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Please note: the package lymphoma and this vignette are deprecated. They will not be supported
after Bioconductor release 2.0.

The following exercise will guide you through the first steps of a spotted cDNA microarray analysis. These
steps comprise loading data into R/Bioconductor, quality control of the measurements, and preprocessing
of the raw data via normalization up to the generation of very simple gene lists. Make extensive use of the
help(<object>) command to find information about particular objects. Use the vignette (<package>)
command to get introductory material for a certain package.

Preliminaries. To go through this exercise, you need to have installed R >= 2.1.0, the release 1.6
versions of the Bioconductor libraries Biobase, marray, multtest, limma, vsn, and arrayMagic and the
library lymphoma, which contains the excercises and part of the lymphoma data set.

> library("vsn")

> library("multtest")

> library("marray")

> library("arrayMagic")

> library("RColorBrewer")

Reading data files. Considerable attention should be payed to data import. Experience tells that this
is one of the most error prone steps.

a. Your data has to be stored in one folder, with one file corresponding to one sample. Our example folder
is located at <R library path>/lymphoma/extdata/. You can find the path to that location using
system.file.

> path = system.file("extdata", package = "lymphoma")
> path

[1] "/tmp/Rinst2249128193/1lymphoma/extdata"

The file names are 1c7b047rex.DAT, 1c7b048rex.DAT,

> dir(path, pattern = ".DAT$")

[1] "1c7b019rex.DAT" "1c7b047rex.DAT" "1lc7b048rex.DAT" "1lc7b056rex.DAT"
[5] "1c7b057rex.DAT" "1lc7b058rex.DAT" "1lc7b069rex.DAT" "1lc7b070rex.DAT"

b. Open the file 1c7b048rex.DAT in a text editor. This is the typical file format for the results from the
image analysis on a cDNA slide. Different image analysis programs use slightly different conventions and
column headings, but we will describe an import method which is suited to the most common software
(Genepix, Spot, ...77).

c. For a both easy and flexible import of the data, there has to be a description file. The description file
contains a table with all the hybridization data file names in one column and possibly additional sample
information in further columns. Create a tab-delimited text file of this kind. We have done this for
you, the description file is named phenoData.txt. You may examine its structure with any text editor.
There is a convenient method for converting such a table into a phenoData object.



> lymphenoData = read.phenoData(file.path(path, "phenoData.txt"))
d. The phenoData object is used to simulatneously import all data files.
> lymphRaw = readIntensities(pData(lymphenoData), loadPath = path,

+ fileNameColumn = "fileName", slideNameColumn = "slideNumber",

+ type = "ScanAlyze")

> lymphNormvsn = normalise(lymphRaw, subtractBackground = T, method = "vsn",
+ spotIdentifier = "SPOT")

> lymphoma = as.exprSet(lymphNormvsn)

3.) The Bioconductor class exprSet.

a. The object lymphoma is of class exprSet. This class is the standard representation of a microarray
experiment in Bioconductor. It consists of the objects ("slots”)

exprs . A spots x samples matrix containing the expression levels

se.exprs : A spots x samples matrix containing an estimate of the standard error
of each single spot measurement

phenoData : An object of class phenoData, essentially a data frame containing
phenotypical information about the samples that were hybridized

annotation : Textual annotation

description : Object of class MTIAME which incorporates those MIAME-entries
that are not covered by other objects of the exprSet class

notes : Text containing additional remarks

Slots can be accessed directly with "@" (e.g. lymphoma@phenoData), but one should use the accessor
methods for the class exprSets. See help(exprSets) for details. The most interesting objects to us
are the expression matrix, given by exprs(lymphoma) and the data frame with the phenotype data,
pData(lymphoma). Have a look at them.

> dim(exprs(lymphoma)) # genes X samples
[1] 9216 16
> exprs (lymphoma) [1:3, 1:6]

[,1] [,2] [,3] [,4] [,5] [,6]
genel 4.705011 5.157140 5.315628 5.970322 6.187813 4.736314
gene2 6.542351 6.561461 7.373095 6.251734 7.219573 6.471994
gene3 7.117775 7.051510 7.457064 6.635266 7.733980 7.020954

> dim(pData(lymphoma)) # samples X descriptors
[1] 16 5
> pData(lymphoma)

fileName sampleid tumortype sex slideNumber

1 1c7b047rex.DAT CLL-13 CLL m 1
2 1c7b048rex.DAT CLL-13 CLL m 2

3 1c7b069rex .DAT CLL-52 CLL f 3

b. You might want to add a column containing the hybridization colour.
> colour = c(rep("red", 8), rep("green", 8))
> pData(lymphoma) = cbind(pData(lymphoma), colour)
fileName sampleid tumortype sex slideNumber colour
1 1c7b047rex.DAT  CLL-13 CLL m 1 red
2 1c7b048rex.DAT CLL-13 CLL m 2 red
3 1c7b069rex.DAT  CLL-52 CLL f 3 red



4.) Simple plots.

a. We will perform some elementary diagnostic plots for quality control. Most analyses are carried out on
the log transformed data, so lymphoma contains (generalized) log transformed expression values. For
convenience, we extract these values into another variable.
> logexpr = exprs(lymphoma)

It is possible to examine each single channel or to focus on log ratios or difference between them. Notice
that in our expSet the data for the red channel are in columns 1 to 8 and data for the green channel in
columns 9 to 16. For the following plots we will first use the two channels of slide number 5. Later we

will also look at the log ratios.
Now produce a histogram and a density plot of the log intensities in channel 1 of slide 5.

> slidenr = 5

> chl = logexpr[, slidenr]

> ch2 = logexpr[, slidenr + 8]

> plot(hist(chl), main = "Histogram", col = "blue")
> plot(density(chl), main = "Densityplot")

Histogram Densityplot
(=]
o _ n
N o
— o
] o
(\l_ —
o
o
§ & 2
5 2 2
o
£ 8 8 :
—
§ . )
n
o o
T o
o
o - S _—
T T T T 1 ° T T T T T T
2 4 6 8 10 0 2 4 6 8 10
chl N =9216 Bandwidth =0.195

Here are some plots that help to detect bad hybridizations. Compare the log intensity boxplots of the

slides
> boxplot (split(t(logexpr), 1:ncol(logexpr)), col = as.vector(pData(lymphoma) [,
+ "colour"]), main = "boxplot")
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A convenient way to compare the expression distributions between two samples is a quantile-quantile
plot. For equal distributions it should be a diagonal line.

> qqplot(chl, ch2, main = "q-q plot")
Do you think the g-gplot of slide number 5 looks OK?

b. Save one of the plots as a PDF. Copy and paste it into an MS-Office application.

> pdf(file = "savedplot")
> qqplot(chl, ch2, main = "q-q plot")
> dev.off ()

c. A more detailed view is provided by a scatter plot and its corresponding M-A plot
> plot(chl,ch2,pch="." ,main="Scatterplot")
> abline(a=0,b=1,col="blue"); abline(a=1,b=1,col="red"); abline(a=-1,b=1,col="red")
> plot((chl+ch2)/2,ch2-chl,pch=".",xlab="A",ylab="M",main="M-A plot")
> abline(h=0,col="blue"); abline(h=1,col="red"); abline(h=-1,col="red")
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d. We hid one "outlier slide” among the original lymphoma data. Find it using diagnostic plots!

5.) Normalization

a. Before we started analysis, we tacitly normalized our data (cf. normalise(lymphraw...)). Try two
other commonly used normalization methods:

lymphNormloess = normalise(lymphRaw, subtractBackground = T,
method = "loess", spotIdentifier = "SPOT")

logexpr2 = as.exprSet(lymphNormloess)

lymphNormquantile = normalise(lymphRaw, subtractBackground = T,
method = "quantile", spotIdentifier = "SPOT")

logexpr3 = as.exprSet(lymphNormquantile)
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b. These commands take their time! You can save the results into a file with the save function, and later
restore them with the load function. In MS-Windows, you can use the GUI for the latter.

c. Compare the results of the variance stabilization method to the loess method! Which Plots are appro-
priate for that?

6.) Testing for differential expression

a. Let us now get the log-ratios of the 2 channels for all 8 slides in our data set. This can be done quite
easily using function getExprSetLogRatio. Look into its manual and also find out about exprSetRG
objects, which extend regular exprSets to include information about the two different channels.



> lymphRatio = getExprSetLogRatio (lymphNormvsn)

> logRatios = exprs(lymphRatio)

Finally we are ready to calculate test statistics and to select genes. Note: The number of replicates

(4 versus 4) that we are considering here is too small to derive significant conclusions about individual

genes. The full data set contains many more chips. Here we restrict ourselves to a few of them in order

to keep things simple for the purpose of this course.

a. Look at the built-in function t.test, and at mt.teststat from the package multtest. Here,
we use mt.teststat to calculate the t-test statistic for the comparison. The package multtest
provides extensive functionality to calculate multiple-testing adjustments.
> classlabel = c¢c(0, 0, 0, 0, 1, 1, 1, 1)
> tStat = mt.teststat(logRatios, classlabel)
> summary (tStat)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-28.1000 -1.3670 -0.1861 -0.1832 1.0330 24.3400
> hist(tStat, breaks = 100, col = "#fb6090")
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Figure 1: a) left: histogram of t-statistic, b) right: false disocvery count.

b. Similar to the FDR (false discovery rate) we estimate the significance of the most extreme t-values.
The false discovery count is calculated for several lists of various length of the highest scored genes

(Fig. 1 right).

> fc = fdc(logRatios, factor(classlabel), teststatfun = "rowttests")

> plot(fc$nrgenesel, fc$fdc, main = "False Discovery Count", xlab = "number of selected g
+ ylab = "false discovery count", type = "b")

c. Now we load the spot (gene) description table with function read.delim. You can find it in the
same folder as the raw data in the file annotationData.txt.
What does read.delim do?
> spotDescr = read.delim(system.file("extdata", "annotationData.txt",
+ package = "lymphoma"))
Let's print the 5 genes with the lowest values of the ¢-statistic
> selection = order(tStat)[1:5]
> selection
[1] 4323 4069 4331 2026 2143
as well as the 5 genes with the highest values of the t-statistic
> selection = order (tStat, decreasing = TRUE)[1:5]
> selection
[1] 4532 8076 6635 4586 739
In a following step we extract the annotation information for the 5 selected genes and generate a
html-report (Fig. 2).



> spotIDs = getSpotAttr(lymphRaw)$SPOT[selection]
> geneAnno = spotDescr[spotDescr[, "spotID"] }inj}, spotIDs, ]
> write.htmltable(geneAnno, filename = "candidateGenes", title = "Candidate Genes")
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d. Due to their pervasive power, heatmaps enjoy high popularity (although they hardly prove anything).
We can produce one that shows the expression levels of the 20 genes with highest values of the t-statistc
in a few lines of R code.

TRUE) [1:20]
brewer.pal(10, "RdBu"))

> selection = order(tStat, decreasing
> heatmap (logRatios[selection, ], col

3174
6399
1924
1197
689

4783
107

2066
4630
2395
5674
1879
4586
4034
739

6635
4105
8076
117

4532

7.) Further quality assessment



The package arrayMagic provides additional measures for quality control. It produces a bunch of
graphics which are saved in your current working directory. Take the time to examine some of them.
Have a look at the vignette arrrayMagicVignette for details before proceeding.

> vignette("arrayMagicVignette")
> gP <- qualityParameters(lymphRaw, lymphNormvsn, resultFileName = "gP.txt",
+ spotIdentifier = "SPOT", slideNameColumn = "fileName")
> qualityDiagnostics(lymphRaw, lymphNormvsn, gP)
postscript
2
> visualiseHybridisations (1lymphRaw[, 1], mappingColumns = list(Block = "GRID",
+ Column = "COL", Row = "ROW"))

here are some samples of the output:
slideDistances

Ic7b069rex.DAT

{

Ic7b070rex.DAT

Ic7b048rex.DAT

Ic7b047rex.DAT

Ic7b058rex.DAT

Ic7b056rex.DAT

Ic7b057rex.DAT

Ic7b019rex.DAT

Ic7b019rex.DAT
Ic7b057rex.DAT
Ic7b056rex.DAT
Ic7b058rex.DAT
Ic7b047rex.DAT
Ic7b048rex.DAT
Ic7b070rex.DAT
Ic7b069rex.DAT

green foreground green background red foreground red background
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