## ----eval=FALSE--------------------------------------------------------------- # devtools::install_github("jordimartorell/pathMED") ## ----eval=FALSE--------------------------------------------------------------- # if (!require("pak")) { # install.packages("pak")) # } # pak::pkg_sysreqs( # c("metrica", "factoextra", "FactoMineR"), # "ubuntu", "20.04" # ) ## ----message = FALSE, results='hide', warning=FALSE--------------------------- library(pathMED) data(pathMEDExampleData) customKEGG <- dissectDB(list(pathMEDExampleData), geneSets = "kegg") ## ----message = FALSE, warning=FALSE------------------------------------------- # Before splitting data(genesetsData) print(head(genesetsData[["kegg"]][["hsa04714"]])) # After splitting print(customKEGG[grep("hsa04714", names(customKEGG))]) ## ----message = FALSE, warning = FALSE----------------------------------------- library(pathMED) data(pathMEDExampleData) scoresExample <- getScores(pathMEDExampleData, geneSets = "kegg", method = "Z-score") print(scoresExample[1:5, 1:5]) ## ----message = FALSE---------------------------------------------------------- annotatedPathways <- ann2term(scoresExample) head(annotatedPathways) ## ----message=FALSE------------------------------------------------------------ data(pathMEDExampleMetadata) modelsList <- methodsML(algorithms = c("rf", "knn"), outcomeClass = "character") set.seed(123) trainedModel <- trainModel(scoresExample, metadata = pathMEDExampleMetadata, var2predict = "Response", positiveClass = "YES", models = modelsList, Koutter = 2, Kinner = 2, repeatsCV = 1 ) print(trainedModel) ## ----message=FALSE------------------------------------------------------------ data(refData) scoresExternal <- getScores(refData$dataset1, geneSets = "kegg", method = "Z-score" ) predictions <- predictExternal(scoresExternal, trainedModel) head(predictions) ## ----message = FALSE, results='hide', warning=FALSE--------------------------- data(refData) refObject <- buildRefObject( data = list( refData$dataset1, refData$dataset2, refData$dataset3, refData$dataset4 ), metadata = list( refData$metadata1, refData$metadata2, refData$metadata3, refData$metadata4 ), groupVar = "group", controlGroup = "Healthy_sample" ) ## ----eval=TRUE, warning=FALSE, message=FALSE, results='hide'------------------ refMscores <- mScores_createReference(refObject, geneSets = "tmod", cores = 1 ) ## ----warning=FALSE------------------------------------------------------------ relevantPaths <- mScores_filterPaths( MRef = refMscores, min_datasets = 3, perc_samples = 10 ) ## ----warning=FALSE------------------------------------------------------------ mScoresExample <- mScores_imputeFromReference( inputData = pathMEDExampleData, geneSets = relevantPaths, externalReference = refMscores, distance.threshold = 50 ) print(mScoresExample$Mscores[1:5, 1:5]) print(mScoresExample$Distances[1:5, ]) ## ----sessionInfo, echo=FALSE-------------------------------------------------- sessionInfo()