
Annotating Genetic Variants - Exercises

Valerie Obenchain

27-28 February 2012

1 Overview

In these excercises we will investigate the TRPV (Transient Receptor Potential
Vanilloid) family of transient receptor potential ion channels. These channels
are selective for calcium and magnesium over sodium ions. Our goal will be to
read in variants that fall in the gene ranges, identify their structural location in
the gene and determine the consequece of any amino acid coding changes.

In these exercises we use a VCF file available in the cgdv17 data package.
The package contains Complete Genomics data for chromosome 17 from 11
populations. We will be using one file from population type CEU.

2 Reading VCF files

> library(VariantAnnotation)

> library(cgdv17)

> file <- system.file("vcf", "NA06985_17.vcf.gz", package = "cgdv17")

> genefam <- c("TRPV1", "TRPV2", "TRPV3")

> library(org.Hs.eg.db)

> ## get ensembl ids from gene symbols

> geneid <- lapply(genefam, function(gn) get(gn, revmap(org.Hs.egSYMBOL)))

Exercise 1
Explore the file header with scanVcfHeader. What elements are in the INFO
and FORMAT fields?

Solution:

> hdr <- scanVcfHeader(file)

> hdr[[1]]$Header$INFO

DataFrame with 3 rows and 3 columns

Number Type Description

<character> <character> <character>

NS 1 Integer Number of Samples With Data

DP 1 Integer Total Depth

DB 0 Flag dbSNP membership, build 131

1

> hdr[[1]]$Header$FORMAT

DataFrame with 12 rows and 3 columns

Number Type Description

<character> <character> <character>

GT 1 String Genotype

GQ 1 Integer Genotype Quality

DP 1 Integer Read Depth

HDP 2 Integer Haplotype Read Depth

HQ 2 Integer Haplotype Quality

PS 2 Integer Phase Set

GENE . String Overlaping Genes

mRNA . String Overlaping mRNA

rmsk . String Overlaping Repeats

segDup . String Overlaping segmentation duplication

rCov 1 Float relative Coverage

cPd 1 String called Ploidy(level)

Exercise 2
• Extract the ranges for the TRPV family of genes using the TxDb.Hsapiens.UCSC.hg19.knownGene

package and Entrez gene ids.

• Use the transcriptsBy function to create a GRangesList of transcripts by
gene. Subset this object on chromosome 17 with keepSeqlevels

• The seqlevels (chromosomes) from the VCF file are named as numbers
only; they are not preceded by ’chr’. The ranges we extract from the
annotation will be used to retrieve data from the VCF file so the seqlevels
must match. Rename the seqlevels (chromosomes) in the GRangesList
from ’chr17’ to ’17’.

• Extract the TRPV gene ranges from the GRangesList annotation

Solution:

> library(TxDb.Hsapiens.UCSC.hg19.knownGene)

> txdb <- TxDb.Hsapiens.UCSC.hg19.knownGene

> txbygene = transcriptsBy(txdb, "gene")

> tx_chr17 <- keepSeqlevels(txbygene, "chr17")

> tx_17 <- renameSeqlevels(tx_chr17, c(chr17="17"))

> rngs <- unlist(tx_17[names(tx_17) %in% unlist(geneid)], use.names = FALSE)

To retrieve a subset of the data from a VCF file we need to create a Scan-

VcfParam. This object can specify genomic coordinates (ranges) or individual
VCF elements.

2

The VCF file must have a tabix index when the data are subset on ranges.
An index for this file exists in the data package. In the case where you need to
create your own index see ?indexTabix for help. Read in the data with readVcf.

Exercise 3
Create a ScanVcfParam with the ranges extracted from the TxDb. The ranges can
be collapsed into a single range with reduce. If the ranges are not collapsed
the rangesID column in the rowData slot of the result will display which variant
came from each range.

Solution:

> gnrng <- reduce(rngs)

> param <- ScanVcfParam(which = gnrng, info = "DP", geno = c("GT", "cPd"))

> vcf <- readVcf(file, "hg19", param)

Explore the VCF object using the fixed, info and geno accessors. Variant
ranges are in the GRanges found in the rowData slot.

3 structural location of variants

When using annotations for overlapping or matching it is important the se-

qlevels match. Here we check the seqlevels of the VCF file against those of the
txdb.

> seqlevels(vcf)

[1] "17"

> head(seqlevels(txdb))

[1] "chr1" "chr2" "chr3" "chr4" "chr5" "chr6"

> ## seqlevels do not match

> intersect(seqlevels(vcf), seqlevels(txdb))

character(0)

> vcf_mod <- renameSeqlevels(vcf, c("17"="chr17"))

> ## seqlevels now match

> intersect(seqlevels(vcf_mod), seqlevels(txdb))

[1] "chr17"

Exercise 4
• Call locateVariants on the VCF object with the modified seqlevels. Each

row of the result represents a variant-transcript match which may result in
mulitple rows per variant. Be aware of this ’multiplicity’ when intrepreting
the reults.

3

• How many variants are in each structural region?

Solution:

> loc <- locateVariants(vcf_mod, txdb)

> ## summarize by gene by region

> table(loc$location, loc$geneID)

162514 23729 51393 7442 84690

transcript_region 0 0 0 0 0

intron 1484 0 116 706 0

5'UTR 10 0 2 7 0

3'UTR 49 2 2 16 6

coding 52 0 6 56 0

intergenic 0 0 0 0 0

4 Amino acid coding

Load the BSgenome.Hsapiens.UCSC.hg19 package and call predictCoding on
the VCF object with modified seqlevels.

> library(BSgenome.Hsapiens.UCSC.hg19)

> aa <- predictCoding(vcf_mod, txdb, Hsapiens)

The SIFT.Hsapiens.dbSNP132 and PolyPhen.Hsapiens.dbSNP131 packages
provide predictions of how dammaging amino acid coding changes may be on
protein structure and function. Both methods use multiple alignment informa-
tion and PolyPhen also utilizes protein structional databases. Details of the
algorithems and outputs offered can be found at ?SIFT.Hsapiens.dbSNP132 and
?PolyPhen.Hsapiens.dbSNP131.

Exercise 5
• Load PolyPhen.Hsapiens.dbSNP131. Investigate the available columns

and keys with the keys and cols functions.

• The keys in the SIFT and PolyPhen databases are rsid. Obtain the rsid
of the nonsynonymous variants identified in the predictCoding call and
query the PolyPhen database. Define a subset of columns to be returned
and repeat the call.

Solution:

> library(PolyPhen.Hsapiens.dbSNP131)

> keys <- keys(PolyPhen.Hsapiens.dbSNP131)

> cols <- cols(PolyPhen.Hsapiens.dbSNP131)

> nonsyn <- aa$queryID[aa$consequence == "nonsynonymous"]

4

> rsid <- unique(names(rowData(vcf_mod))[nonsyn])

> ## column descriptions found at ?PolyPhenDbColumns

> cols(PolyPhen.Hsapiens.dbSNP131)

[1] "RSID" "TRAININGSET" "OSNPID" "OACC" "OPOS"

[6] "OAA1" "OAA2" "SNPID" "ACC" "POS"

[11] "AA1" "AA2" "NT1" "NT2" "PREDICTION"

[16] "BASEDON" "EFFECT" "PPH2CLASS" "PPH2PROB" "PPH2FPR"

[21] "PPH2TPR" "PPH2FDR" "SITE" "REGION" "PHAT"

[26] "DSCORE" "SCORE1" "SCORE2" "NOBS" "NSTRUCT"

[31] "NFILT" "PDBID" "PDBPOS" "PDBCH" "IDENT"

[36] "LENGTH" "NORMACC" "SECSTR" "MAPREG" "DVOL"

[41] "DPROP" "BFACT" "HBONDS" "AVENHET" "MINDHET"

[46] "AVENINT" "MINDINT" "AVENSIT" "MINDSIT" "TRANSV"

[51] "CODPOS" "CPG" "MINDJNC" "PFAMHIT" "IDPMAX"

[56] "IDPSNP" "IDQMIN" "COMMENTS"

> subst <- c("AA1", "AA2", "PREDICTION")

> select(PolyPhen.Hsapiens.dbSNP131, keys=rsid, cols=subst)

RSID AA1 AA2 PREDICTION

3 rs322965 I V benign

31 rs224534 T I benign

5

	Overview
	Reading VCF files
	structural location of variants
	Amino acid coding

