTreeSet—-class), 4

rawCELName-methods, 102

removeBgrd, 30

removeBgrd (attachBgrd-methods),
26

removeBgrd, DataTreeSet—-method
(DataTreeSet—-class), 4

removeBgrd-methods
(attachBgrd—-methods), 26

removeCall, 29

removeCall (attachCall-methods),
27

removeCall,CallTreeSet-method
(CallTreeSet—-class),?2

removeCall-methods
(attachCall-methods), 27

removeExpr, 28

removeExpr (attachExpr-methods),
28

removeExpr, ExprTreeSet—-method
(ExprTreeSet—class), 6

removeExpr-methods
(attachExpr-methods), 28

removelnten, 26

removelInten
(attachInten—-methods), 29

removelInten,DataTreeSet-method
(DataTreeSet—-class), 4

removelnten—-methods
(attachInten—-methods), 29

removeMask (attachMask-methods),
31

removeMask,DataTreeSet—-method
(DataTreeSet—-class), 4

removeMask, SchemeTreeSet-method
(SchemeTreeSet-class), 19

removeMask-methods
(attachMask-methods), 31

removePVal (attachCall-methods),
27

removePVal,CallTreeSet-method
(CallTreeSet-class),?2

removePVal-methods
(attachCall-methods), 27

rma, 6, 42, 46, 57, 103

ROOT, 1-8, 13, 14, 16, 17, 18, 19-21, 25-31,
44, 48, 50, 60, 62-65, 71-77, 81, 87,
107-110, 112-116, 118-121, 130

root.browser, 19

root .browser
(root.browser—-methods), 106

141

root .browser, TreeSet-method
(TreeSet—-class), 21
root.browser—-methods, 106
root.call, 107,111
root.data,4,25,71,108, 108, 109, 111
root.density, 67, 109
root .expr, 108, 110
root.graphlD, 111,113,119
root.graph2D, 112, 112
root.histlD, 110, 113,115,117
root.hist2D, 114,115,117
root.hist3D, 114, 115,116
root.image, 117
root .mvaplot, 113,118
root.profile, 120
root.scheme, 20, 72, 73, 75-77, 121
rootFile (TreeSet-class), 21
rootFile, TreeSet—-method
(TreeSet—-class), 21
rootFile<— (TreeSet—-class), 21
rootFile<—, TreeSet, character-method
(TreeSet—-class), 21

sampleInfo (ProjectInfo-class), 14

sampleInfo,ProjectInfo-method
(ProjectInfo-class), 14

sampleInfo<- (ProjectInfo-class),
14

sampleInfo<—,ProjectInfo,character-method
(ProjectInfo-class), 14

schemeFile (ProcesSet-class), 13

schemeFile,ProcesSet-method
(ProcesSet—-class), 13

schemeFile<- (ProcesSet-class), 13

schemeFile<-,ProcesSet, character-method
(ProcesSet-class), 13

schemeSet (ProcesSet—-class), 13

schemeSet, ProcesSet-method
(ProcesSet—-class), 13

schemeSet<- (ProcesSet-class), 13

schemeSet<—-,ProcesSet, SchemeTreeSet-method
(ProcesSet—-class), 13

SchemeTreeSet, 13,22, 31, 39,42, 46, 47,
57,70,72-77, 80, 87, 89, 105, 107,
108,110, 121, 122, 133

SchemeTreeSet
(SchemeTreeSet—-class), 19

SchemeTreeSet-class, 19

se.exprs (ExprTreeSet-class), 6

se.exprs, ExprTreeSet-method
(ExprTreeSet-class), 6

setName (TreeSet—-class), 21

142

setName, TreeSet-method
(TreeSet—-class), 21

setName<- (TreeSet-class), 21

setName<—-, TreeSet, character-method
(TreeSet—-class), 21

setType (TreeSet-class), 21

setType, TreeSet—-method
(TreeSet—-class), 21

setType<- (TreeSet—-class), 21

setType<—, TreeSet, character-method
(TreeSet—-class), 21

show, ProjectInfo-method
(ProjectInfo-class), 14

sourcelInfo (ProjectInfo-class), 14

sourcelInfo,ProjectInfo-method
(ProjectInfo-class), 14

sourcelInfo<- (ProjectInfo-class),
14

(ProjectInfo-class), 14
summarize, 6, 53, 122

tissuelnfo (ProjectInfo-class), 14

tissuelInfo,ProjectInfo-method
(ProjectInfo-class), 14

tissuelInfo<- (ProjectInfo-class),
14

INDEX

uniTest (uniTest-methods), 125

uniTest,UniFilter—-method
(UniFilter—-class), 22

uniTest-methods, 125

uniTest<- (uniTest-methods), 125

uniTest<—,UniFilter, character-method

(UniFilter—-class),22
unitestFilter, 24
unitestFilter

(unitestFilter-methods),

128
unitestFilter,UniFilter-method

(UniFilter—-class),22
unitestFilter—-methods, 128
unitestFilter<-

(unitestFilter-methods),

128

unitestFilter<—-,UniFilter, character—-method
sourcelInfo<—-,ProjectInfo, character-method

(UniFilter—-class),22

validBgrd (DataTreeSet—-class),4
validBgrd,DataTreeSet-method
(DataTreeSet—-class), 4
validCall (CallTreeSet-class),?2
validCall,CallTreeSet-method
(CallTreeSet—class),2
validData, 33, 35, 67, 90, 96, 97

tissueInfo<—,ProjectInfo,character—metho&

(ProjectInfo-class), 14
treatmentInfo
(ProjectInfo-class), 14
treatmentInfo,ProjectInfo-method
(ProjectInfo-class), 14
treatmentInfo<-
(ProjectInfo-class), 14

treatmentInfo<—,ProjectInfo,character

(ProjectInfo-class), 14
treeNames (TreeSet—-class), 21
treeNames, TreeSet-method

(TreeSet—-class), 21
TreeSet, 1,3, 4,7,9,13, 19, 20
TreeSet (TreeSet-class), 21
TreeSet-class, 21
type2Exten, 61, 124, 131

UniFilter, 1,7, 8, 10,12, 22,24, 36, 58,
125-128, 133

UniFilter
(UniFilter—-constructor), 23

unifilter, I, 99, 126

UniFilter-class, 22

UniFilter—-constructor, 23

uniTest, 24

validData (validData-methods), 129
validData,AnalysisTreeSet-method
(AnalysisTreeSet-class), 1
validData,DataTreeSet-method
(DataTreeSet—class), 4
validData,FilterTreeSet-method
(FilterTreeSet—-class),8
%%Qﬁqg§ta,ProcesSet—method
(ProcesSet—-class), 13
validData-methods, 129
validFilter
(AnalysisTreeSet-class), 1
validFilter,AnalysisTreeSet-method
(AnalysisTreeSet—-class), 1
validTreetype, 47, 50, 61, 63-65, 107,
110, 124,130
varFilter, 11
varFilter (varFilter—-methods), 131
varFilter,PreFilter-method
(PreFilter-class),9
varFilter—-methods, 131
varFilter<-(varFilter—-methods),

131

varFilter<—,PreFilter, numeric—-method

(PreFilter—-class),9

INDEX

volcanoplot
(volcanoplot—-methods), 132

volcanoplot,AnalysisTreeSet-method
(AnalysisTreeSet—-class), 1

volcanoplot-methods, 132

xps (xps—-package), 133

xps—-package, 133

xpsBgCorrect (bgcorrect), 32

xpsBgCorrect,DataTreeSet-method
(DataTreeSet—-class), 4

xpsBgCorrect-methods (bgcorrect),
32

xpsDABGCall (dabg.call), 38

xpsDABGCall,DataTreeSet-method
(DataTreeSet—-class), 4

xpsDABGCall-methods (dabg.call),
38

xpsINICall (ini.call),78

xpsINICall,DataTreeSet—-method
(DataTreeSet—-class), 4

xpsINICall-methods (ini.call),78

xpsMAS4, 85

xpsMAS4 (mas4), 83

xpsMAS4,DataTreeSet-method
(DataTreeSet—-class), 4

xpsMAS4-methods (mas4), 83

xpsMASS5 (mas5), 85

xpsMAS5,DataTreeSet-method
(DataTreeSet—-class), 4

xpsMAS5-methods (mas5), 85

XpsMAS5Call (mas5.call), 88

xpsMAS5Call,DataTreeSet-method
(DataTreeSet—-class), 4

xpsMAS5Call-methods (mas5.call),
88

xpsNormalize (normalize), 94

xpsNormalize,DataTreeSet-method
(DataTreeSet—-class), 4

xpsNormalize, ExprTreeSet-method
(ExprTreeSet-class), 6

xpsNormalize-methods (normalize),
94

xpsOptions, 134

xpsPreFilter (prefilter), 98

xpsPreFilter, ExprTreeSet-method
(ExprTreeSet-class), 6

xpsPreFilter-methods (prefilter),
98

xpsPreprocess (express), 51

xpsPreprocess,DataTreeSet—-method
(DataTreeSet—-class), 4

143

xpsPreprocess—methods (express),
51

xpsRMA (rma), 103

xpsRMA, DataTreeSet-method
(DataTreeSet—-class), 4

xpsRMA-methods (rma), 103

xpsSummarize (summarize), 122

xpsSummarize,DataTreeSet-method
(DataTreeSet—class), 4

xpsSummarize-methods (summarize),
122

xpsUniFilter (unifilter), 126

xpsUniFilter, ExprTreeSet-method
(ExprTreeSet-class), 6

xpsUniFilter-methods (unifilter),
126

	AnalysisTreeSet-class
	CallTreeSet-class
	DataTreeSet-class
	ExprTreeSet-class
	Filter-class
	FilterTreeSet-class
	PreFilter-class
	PreFilter-constructor
	ProcesSet-class
	ProjectInfo-class
	ProjectInfo-constructor
	ROOT
	SchemeTreeSet-class
	TreeSet-class
	UniFilter-class
	UniFilter-constructor
	addData-methods
	attachBgrd-methods
	attachCall-methods
	attachExpr-methods
	attachInten-methods
	attachMask-methods
	bgcorrect
	boxplot-methods
	boxplot.dev
	callFilter-methods
	callplot-methods
	cvFilter-methods
	dabg.call
	dfw
	diffFilter-methods
	existsROOTFile
	exonLevel
	export
	export.filter
	export.root
	express
	exprs-methods
	farms
	fcFilter-methods
	gapFilter-methods
	getChipName
	getChipType
	getDatatype
	getNameType
	getNumberTrees
	getProbeInfo
	getTreeData-methods
	getTreeNames
	highFilter-methods
	hist-methods
	image-methods
	image.dev
	import.data
	import.exon.scheme
	import.expr.scheme
	import.genome.scheme
	ini.call
	initialize-methods
	isROOTFile
	lowFilter-methods
	madFilter-methods
	mas4
	mas5
	mas5.call
	mboxplot-methods
	metaProbesets
	mvaplot-methods
	mvaplot.dev
	normalize
	pm-methods
	pmplot-methods
	prefilter
	presCall-methods
	quantileFilter-methods
	ratioFilter-methods
	rawCELName-methods
	rma
	root.browser-methods
	root.call
	root.data
	root.density
	root.expr
	root.graph1D
	root.graph2D
	root.hist1D
	root.hist2D
	root.hist3D
	root.image
	root.mvaplot
	root.profile
	root.scheme
	summarize
	type2Exten
	uniTest-methods
	unifilter
	unitestFilter-methods
	validData-methods
	validTreetype
	varFilter-methods
	volcanoplot-methods
	xps-package
	xpsOptions
	Index

