\name{hmm} \alias{hmm} \title{Fits the hidden Markov model} \description{ Fits the hidden Markov model } \usage{ hmm(object, params) } %- maybe also 'usage' for other objects documented here. \arguments{ \item{object}{An object of class \code{HmmOptions}} \item{params}{An object of class \code{HmmParameter}} } \details{ None yet. } \value{ An object of class \code{HmmPredict} } \references{ RB Scharpf et al. (2008) Hidden Markov Models for the assessment of chromosomal alterations using high-throughput SNP arrays, Annals of Applied Statistics } \author{R. Scharpf} \seealso{ \code{\link{HmmParameter-class}} \code{\link{HmmPredict-class}} \code{\link[oligoClasses]{SnpLevelSet-class}} } \examples{ data(chromosome1) chromosome1 <- chromosome1[1:500, ] options <- new("HmmOptions", states=c("D", "N", "L", "A"), snpset=chromosome1, copyNumber.location=c(1, 2, 2, 3), probHomCall=c(0.99, 0.7, 0.99, 0.7)) validObject(options) params <- new("HmmParameter", states=states(options), initialStateProbability=0.99) cn.emission <- copyNumber.emission(options) gt.emission <- calls.emission(options) emission(params) <- cn.emission + gt.emission ##log scale genomicDistance(params) <- exp(-2 *calculateDistance(options)/(100*1e6)) ##no scaling transitionScale(params) <- matrix(1, length(states(options)), length(states(options))) if(validObject(params)) fit <- hmm(options, params) } \keyword{models}