Package ‘hSv¢’

April 5,2014
Type Package
Title Managing alignment tallies using a hdf5 backend
Version 1.0.6
Author Paul Theodor Pyl
Maintainer Paul Theodor Pyl <pyl@embl.de>

Description This package contains functions to interact with tally data from NGS experi-
ments that is stored in HDFS5 files. For detail see the webpage at http://www.ebi.ac.uk/~pyl/hSvc.

License GPL (>=3)

VignetteBuilder knitr

Depends

Imports rhdf5, ggplot2, reshape, bit64, IRanges, GenomicRanges,Biostrings

Suggests knitr, locfit, deepSNV, BSgenome.Hsapiens.UCSC.hg19, hSvcData

R topics documented:

hSve-package e e 2
callVariants L 2
Coverage e 6
geom_hSve . . . L. e 7
getSampleDatao e 9
hSdapply e e 10
helpers e 12
mismatchPlot 13
MUutationSPectra e e 14
Index 16

2 call Variants

h5vc-package Managing alignment tallies using a hdf5 backend

Description

This package contains functions to interact with tally data from NGS experiments that is stored in
HDFS5 files. For detail see vignettes shipped with this package.

Details

Package: hSvc

Type: Package
Version: 1.0.4

Date: 2013-10-11
License: GPL (>=3)

This package is desgned to facilitate the analysis of genomics data through tallies stored in a HDF5
file. Within a HDFS5 file the tally is simply a table of bases times genomic positions listing for each
position the count of each base observed as a mismatch in the sample at any given position. Strand
and sample are additional dimension in this array, which leads to a 4D-array called ’Counts’. The
total coverage is stored in a separate array of 3 dimensions (Sample x Strand x Genomic Position)
called *Coverages’, there is a 3 dimensional ’Deletions’ array and a 1D-vector encoding the refer-
ence base ("Reference’). Those 4 arrays are stored as datasets within a HDFS5 tally file in which the
group-structure of the tally file encodes for the organisatorial levels of *Study’ and *’Chromosome’.
For details on the layout of HDFS files visit (http://www.hdfgroup.org), a short description is given
in the vignettes.

Creating those HDF? tally files can be accomplished from within R or through a Python script
that will generate a tally file from a set of .bam files. The workflow is described in the vignettes
h5vc.creating.tallies and h5vc.creating.tallies.within.R.

Author(s)

Paul Pyl Maintainer: Paul Pyl pyl@embl.de

callvariants Variant calling

Description

These functions implement various attempts at variant calling.

call Variants 3

Usage

callVariantsPaired(data, sampledata, cl = vcConfParams())
callDeletionsPaired(data, sampledata, cl = vcConfParams())

vcConfParams(
minStrandCov = 5,
maxStrandCov = 200,
minStrandAltSupport = 2,
maxStrandAltSupportControl
minStrandDelSupport = 2,
maxStrandDelSupportControl = 0,
minStrandCovControl = 5,
maxStrandCovControl = 200,
bases = 5:8,
returnDataPoints = FALSE,
annotateWithBackground = FALSE,
mergeCalls = FALSE,
mergeAggregator = mean,
pValueAggregator = max

1
o

)
Arguments

data A list with elements Counts (a 4d integer array of size [1:12, 1:2, 1:k, 1:n]),
Coverage (a3d integer array of size [1:2, 1:k, 1:n]), Deletions (a 3d integer
array of size [1:2, 1:k, 1:n]), Reference (a 1d integer vector of size [1:n]) —
see Details.

sampledata A data.frame with k rows (one for each sample) and columns Type, Column
and (SampleGroup or Patient). The tally file should contain this information
as a group attribute, see getSampleData for an example.

cl A list with parameters used by the variant calling functions. Such a list can be

produced, for instance, by a call to vcConfParams.
minStrandCov ~ Minimum coverage per strand in the case sample.

maxStrandCov ~ Maximum coverage per strand in the case sample.

minStrandCovControl
Minimum coverage per strand in the control sample.

maxStrandCovControl
Maximum coverage per strand in the control sample.

minStrandAltSupport
Minimum support for the alternative allele per strand in the case sample. This
should be 1 or higher.

maxStrandAltSupportControl
Maximum support for the alternative allele per strand in the control sample. This
should usually be 0.

minStrandDelSupport
Minimum support for the deletion per strand in the case sample. This should be
1 or higher.

4 call Variants

maxStrandDelSupportControl
Maximum support for the deletion per strand in the control sample. This should

usually be 0.
bases Indices for subsetting in the bases dimension of the Counts array, 5:8 extracts
only those calls made in the middle one of the sequencing cycle bins.
returnDataPoints
Boolean flag to specify that a GRanges object with the variant calls should be
returned. If returnDataPoints == FALSE only the variant positions are
returned.

annotateWithBackground
Boolean flag to specify that the background mismatch / deletion frequency esti-
mated from all control samples in the cohort should be added to the output. A
simple binomial test will be performed as well. Only usefull if returnDataPoints
== TRUE

mergeCalls Boolean flag to specify that adjacent calls should be merged where appropriate
(used by callDeletionsPaired). Only usefull applied if returnDataPoints == TRUE

mergeAggregator
Aggregator function for merging adjacent calls, defaults to mean, which means
that a deletion larger than 1bp will be annotated with the means of the counts
and coverages

pValueAggregator
Aggregator function for combining the p-values of adjacent calls when merging,
defaults to max. Is only applied if annotateWithBackground == TRUE

Details

data is a list of datasets which has to at least contain the Counts and Coverages for variant calling
respectively Deletions for deletion calling. This list will usually be generated by a call to the
h5dapply function in which the tally file, chromosome, datasets and regions within the datasets
would be specified. See ?h5dapply for specifics.

vcConfParams is a helper function that builds a set of variant calling parameters as a list. This list
is provided to the calling functions e.g. callVariantsPaired and influences their behavior.

callVariantsPaired implements a simple pairwise variant callign approach applying the filters
specified in c1, and might additionally computes an estimate of the background mismatch rate (the
mean mismatch rate of all samples labeled as *Control’ in the sampledata and annotate the calls
with p-values for the binom. test of the observed mismatch counts and coverage at each of the
samples labeled as *Case’.

callDeletionsPaired implements an essential identival approach as callVariantsPaired but
works on deletion counts per genomic position instead of mismatches.

Value

The result is either a list of positions with SNVs / deletions or a data.frame containing the calls
themselves which might contain annotations. Adjacent calls might be merged and calls might be
annotated with p-values depending on configuration parameters.

When the configuration parameter returnDataPoints is FALSE the functions return the positions of
potential variants as a list containing one integer vector of positions for each sample, if no positions

call Variants 5

were found for a sample the list will contain NULL instead. In the case of returnDatapoints == TRUE
the functions return either NULL if no poisitions were found or a data. frame with the following

slots:

Chrom The chromosome the potential variant / deletion is on

Start The starting position of the variant / deletion

End The end position of the variant / deletions (equal to Start for SN'Vs and single
basepair deletions)

Sample The Case sample in which the variant was observed

altAllele The alternate allele for SN'Vs (skipped for deletions, would be "-")

refAllele The reference allele for SNVs (skipped for deletions since the tally file might

not contain all the information necessary to extract it)
caseCountFwd Support for the variant in the Case sample on the forward strand

caseCountRev Support for the variant in the Case sample on the reverse strand
caseCoverageFwd

Coverage of the variant position in the Case sample on the forward strand
caseCoverageRev

Coverage of the variant position in the Case sample on the reverse strand
controlCountFwd

Support for the variant in the Control sample on the forward strand
controlCountRev

Support for the variant in the Control sample on the reverse strand
controlCoverageFwd

Coverage of the variant position in the Control sample on the forward strand
controlCoverageRev

Coverage of the variant position in the Control sample on the reverse strand

If the annotateWithBackground option is set the following extra columns are returned

backgroundFrequencyFwd
The averaged frequency of mismatches / deletions at the position of all samples
of type Control on the forward strand
backgroundFrequencyRev
The averaged frequency of mismatches / deletions at the position of all samples
of type Control on the reverse strand
pValueFwd The p.value of the test binom. test(caseCountFwd, caseCoverageFwd, p = backgroundFrequencyl

pValueRev The p.value of the test binom. test(caseCountRev, caseCoverageRev, p = backgroundFrequencyl
The function callDeletionsPaired merges adjacent single-base deletion calls if the option mergeCalls

is set to TRUE, in that case the counts and coverages (e.g. caseCountFwd) are aggregated using the

function supplied in the mergeAggregator option of the configuration list (defaults to mean) and the

p-values pValueFwd and pValueFwd (if annotateWithBackground is TRUE), are aggregated using
the function supplied in the pValueAggregator option (defaults to max).

Author(s)
Paul Pyl

Examples

Coverage

library(h5vc) # loading library
tallyFile <- system.file("extdata”, "example.tally.hfs5", package = "h5vcData”)
sampleData <- getSampleData(tallyFile, "/ExampleStudy/16")
position <- 29979629
windowsize <- 1000
vars <- h5dapply(# Calling Variants
filename = tallyFile,
group = "/ExampleStudy/16",
blocksize = 500,
FUN = callVariantsPaired,

sampledata

sampleData,

cl = vcConfParams(returnDataPoints=TRUE),
names = c("Coverages”, "Counts"”, "Reference"),
range = c(position - windowsize, position + windowsize)

)

vars <- do.call(rbind, vars) # merge the results from all blocks by row
vars # We did find a variant
dels <- h5dapply(# Calling Deletions

filename = tallyFile,

group = "/ExampleStudy/16",

blocksize = 500,

FUN = callDeletionsPaired,

sampledata

sampleData,

cl = vcConfParams(returnDataPoints=TRUE),

names =
range =

)

c("Coverages"”, "Deletions”, "Reference"),
c(position - windowsize, position + windowsize)

dels <- do.call(rbind, dels) # merge the results from all blocks by row
dels # unfortunately this example dataset does not contain a deletion here

Coverage

Coverage analysis

Description

Functions to do analyses based on coverage

Usage

binnedCoverage(data, sampledata)

Arguments

data

sampledata

A list with element Coverage (a 3d integer array of size [1:2, 1:k, 1:n])

A data.frame with k rows (one for each sample) and columns Type, Column
and (SampleGroup or Patient). The tally file should contain this information
as a group attribute, see getSampleData for an example.

geom_h5vc 7

Details

Explanations:

This computes the per sample coverage in a given bin (determined by the width of data). This
feature is not implemented yet!

Value

Returns a data.frame with columns containing the coverage with the current bin for all samples
provided in sampledata. The binsize is determined by the blocksize argument given to h5dapply
when this function is run directly on a tally file.

Author(s)
Paul Pyl

Examples

loading library and example data
library(h5vc)
tallyFile <- system.file("extdata”, "example.tally.hfs5"”, package = "h5vcData”)
sampleData <- getSampleData(tallyFile, "/ExampleStudy/22")
data <- h5dapply(# extractting coverage binned at 1000 bases
filename = tallyFile,
group = "/ExampleStudy/22",
blocksize = 1000,
FUN = binnedCoverage,
sampledata = sampleData,
names = c("Coverages”),
range = c(38900000,39000000)
)
data <- do.call(rbind, data)
rownames(data) <- NULL
head(data)

geom_h5vc geom_h5vc

Description

Plotting function that returns a ggplot2 layer representing the specified dataset for the specified
samples in the region [positon - windowsize, position + windowsize].

Usage

geom_h5vc(data, sampledata, samples=sampledata$Sample, windowsize, position, dataset, ..

)

8 geom_h5vc

Arguments
data The data to be plotted. Returned by h5dapply. Must be centered on position,
extend by windowsize in each direction and contain a slot named like the dataset
argument
sampledata The sampledata for the cohort represented by data. Returned by getSampleData
samples A character vector listing the names of samples to be plotted, defaults to all
samples as described in sampledata
windowsize Size of the window in which to plot on each side. The total interval that is plotted
will be [position-windowsize,position+windowsize]
position The position at which the plot shall be centered
dataset The slot in the data argument that should be plotted
Paramteters to be passed to the internally used geom_rect, see geom_rect for
details
Details

Creates a ggplot layer centered on position using the specified dataset from list data, annotating
it with sample information provided in the data.frame sampledata and showing all samples listed
in sample. The resulting plot uses ggplot2’s geom_rect to draw boxes representing the values from
dataset. The x-axis is the position and will span the interval [positon - windowsize, position + windowsizel.
The x-axis is centered at 0 and additional layers to be added to the plot should be centered at 0 also.

Ths function allows for fast creation of overview plots similar to mismatchPlot (without the stack-
ing of tracks). The example below shows how one can create a plot showing the coverage and
number of mismatches per position (but not the alternative allele) for a given region.

Value

A ggplot layer object containing the plot of the specified dataset, this can be used like any other
ggplot layer, i.e. it may be added to another plot.

Author(s)
Paul Pyl

Examples

loading library and example data
library(h5vc)
library(ggplot2)
tallyFile <- system.file("extdata”, "example.tally.hfs5", package = "h5vcData"”)
sampleData <- getSampleData(tallyFile, "/ExampleStudy/16")
position <- 29979629
windowsize <- 30
samples <- sampleData$Sample[sampleData$Patient == "Patient8"]
data <- h5dapply(
filename = tallyFile,
group = "/ExampleStudy/16",
blocksize = windowsize * 3, #choose blocksize larger than range so that all needed data is collected as one block

getSampleData 9

names = c("Coverages”, "Counts"”, "Deletions"),
range = c(position - windowsize, position + windowsize)
YL[111

Summing up all mismatches irrespective of the alternative allele

data$CountsAggregate = colSums(data$Counts)

Simple overview plot showing number of mismatches per position

p <- ggplot() +

geom_h5vc(data=data, sampledata=sampleData, windowsize = 35, position = 500, dataset = "Coverages”, fill = "gray'
geom_h5vc(data=data, sampledata=sampleData, windowsize = 35, position = 500, dataset = "CountsAggregate”, fill =
facet_wrap(~ Sample, ncol = 2)

print(p)

getSampleData Extracting sample data from a tally file

Description
These functions allow reading and writing of sample data to the HDF5-based tally files. The sample
data is stored as group attribute.

Usage

getSampleData(filename, group)
setSampleData(filename, group, sampleData)

Arguments
filename The name of a tally file
group The name of a group within that tally file, e.g. /ExampleStudy/22
sampleData A data.frame with k rows (one for each sample) and columns Type, Column
and (SampleGroup or Patient. Additional column will be added as well but are
not required.)
Details

The returned data.frame contains information about the sample ids, sample columns in the sample
dimension of the dataset. The type of sample must be one of c("Case”, "Control”) to be used
with the provided SNV calling function. Additional relevant per-sample information may be stored
here.

Note that the following columns are required in the sample data where the rows represent samples
in the cohort:

Sample: the sample id of the corresponding sample

Column: the index within the genomic position dimension of the corresponding sample, be aware
that getSampleData and setSampleData automatically add / remove 1 from this value since inter-
nally the tally files store the dimension 0-based whereas within R we count 1-based.

Patient the patient id of the corresponding sample

Type the type of sample

10 h5dapply

Value
sampledata A data.frame with k rows (one for each sample) and columns Type, Column
and (SampleGroup or Patient).
Author(s)
Paul Pyl
Examples

loading library and example data

library(h5vc)

tallyFile <- system.file("extdata”, "example.tally.hfs5", package = "h5vcData”)
sampleData <- getSampleData(tallyFile, "/ExampleStudy/16")
sampleData

modify the sample data

sampleData$AnotherColumn <- paste(sampleData$Patient, "Modified”)
write to tallyFile

setSampleData(tallyFile, "/ExampleStudy/16", sampleData)

re-load and check if it worked

sampleData <- getSampleData(tallyFile, "/ExampleStudy/16")
sampleData

h5dapply h5dapply

Description

This is the central function of the h5vc package, allows an apply operation along common dimen-
sions of datasets in a tally file.

Usage
h5dapply(filename, group, blocksize, FUN = function(x) x, ... , names, dims, range, verbose = FALSE)
Arguments
filename The name of a tally file to process
group The name of a group in that tally file
blocksize The size of the blocks in which to process the data (integer)
FUN The function to apply to each block, defaults to function(x) x, which returns
the data as is (a list of arrays)
Further parameters to be handed over to FUN
names The names of the datasets to extract, e.g. c("Counts”, "Coverages”) - optional

(defaults to all datasets)

h5dapply 11

dims The dimension to apply along for each dataset in the same order as names, these
should correspond to compatible dimensions between the datsets. - optional
(defaults to the genomic position dimension)

range The range along the specified dimensions which should be processed, this allows
for limiting the apply to a specific region or set of samples, etc. - optional
(defaults to the whole chromosome)

verbose Boolean flag that controls the amount of messages being printed by h5dapply

Details

This function applys parameter FUN to blocks along a specified axis within the tally file, group and
specified datasets. It creates a list of arrays (one for each dataset) and processes that list with the
function FUN.

This is by far the most essential and powerful function within this package since it allows the user
to execute their own analysis functions on the tallies stored within the HDF? tally file.

The supplied function FUN must have a parameter data or ... (the former is the expected be-
haviour), which will be supplied to FUN from h5dapply for each block. This structure is a 1list
with one slot for each dataset specified in the names argument to h5dapply containing the array
corresponding to the current block in the given dataset. Furthemore the slot h5dapplyInfo is re-
served and contains another 1ist with the following content:

Blockstart is an integer specifying the starting position of the current block (in the dimension
specified by the dims argument to h5dapply)

Blockend is an integer specifying the end position of the current block (in the dimension specified
by the dims argument to h5dapply)

Datasets Contains a data. frame as it is returned by h51s listing all datasets present in the other
slots of data with their group, name, dimensions, number of dimensions (DimCount) and the di-
mension that is used for splitting into blocks (PosDim)

Group contains the name of the group as specified by the group argument to h5dapply

Value

A list with one entry per block, which is the result of applying FUN to the datasets specified in the
parameter names within the block.

Author(s)
Paul Pyl

Examples

loading library and example data

library(h5vc)

tallyFile <- system.file("extdata”, "example.tally.hfs5", package = "h5vcData”)
sampleData <- getSampleData(tallyFile, "/ExampleStudy/16")

check the available samples and sampleData

print(sampleData)

data <- h5dapply(#extracting coverage using h5dapply

12 helpers
filename = tallyFile,
group = "/ExampleStudy/16",
blocksize = 1000,
FUN = function(x) rowSums(x$Coverages),
names = c("Coverages"),
range = c(29000000,29010000),
verbose = TRUE
)
coverages <- do.call(rbind, data)
colnames(coverages) <- sampleData$Sample[order(sampleData$Column)]
coverages
helpers helper functions
Description
These functions are helpers for dealing with tally data stored in HDFS5 files.
Usage
formatGenomicPosition(x, unit = "Mb", divisor = 1000000, digits = 3,
nsmall = 1)
encodeDNAString(ds)
Arguments
X Numerical genomic position
unit Which unit to convert the position to
divisor divisor corresponding to the unit, i.e. 'Mb’ -> 1e6, ’Kb’ -> 1e3
digits number of digits to keep
nsmall nsmall parameter to the format function
ds A DNAString object to be encoded in the HDFS tally file specific encoding of
nucleotides.
Details

formatGenomicPosition: Helps formatting genomic positions for annotating axes in mismatch plots

etc.

encodeDNAString: This translates a DNAString object into a comaptible encoding that can be
written to a HDFS based tally file in the Reference dataset. Since the Python script for generating
tallies only sets the Reference dataset in positions where mismatches exists updating the Reference
dataset becomes necessary if one would like to perform analysis involving sequence context (GC-
bias, mutationSpectrum, etc.)

mismatchPlot 13

Value

formatGenomicPosition: formatted genomic position, e.g. "123.4 Mb"

encodeDNAString: A numeric vector encoding the nucleotide sequence provided in ds according
to the scheme c("A"=0,"C"=1,"G"=2,"T"=3).

Author(s)
Paul Pyl

Examples

formatGenomicPosition(123456789)
library(Biostrings)
lapply(DNAStringSet(c("simple”="ACGT", "movie"="GATTACA")), encodeDNAString)

mismatchPlot mismatchPlot

Description
Plotting function that returns a ggplot2 object representing the mismatches and coverages of the
specified samples in the specified region.

Usage

mismatchPlot(data, sampledata, samples=sampledata$Sample, windowsize, position)

Arguments
data The data to be plotted. Returned by h5dapply. Must be centered on position
and extend by windowsize in each direction
sampledata The sampledata for the cohort represented by data. Returned by getSampleData
samples A character vector listing the names of samples to be plotted, defaults to all
samples as described in sampledata
windowsize Size of the window in which to plot on each side. The total interval that is plotted
will be [position-windowsize,position+windowsize]
position The position at which the plot shall be centered
Details

Creates a plot centered on position using the coverage and mismatch counts stored in data, anno-
tating it with sample information provided in the data.frame sampledata and showing all samples
listed in sample.

The plot has the genomic position on the x-axis (centered around position spanning windowsize
bases up- and downstream). The y-axis encodes values where positive values are on the forward
strand and negative values on the reverse. The coverage is shown in grey, deletions in purple and

14 mutationSpectra

the mismatches in the colors specified in the legend. Note that for each possible mismatch there is
an additional color for low-quality counts (coming from the first and last sequencing cycles), so e.g.
C is filled dark red and C_1q light red.

Value

A ggplot object containing the mismatch plot, this can be used like any other ggplot object, i.e.
additional layers and styles my be applied by simply adding them to the plot.

Author(s)
Paul Pyl

Examples

loading library and example data
library(h5vc)
tallyFile <- system.file("extdata”, "example.tally.hfs5", package = "h5vcData”)
sampleData <- getSampleData(tallyFile, "/ExampleStudy/16")
position <- 29979628
windowsize <- 30
samples <- sampleData$Sample[sampleData$Patient == "Patient8"]
data <- h5dapply(
filename = tallyFile,
group = "/ExampleStudy/16",
blocksize = windowsize * 3, #choose blocksize larger than range so that all needed data is collected as one block

names = c("Coverages"”, "Counts”, "Deletions"),

range = c(position - windowsize, position + windowsize)
YL[11]
p <- mismatchPlot(

data = data,

sampledata = sampleData,
samples = samples,
windowsize = windowsize,
position = position

)

print(p)

mutationSpectra Mutation spectrum analyses

Description

These functions help in analyses of mutation spectra

Usage

mutationSpectrum(variantCalls, tallyFile, study, context = 1)

mutationSpectra 15

Arguments

variantCalls A data. frame object that can be the output of a call to a callVariantsPaired
or callDeletionsPaired function. The following columns are required: -
altAllele - refAllele - Sample - Start - End - Chrom

tallyFile filename of a tally file matching the variant calls
study the study id used in the tally file
context An integer specifying the size of the context that should be considered (i.e. the

length of the prefix and suffix of the variant call)

Details

This function takes a set of variant calls (SNVs/Deletions) and a tallyFile as well as a context
size and tabulates the number of observed mutations stratified by type (refAllele->altAllele) and
sequence context (i.e. the prefix and suffix of size context around the variant position in the
genome)

bases serves to map character representations to numeric encoding of bases

variantCalls is an example dataset of variant calls created by running callVariantsPaired on
the example.tally.hfsb5 file.
Value

A table listing the counts of mutations stratified by allele, sequence context and sample.

Author(s)
Paul Pyl

Examples

library(h5vc)

tallyFile <- system.file("extdata”, "example.tally.hfs5"”, package = "h5vcData”)
data("example.variants”, package = "h5vcData”)

head(mutationSpectrum(variantCalls, tallyFile, "/ExampleStudy”))

Index

bases (mutationSpectra), 14
binnedCoverage (Coverage), 6

callDeletionsPaired (callVariants), 2
callVariants, 2

callvVariantsPaired (callVariants), 2
Coverage, 6

encodeDNAString (helpers), 12
formatGenomicPosition (helpers), 12

geom_h5vc, 7
geom_rect, 8§
getSampleData, 9

h5dapply, 10

h51s, 11

h5vc (h5vc-package), 2
h5vc-package, 2
helpers, 12

mismatchPlot, 8, 13
mutationSpectra, 14
mutationSpectrum (mutationSpectra), 14

setSampleData (getSampleData), 9

variantCalls (mutationSpectra), 14
vcConfParams (callVariants), 2

16

	h5vc-package
	callVariants
	Coverage
	geom_h5vc
	getSampleData
	h5dapply
	helpers
	mismatchPlot
	mutationSpectra
	Index

