The rtracklayer package

Manipulating and visualizing genomic annotations

Michael Lawrence

January 20, 2009

@ Introduction

® Managing Genomic Data (Tracks)
Constructing a track object
Accessing feature information
Subsetting tracks
Exporting and importing tracks

© Interacting with a Genome Browser
Starting and loading tracks into a session
Displaying and configuring browser views
The browser as a data resource

® Conclusion

Introduction

Outline

@ Introduction

Introduction

Tracks and experimental data analysis

¢ Many data types have natural mapping to genome:
e SNPs
e Chip-seq peaks
e Methylation

e Annotation databases contain wealth of knowledge:
e Genes and exons (biomaRt)
e Conservation scores
e Transcription factor binding sites, TransFac

Introduction

Tracks and experimental data analysis

e Many data types have natural mapping to genome:
e SNPs
e Chip-seq peaks
e Methylation

e Annotation databases contain wealth of knowledge:
e Genes and exons (biomaRt)
e Conservation scores
e Transcription factor binding sites, TransFac

Integrate the analysis of experimental data with existing
annotations.

Introduction

The rtracklayer package

The rtracklayer package is an interface (or layer) between R,
genome browsers and genomic annotations.

Feature overview

o Annotation track representation and import/export (files and
online databases)

e The control and querying of external genome browser sessions
and views.

e Currently supports UCSC browser and database.

Introduction

Case Study: Gene expression and microRNAs

Data Microarray time course of human stem cell
differentiation

Source Tewari lab at the FHCRC

Question Are microRNAs regulating gene expression during
differentiation?

Analysis
@ Find the differentially expressed genes
® Create a track with microRNA target sites on
DE genes
© Upload track to genome browser to view in
genomic context

Managing Genomic Data (Tracks)

Outline

@® Managing Genomic Data (Tracks)

Managing Genomic Data (Tracks)

Storing data on intervals
The RangedData object

e RangedData objects, defined by the /IRanges package, hold
data on (genomic) intervals.
e Two components

@ The interval starts and widths, segregated by chromosome
@® The variables describing the intervals

Managing Genomic Data (Tracks)
[I}

Constructing a track object

Preparing the data

Used limma to find genes with changed expression after
differentiation

Obtained microRNA target sites from MiRBase, available
from microRNA package

Filtered the target sites for those near DE genes

Available as dataset in rtracklayer package

Managing Genomic Data (Tracks)
[I}

Constructing a track object

Preparing the data

Used limma to find genes with changed expression after
differentiation

Obtained microRNA target sites from MiRBase, available
from microRNA package

Filtered the target sites for those near DE genes

Available as dataset in rtracklayer package

> library(rtracklayer)
> data(targets)

Managing Genomic Data (Tracks)
oce

Constructing a track object

Constructing the RangedData instance

@ Construct /Ranges instance holding the endpoints of each
target site

Managing Genomic Data (Tracks)
oce

Constructing a track object

Constructing the RangedData instance

@ Construct /Ranges instance holding the endpoints of each
target site

> targetRanges <- IRanges(targets$start, targets$end) \

Managing Genomic Data (Tracks)
oce

Constructing a track object

Constructing the RangedData instance

® Construct RangedData with ranges, strand, chromosome and
Ensembl transcript IDs

Managing Genomic Data (Tracks)
oce

Constructing a track object

Constructing the RangedData instance

® Construct RangedData with ranges, strand, chromosome and
Ensembl transcript IDs

> targetTrack <- with(targets,
+ GenomicData(targetRanges, target,

+ strand = strand,

+ chrom = chrom, genome = "hgl8"))

Managing Genomic Data (Tracks)
®0

Accessing feature information

Accessing built-in attributes

Each built-in feature attribute has a corresponding accessor
method: start, end, chrom, strand, genome

Example

> head(start (targetTrack))

[1] 7762840 11957570 91921292
[4] 86981576 54270236 195970022

<

@ Get the strand of each feature in the track

® Get the genome for the track

Managing Genomic Data (Tracks)
®0

Accessing feature information

Accessing built-in attributes

Each built-in feature attribute has a corresponding accessor
method: start, end, chrom, strand, genome

Exercises

® Get the strand of each feature in the track
> head(strand(targetTrack))

[1] + + - + - -
Levels: - + x

® Get the genome for the track

Managing Genomic Data (Tracks)
®0

Accessing feature information

Accessing built-in attributes

Each built-in feature attribute has a corresponding accessor
method: start, end, chrom, strand, genome

Exercises

@ Get the strand of each feature in the track
> head(strand (targetTrack))

[1] + + - + - -
Levels: - + x

® Get the genome for the track
> genome (targetTrack)

[1] "hg18"

Managing Genomic Data (Tracks)
oce

Accessing feature information

Accessing data columns

Any data column (including strand) is accessible via $ and [[.

Example

> head(targetTrack$target)

[1] ENST00000054666 ENST00000196061
[3] ENST00000212355 ENST00000212369
[5] ENST00000234831 ENST00000235453
34507 Levels: ENST00000000233 ...

Reconstruct (partially) the targets data.frame

Managing Genomic Data (Tracks)
oce

Accessing feature information

Accessing data columns

Any data column (including strand) is accessible via $ and [[.

Example
> head(targetTrack$target)

[1] ENST00000054666 ENST00000196061
[3] ENST00000212355 ENST00000212369
[56] ENST00000234831 ENST00000235453
34507 Levels: ENST00000000233 ...

Exercise

Reconstruct (partially) the targets data.frame

> data.frame(chrom = chrom(targetTrack),

+ start = start(targetTrack),

+ end = end(targetTrack),

+ strand = strand(targetTrack))

Managing Genomic Data (Tracks)
®0

Subsetting tracks

Overview of RangedData subsetting

Often need to subset track features and data columns

Example: limit the amount transferred to a genome browser

Matrix style: track[i, jJ], where i is feature index and j is
column index

By chromosome: track[i], where i indexes the chromosome

Managing Genomic Data (Tracks)
oce

Subsetting tracks

Subsetting examples and exercises

Examples

get the first 10 targets

first10 <- targetTrack[1:10,]

get pos strand targets

posTargets <- targetTrack[strand(targetTrack)=="+",]
get chromosome 1 features

>
>
>
>
>
> chriTargets <- targetTrack[1]

| \

Exercise

Subset the track for all features on the negative strand of
chromosome 2

Managing Genomic Data (Tracks)
oce

Subsetting tracks

Subsetting examples and exercises

Examples

get the first 10 targets

first10 <- targetTrack[1:10,]

get pos strand targets

posTargets <- targetTrack[strand(targetTrack)=="+",]
get chromosome 1 features

chriTargets <- targetTrack[1]

>
>
>
>
>
>

Subset the track for all features on the negative strand of
chromosome 2
> chr2 <- targetTrack(["2"]

> negChr2 <- chr2[strand(chr2) == "-",]

Managing Genomic Data (Tracks)
[2]

Exporting and importing tracks

Overview of import/export

e Supported formats
BED Browser Extended Display, display-oriented,
native format of UCSC
WIG Wiggle, sparse format for quantitative data
GFF General Feature Format (versions 1, 2, and 3),
general storage, popular at EBI

e Functions: import and export

e Extensible via plugin system

Managing Genomic Data (Tracks)
oce

Exporting and importing tracks

Import/export examples and exercises

Examples

> export (targetTrack, "targets.bed")

> restoredTrack <- import("targets.bed")

> ## as character vector

> targetChar <- export(targetTrack, format = "gff1")

Exercises
@ Output the track to a file in the “gff” format.
® Read the track back into R.

Managing Genomic Data (Tracks)
oce

Exporting and importing tracks

Import/export examples and exercises

Examples

> export (targetTrack, "targets.bed")

> restoredTrack <- import("targets.bed")

> ## as character vector

> targetChar <- export(targetTrack, format = "gff1")

Exercises
@ Output the track to a file in the “gff” format.
> export (targetTrack, "targets.gff")
® Read the track back into R.

| A\

A\

Managing Genomic Data (Tracks)
oce

Exporting and importing tracks

Import/export examples and exercises

> export (targetTrack, "targets.bed")

> restoredTrack <- import("targets.bed")

> ## as character vector

> targetChar <- export(targetTrack, format = "gff1")

Exercises
@ Output the track to a file in the “gff” format.
> export (targetTrack, "targets.gff")
® Read the track back into R.

> targetGff <- import("targets.gff",
+ genome = "hg18")

Interacting with a Genome Browser

Outline

© Interacting with a Genome Browser

Interacting with a Genome Browser

The genome browser interface

e rtracklayer interfaces with the UCSC genome browser

e Easily extended to support other browsers
e Workflow

@ Start a browser session

® Load one or more tracks

© Open one or more browser views of specific regions
@ Possibly download interesting annotations into R

Interacting with a Genome Browser
[I}

Starting and loading tracks into a session

Starting a browser session

> session <- browserSession("UCSC")

The session object is a BrowserSession instance. With a session
object, one may:

¢ Upload and download tracks to/from the genome browser
e Create browser views

The argument "UCSC" creates a session for the UCSC browser. To
list all supported browsers:

> genomeBrowsers ()

[1] "ucsc"

Interacting with a Genome Browser
oce

Starting and loading tracks into a session

Laying the target site track

Tracks may be loaded into a session with the track<-, [[<- and
$<- functions.

> track(session, "targets") <- targetTrack
> ## equivalently
> session$targets <- targetTrack

Lay a track with the first 100 features of targetTrack

Interacting with a Genome Browser
oce

Starting and loading tracks into a session

Laying the target site track

Tracks may be loaded into a session with the track<-, [[<- and
$<- functions.

> track(session, "targets'") <- targetTrack
> ## equivalently
> session$targets <- targetTrack

Lay a track with the first 100 features of targetTrack

> session$target100 <- targetTrack[1:100,]

Interacting with a Genome Browser
[Jelelele)

Displaying and configuring browser views

Choosing a region to view

e The range function returns an object representing the
genomic range of a track
e Assume we want to view a region around the first target site

@ Get the range of the first feature
@® Zoom out by a factor of 10

Interacting with a Genome Browser
[Jelelele)

Displaying and configuring browser views

Choosing a region to view

e The range function returns an object representing the
genomic range of a track
¢ Assume we want to view a region around the first target site
@ Get the range of the first feature

> region <- range(targetTrack([1,])

® Zoom out by a factor of 10

Interacting with a Genome Browser
[Jelelele)

Displaying and configuring browser views

Choosing a region to view

e The range function returns an object representing the
genomic range of a track
e Assume we want to view a region around the first target site

@ Get the range of the first feature
® Zoom out by a factor of 10

> region <- region * -10 \

Interacting with a Genome Browser
0®000

Displaying and configuring browser views

Creating a view

> view <- browserView(session, region) \

The view object is a BrowserView instance. With a view object,
one may:

o Change the currently visible region (pan/zoom)
* Change the visibility of tracks (show/hide)

Create a new view with the same region as view, except zoomed
out 2X.

Interacting with a Genome Browser
0®000

Displaying and configuring browser views

Creating a view

> view <- browserView(session, region)

The view object is a BrowserView instance. With a view object,
one may:

¢ Change the currently visible region (pan/zoom)
e Change the visibility of tracks (show/hide)

Create a new view with the same region as view, except zoomed
out 2X.

> viewOut <- browserView(session, range(view) * -2)

Interacting with a Genome Browser
00®00

Displaying and configuring browser views

A shortcut

All of the above in a single step:

> browseGenome (targetTrack,
+ range = range(targetTrack[1,]) * -10) J

A session is started, the track is loaded and a view is created
around the first target site.

Interacting with a Genome Browser
000®0

Displaying and configuring browser views

Changing view range

The range<- function sets a new visible range on a view.

> ## zoom in 2X
> range(view) <- range(view) * 2

Shift the view to the second target site

Interacting with a Genome Browser
000®0

Displaying and configuring browser views

Changing view range

The range<- function sets a new visible range on a view.

Example
> ## zoom in 2X
> range(view) <- range(view) * 2

Exercise

| A

Shift the view to the second target site

> range(view) <- range(targetTrack[2,]) * -5

Interacting with a Genome Browser
ooo0e

Displaying and configuring browser views

Changing track visibility

Tracks may be shown or hidden with the visible<- function.

> ## hide the Conservation track
> visible(view) ["Conservation"] <- FALSE

Make the “Ensembl Genes" track visible \

Interacting with a Genome Browser
ooo0e

Displaying and configuring browser views

Changing track visibility

Tracks may be shown or hidden with the visible<- function.

Example

> ## hide the Conservation track
> visible(view) ["Conservation"] <- FALSE

Exercise

| A

Make the “Ensembl Genes" track visible

> visible(view) ["Ensembl Genes'"] <- TRUE

N

Interacting with a Genome Browser
®0

The browser as a data resource

Overview

e Many browsers are built upon large databases
e Often want to incorporate the data into an R analysis
e For UCSC, this interacts with the table browser

Interacting with a Genome Browser
oe

The browser as a data resource

Retrieving browser tracks

@ List available tracks

® Download named track (e.g. “Conservation”) in currently
viewed region

Interacting with a Genome Browser
oe

The browser as a data resource

Retrieving browser tracks

@ List available tracks

> head(trackNames (session))
targets Base Position
"ct_targets" "ruler"
Chromosome Band STS Markers
"cytoBand" "stsMap"
FISH Clones Recomb Rate
"fishClones" "recombRate")

® Download named track (e.g. “Conservation”) in currently
viewed region

Interacting with a Genome Browser
oe

The browser as a data resource

Retrieving browser tracks

@ List available tracks

® Download named track (e.g. “Conservation"”) in currently
viewed region

cons <- track(session, "Conservation")

or specific region

cons <- track(session, "Conservation',
range (view) * 2)

shortcut
cons <- session$Conservation

vV V. + Vv Vv Vv

Conclusion

Outline

® Conclusion

Conclusion

Beyond rtracklayer

e rtracklayer operates in the context of genome browsers
e Bioconductor has other sources of annotations:

e The annotation packages
e biomaRt

Conclusion

Session in

> sessionInfo()

R version 2.9.0 Under development (unstable) (--)
i686-pc-linux-gnu

locale:
C

attached base packages:

[1] stats graphics grDevices
[4] utils datasets methods
[7] base

other attached packages:
[1] rtracklayer_1.3.7 RCurl_0.91-0

loaded via a namespace (and not attached):
[1] BSgenome_1.11.9

[2] Biostrings_2.11.18

[3] IRanges_1.1.33

[4] Matrix_0.999375-17

[5] XML_1.98-1

[6] grid_2.9.0

[7] lattice_0.17-20

[8] tools_2.9.0

	Outline
	Introduction
	Managing Genomic Data (Tracks)
	Constructing a track object
	Accessing feature information
	Subsetting tracks
	Exporting and importing tracks

	Interacting with a Genome Browser
	Starting and loading tracks into a session
	Displaying and configuring browser views
	The browser as a data resource

	Conclusion

