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Linear Regression
• Similar to correlation analysis, simple linear regression can be 

used to explore the nature of the relationship between two 
continuous random variables 

• One difference is that regression looks at the change in one 
variable that corresponds to a given change in the other, we 
think of one as the response, and the other variable is often 
selected because we believe it affects the response, or is the 
result of an experimental design 

• A more important distinction is that we can use a number of 
covariates to build a model 

• One objective is to predict or estimate the value of the response 
associated with a fixed value of the explanatory variable 

• Correlation analysis does not distinguish between the two 
variables 2



Example: Lung Function in CF patients

• A study on lung function in patients with cystic fibrosis 
• PEmax (maximal static expiratory pressure, cm H20) is the 

response variable 
• A potential list of explanatory variables relate to body size or lung 

function: age, sex, height, weight, BMP (body mass as a 
percentage of the age-specific median), FEV1 (forced expiratory 
volume in 1 second), RV (residual volume), FRC (functional 
residual capacity), TLC (total lung capacity) 

• For now, let’s consider age alone 
• Quantify this relationship by postulating a model of the form
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Example: Lung Function in CF patients

• Plot PEmax vs age 

• Despite the scatter, it appears that PEmax tends to increase as 
age increases 

• Data (O’Neill et al, Am Rev Respir Dis. 1983) available from ISwR 
package (“Introductory statistics with R” book by Dalgaard)
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You can find out more about it from R
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A multivariate data set

• For data sets with multiple 
variables using the pairs 
function plots all by all
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Linear Regression Model

• y: dependent/response/outcome variable 
• x: independent/explanatory/predictor variable 
• e: error term 
• 𝛼, 𝛽: coefficients/regression coefficients/model parameter 

- 𝛼: intercept 

- 𝛽: slope, describes the magnitude of association between X and Y 

• For any given x, y = constant + normal random variable 
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Assumptions

• For a specified value of x, the distribution of the y values is 
normal with mean y = 𝛼 + 𝛽x and standard deviation 𝜎

8

• For any specified 
value of x, 𝜎 is 
constant 

• This assumption of 
constant variability 
across all values of x 
is known as 
homoscedasticity



Residuals

• Use the data from the sample to estimate 𝛼 and 𝛽, the 
coefficients of the regression line 

• Call the estimators a and b 

• The discrepancies between the observed and fitted values are 
called residuals
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Fitting the Model: well described in MSMB

• One mathematical technique for fitting a straight line to a set of 
points is known as the method of least squares 

• To apply this method, note that each data point (xi, yi) lies some 
vertical distance from di from an arbitrary line (di is measured 
parallel to the vertical axis) 

• Ideally, all residuals would be equal to 0 
• Since this is impossible, we choose another criterion: we 

minimize the sum of squared residuals
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Goodness of Fit

• After estimating the model parameters, we need to evaluate how 
well the model fits the data 

• In general we use graphical methods to assess GoF - summary 
statistics are usually not sufficient (see homework 5 Q2) 

• Graphics are essential 
- Residual plots and other tools are essential 

• You can get some sense of how the model fits the data by 
looking at 
- Inference about beta 
- R2 
- But any interpretation of them assumes that the model is correct - and 

so they cannot inform you about GoF 
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Why Graphics are Essential

• Anscombe’s plots - the summary statistics are identical
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https://en.m.wikipedia.org/wiki/Anscombe%27s_quartet

In R the data are available as anscombe, plot them, fit models, plot residuals etc



Inference about 𝛽

• Because the parameter 𝛽 describes the relationship between X 
and Y, inference about 𝛽 tells us about the strength of the linear 
relationship. 

• After estimating the model parameters, we can do hypothesis 
testing and build confidence intervals for 𝛽 

• The standard error of b in a sample linear regression is 
estimated as
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Inference about 𝛽

• To test the hypothesis H0:𝛽=0, we calculate the test statistic 

• Under H0, this has a t distribution with n-2 df (for a simple model 
with one covariate- with more covariates you need to adjust) 

• If the true population slope is equal to 0, there is no linear 
relationship between x and y; x is of no value in predicting y 

• 100(1-𝛼) Cl for 𝛽 
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Example of Cystic Fibrosis Patients
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Interpretation
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• The multiple R-squared is called the coefficient of 
determination and reflects the amount of variation in the y’s 
explained by the model 

• It must increase if a new variable is added. 
• The F-test at the bottom tests H0 that a null model, with only a 

mean vs H1 that the covariates improve fit



Example: CF

• We reject H0 and conclude that the population slope is not equal 
to 0. PEmax increases as age increases. 

• Check: 

• A 95% confidence interval for beta is
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4.055/1.088 = 3.727
(1-pt(3.726,23))*2 = 0.0011

4.055 +/- 2.069*1.088 = (1.80, 6.31)
qt(.975,23) = 2.07



Plotting the Regression Line
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R2

• , sometimes called the coefficient of determination: 

• This is the proportion of variation explained by the model 
• Higher values of  indicate that more of the variability in Y is 

explained by the covariate(s) 
• Adding new covariates to a model necessarily increases  so 

we need to have statistical methods to ascertain whether the 
increase is sufficiently large to merit inclusion of the covariate

R2

R2

R2
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Residual Plots

• We’ve been assuming that the association between X and Y in 
the population is truly linear. 

• Even if the association is nonlinear, these methods may still fit a 
line without detecting a problem. In this case, inferences from 
the model will not be correct. 

• Previously we defined a point’s residual: 

• Because of the assumptions of linear regression, we expect all 
the residuals to be normally distributed with the same mean (0) 
and the same variance. 

• Violations of the linear regression assumptions can often be 
detected on a residual plot
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Residual Plots

• Plot the fitted (predicted) y-values on the x-axis and the residuals 
on the y-axis - right? On the left we see y vs x.  

• Are the residuals normally distributed with constant variance?
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Residual Plots
• A different example (not the same data set):
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Example: Cystic Fibrosis Patients

• Does this model violate the assumption for constant variance?
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Linear Regression

• A linear regression equation is linear in the parameters.  
• Which models are ‘linear’? 

- y = a + bx 
- y = bx 
- y = a + b1x1 + b2x2 
- y = a + b x12 
- log(y) = a + bx 

• In fact, linear regression is not so restrictive 
• And we often want to transform both y (eg log(y)) or some of the 

covariates in order to improve the assumptions
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Summary: Simple Linear Regression

• Linear model 

• Method of Least Squares 

• Testing for significance of coefficients
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Multiple Linear Regression

• If knowing the value of a single explanatory variable improves 
our ability to predict a continuous response, we might suspect 
that information about additional variables could also be used to 
our advantage 

• To investigate the more complicated relationship among a 
number of different variables, we use multiple linear regression 
analysis
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Multiple Linear Regression

• The intercept 𝛼 is the mean value of the response when all k 
explanatory variables are equal to 0 

• The slope 𝛽j is the change in y that corresponds to a one-unit 
increase in xj, given that all other explanatory variables remain 
constant 

• The model is no longer a simple but something multidimensional 
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Least Squares

• Again, we define the “best” line by minimization of the sum of 
squared residuals 

• Unfortunately, there is no simple formulas for the coefficients 
• There is an elegant solution but this requires more mathematical 

notations 
• Hypothesis testing for the coefficients is done the same way
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Visualizing Data

• Before performing any 
analysis, it is good to view 
the data 

• You can see the close 
relationship between age 
and height and weight
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A Single Predictor Model

• Age is a significant predictor of PEmax 
• PEmax = 50.4 + 4.06 * age
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A Two-Predictor Model

• PEmax = 17.9 + 2.72 * age + 0.40 * height 
• How to interpret the coefficients? 
• Which terms are significant here?
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Inference for Coefficients

• We test the following hypothesis: 
H0 : 𝛽j = 0 (and all other 𝛽s ≠ 0) 
H1 : 𝛽j ≠ 0 (and all other 𝛽s ≠ 0) 

• The test statistic 
 
 
 
 
follows a t-distribution with (n-k-1) df under the null 

• k is the number of explanatory variables 

32



Adjusted R2

• Age explained 37.6% of the variability in PEmax (about its mean) 
• Age and height explained 38.3% of the variability in PEmax 
• The inclusion of an additional variable in a regression model can 

never cause R2 to decrease 
• To get around this problem, we use the adjusted R2 to penalize 

for the added complexity of the model 
• Here, adjusted R2 decreased. We conclude that this model is not 

an improvement over the age-only model 
• Note that the F-statistic remains significant
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F-test

• We perform inference about them together to determine whether 
the model demonstrates a statistically significant relationship 
between any predictor variable and the outcome variable 

• H0 : 𝛽1=𝛽2…=𝛽k = 0 vs H1 : at least one 𝛽i ≠ 0 
• We use the F-test to test this hypothesis
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F-test

• Total sum of squares can be decomposed into Regression sum 
of squares (part explained by the model) and Residual sum of 
squares (remaining part) 

• We normalize by the degrees of freedom to get regression and 
residual mean sum of squares. The ratio of these two values 
follows an F-distribution with (k, n-k-1) df.
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