
Package ‘profileplyr’
April 1, 2025

Type Package

Title Visualization and annotation of read signal over genomic ranges
with profileplyr

Version 1.22.0

Date 2021-11-21

Author Tom Carroll and Doug Barrows

Maintainer
Tom Carroll <tc.infomatics@gmail.com>, Doug Barrows <doug.barrows@gmail.com>

Depends R (>= 3.6), BiocGenerics, SummarizedExperiment

Description
Quick and straightforward visualization of read signal over genomic intervals is key for generating
hypotheses from sequencing data sets (e.g. ChIP-seq, ATAC-seq, bisulfite/methyl-
seq). Many tools both inside
and outside of R and Bioconductor are available to explore these types of data, and they typi-
cally start
with a bigWig or BAM file and end with some representation of the signal (e.g. heatmap). pro-
fileplyr leverages
many Bioconductor tools to allow for both flexibility and additional functionality in work-
flows that end with
visualization of the read signal.

License GPL (>= 3)

RoxygenNote 7.2.1

biocViews ChIPSeq, DataImport, Sequencing, ChipOnChip, Coverage

Imports GenomicRanges, stats, soGGi, methods, utils, S4Vectors,
R.utils, dplyr, magrittr, tidyr, IRanges, rjson,
ChIPseeker,GenomicFeatures,TxDb.Hsapiens.UCSC.hg19.knownGene,TxDb.Hsapiens.UCSC.hg38.knownGene,TxDb.Mmusculus.UCSC.mm10.knownGene,
TxDb.Mmusculus.UCSC.mm9.knownGene,org.Hs.eg.db,org.Mm.eg.db,rGREAT,
pheatmap, ggplot2, EnrichedHeatmap, ComplexHeatmap, grid,
circlize, BiocParallel, rtracklayer, GenomeInfoDb, grDevices,
rlang, tiff, Rsamtools

Suggests BiocStyle, testthat, knitr, rmarkdown, png, Cairo

VignetteBuilder knitr

Encoding UTF-8

git_url https://git.bioconductor.org/packages/profileplyr

git_branch RELEASE_3_20

1

2 annotateRanges

git_last_commit efa2459

git_last_commit_date 2024-10-29

Repository Bioconductor 3.20

Date/Publication 2025-03-31

Contents
annotateRanges . 2
annotateRanges_great . 4
as_profileplyr . 5
BamBigwig_to_chipProfile . 5
clusterRanges . 7
convertToEnrichedHeatmapMat . 9
export_deepToolsMat . 10
generateEnrichedHeatmap . 11
generateProfilePlot . 15
gene_list_character . 16
gene_list_dataframe . 17
groupBy . 17
inherit_group_function . 19
K27ac_GRlist_hind_liver_top5000 . 20
orderBy . 21
params . 22
profileplyr-class . 22
sampleData . 23
subsetbyGeneListOverlap . 24
subsetbyRangeOverlap . 25
subset_GR_GL_common_top . 26
summarize . 27

Index 29

annotateRanges Annotate profileplyr ranges to genes using ChIPseeker

Description

The ranges from the deepTools matrix will be subset based on whether they overlap with specified
annotated regions (using ChIPseeker) throughout the genome

Usage

annotateRanges(
object = "profileplyr",
annotation_subset = "character",
TxDb,
annoDb = "character",
tssRegion = "numeric",
changeGroupToAnnotation = "logical",
heatmap_grouping = "character",

annotateRanges 3

...
)

S4 method for signature 'profileplyr'
annotateRanges(
object = "profileplyr",
annotation_subset = NULL,
TxDb = NULL,
annoDb = NULL,
tssRegion = c(-3000, 3000),
changeGroupToAnnotation = FALSE,
heatmap_grouping = "group",
...

)

Arguments

object A profileplyr object
annotation_subset

If specific annotations (from ChIPseeker package) are desired, specify them here
in a character vector. Can be one or any combination of "Promoter", "Exon",
"Intron", "Downstream", "Distal Intergenic", "3p UTR", or "5p UTR". This
argument is optional and all annotation types will be included if argument is left
out.

TxDb This must be either a TxDb object, a character string that is a path to a GTF file,
or character string indicating genome if one of the following - "hg19", "hg38",
"mm9", "mm10".

annoDb The annotation package to be used. If the ’TxDb’ argument is set to "hg19",
"hg38", "mm9", or "mm10" this will automatically be set and this can be left as
NULL.

tssRegion This needs to be a vector of two numbers that will define promoter regions.
The first number must be negative, while the second number must be positive.
Default values are c(-3000, 3000)

changeGroupToAnnotation

If the grouping should be changed to the annotations (typically when the ranges
will be exported for visualization based on this annotation), this should be TRUE.
The default if FALSE, which will keep the grouping that existed before annotat-
ing the object. This is typical if the output will be used for finding overlaps with
gene lists in the ’groupBy’ function.

heatmap_grouping

Only relevant if ’keepAnnotationAsGroup’ is set to TRUE. This argument needs
to be either "group", or "annotation". This will determine how the ranges are
grouped in the resulting object. Default is heatmap_grouping = "Group". If
there are no groups in the deepTools matrix that was used in the function, this
argument is unnecessary

... pass to annotatePeak

Details

tbd

4 annotateRanges_great

Value

A profileplyr object

Methods (by class)

• annotateRanges(profileplyr): Annotate profileplyr ranges to genes using ChIPseeker

Examples

library(SummarizedExperiment)
example <- system.file("extdata", "example_deepTools_MAT", package = "profileplyr")
object <- import_deepToolsMat(example)
object <- object[1:2, ,]

annotate ranges with genes using ChIPseeker
(NOTE: can choose subset of annotations with 'annotation_subset' argument)

annotateRanges(object, TxDb = "mm10")

annotateRanges_great Annotate profileplyr ranges to genes using rGREAT

Description

The ranges from the deepTools matrix will be subset based on whether they overlap with specified
annotated regions related to a user defined gene list.

Usage

annotateRanges_great(object = "profileplyr", species = "character", ...)

S4 method for signature 'profileplyr'
annotateRanges_great(object = "profileplyr", species = "character", ...)

Arguments

object A profileplyr object

species GREAT accepts "hg19", "mm10", "mm9", "danRer7" (zebrafish)

... pass to submitGreatJob

Details

tbd

Value

A profileplyr object

Methods (by class)

• annotateRanges_great(profileplyr): Annotate profileplyr ranges to genes using rGREAT

as_profileplyr 5

Examples

library(SummarizedExperiment)
example <- system.file("extdata", "example_deepTools_MAT", package = "profileplyr")
object <- import_deepToolsMat(example)
object <- object[1:5, ,]

annotate ranges with genes using GREAT with following command:
annotateRanges_great(object, species = "mm10")

as_profileplyr Import ChIPprofile object to profileplyr

Description

Function to convert soGGi ChIPprofile objects to profileplyr object .

Usage

as_profileplyr(chipProfile, names = NULL)

Arguments

chipProfile A ChIPprofile object as created by soGGi regionPlot() function.

names Column to select row IDs/names from ChIPprofile mcols.

Value

A profileplyr object

Examples

library(soGGi)
data("ik_Profiles")
proplyr <- as_profileplyr(ik_Profiles,names="ID")
export_deepToolsMat(proplyr,con=file.path(tempdir(),"ik_Profiles.MAT"))

BamBigwig_to_chipProfile

BamBigwig_to_chipProfile

Description

Generate a soGGi ChIPprofile object with multiple BAM/bigWig files or multiple BED files as the
input

6 BamBigwig_to_chipProfile

Usage

BamBigwig_to_chipProfile(
signalFiles,
testRanges,
format,
style = "percentOfRegion",
nOfWindows = 100,
bin_size = 20,
distanceAround = NULL,
distanceUp = 1000,
distanceDown = 1000,
...,
quant_params = NULL

)

Arguments

signalFiles paths to either BAM files or bigwig files. More than one path can be in this
character vector, but all paths in one function call must point to be either all
BAM files or all bigWig files, not a combination of the two.

testRanges A character vector with paths to BED files.

format character string of "bam", "bigwig", "RleList" or "PWM"

style a character string, "percentOfRegion" (default) for normalized length divided
into bins set by the ’nOfWindows’ argument, "point" for per base pair plot where
the number of base pairs per bin is set by the ’bin_size’ argument, and "region"
for combined plot

nOfWindows The number of windows/bins the normalised ranges will be divided into if ’style’
is set to ’percentOfRegion’. Default is 100.

bin_size If ’style’ is set to ’point’ then this will determine the size of each bin over which
signal is quantified. The default is 20 base pairs.

distanceAround This controls the distance around the region that is included. If ’style’ is ’per-
centOfRegion’, then the default is 100, meaning that a distance equal to 100
percent of that particular region on either side of the region will be included in
the heatmap. If ’style’ is ’point’,then this is the number of basepairs from the
center of each range, in either direction, that the heatmap will show. If style is
’point’ and ’distanceAround’ is NULL, then distanceUp and distanceDown will
be used.

distanceUp If ’style’ is set to ’point’ then this will determine the distance (in base pairs)
upstream from the center of each peak signal will be quantified. If the ’dis-
tanceAround’ argument is set (i.e. not NULL), that will be used for the quantifi-
cation range and ’distanceUp will be ignored.

distanceDown If ’style’ is set to ’point’ then this will determine the distance (in base pairs)
downstream from the center of each peak signal will be quantified. If the ’dis-
tanceAround’ argument is set (i.e. not NULL), that will be used for the quantifi-
cation range and ’distanceDown’ will be ignored.

... pass to regionPlot() within the soGGi package

quant_params An optional BiocParallelParam instance determining the parallel back-end
to be used during evaluation. When this argument is set to NULL (default)
SerialParam() will be used. For parallelization, MulticoreParam() can be used.

clusterRanges 7

Value

A profileplyr object

Examples

signalFiles <- c(system.file("extdata",
"Sorted_Hindbrain_day_12_1_filtered.bam",
package = "profileplyr"))

require(Rsamtools)
for (i in seq_along(signalFiles)){
indexBam(signalFiles[i])

}
testRanges <- system.file("extdata",

"newranges_small.bed",
package = "profileplyr")

BamBigwig_to_chipProfile(signalFiles,
testRanges,
format = "bam",
paired=FALSE,
style="percentOfRegion",
)

clusterRanges Cluster Ranges

Description

Cluster the ranges in a deepTools object based on signal within each range

Usage

clusterRanges(
object = "profileplyr",
fun = "function",
scaleRows = "logical",
kmeans_k = "integer",
clustering_callback = "function",
clustering_distance_rows = "ANY",
cluster_method = "function",
cutree_rows = "integer",
silent = "logical",
show_rownames = "logical",
cluster_sample_subset = "ANY"

)

S4 method for signature 'profileplyr'
clusterRanges(
object = "profileplyr",
fun = rowMeans,
scaleRows = TRUE,
kmeans_k = NULL,
clustering_callback = function(x, ...) {

8 clusterRanges

return(x)
},
clustering_distance_rows = "euclidean",
cluster_method = "complete",
cutree_rows = NULL,
silent = TRUE,
show_rownames = FALSE,
cluster_sample_subset = NULL

)

Arguments

object A profileplyr object

fun The function used to summarize the ranges (e.g. rowMeans or rowMax). This
is ignored when only one sample is used for clustering; in this case the lone
heatmap is clustered based the signal across the bins.

scaleRows If TRUE, the rows of the matrix containing the signal in each bin that is used as
the input for clustering will be scaled (as specified by pheatmap)

kmeans_k The number of kmeans groups used for clustering
clustering_callback

Clustering callback function to be passed to pheatmap
clustering_distance_rows

distance measure used in clustering rows. Possible values are "correlation" for
Pearson correlation and all the distances supported by dist, such as "euclidean",
etc. If the value is none of the above it is assumed that a distance matrix is
provided.

cluster_method clustering method used. Accepts the same values as hclust

cutree_rows The number of clusters for hierarchical clustering

silent Whether or not a heatmap (from pheatmap) is shown with the output. This will
not change what is returned with the function as it will always be a profileplyr
object. If silent = FALSE, the heatmap will be shown which may be helpful in
quick evaluation of varying numbers of clusters before proceeding with down-
stream analysis. The default is silent = TRUE, meaning no heatmap will be
shown.

show_rownames for any heatmaps printed while running this function, set to TRUE if rownames
should be displayed. Default is FALSE.

cluster_sample_subset

Either a character or numeric vector indicating the subset of heatmaps to be used
for clustering. If a character vector, all elements of the vector must match names
of the samples of the profileplyr object (found with ’rownames(sampleData(object))’).
For an numeric vector, the profileplyr object will be subset based on the sam-
ples that correspond to these numbers (i.e. the numeric index of that sample
within ’rownames(sampleData(object))’). When only sample is chosen, the lone
heatmap selected will be clustered by signal across the bins of that sample.
When more than one sample are selected, the ’fun’ argument will be used to
summarize the ranges and cluster across these selected samples.

Details

tbd

convertToEnrichedHeatmapMat 9

Value

A profileplyr object

Methods (by class)

• clusterRanges(profileplyr): Cluster Ranges

Examples

example <- system.file("extdata", "example_deepTools_MAT", package = "profileplyr")
object <- import_deepToolsMat(example)

k-means clustering
clusterRanges(object, fun = rowMeans, kmeans_k = 3)

hierarchical clustering, print heatmap, yet still return profileplyr object
clusterRanges(object, fun = rowMeans, cutree_rows = 3, silent = FALSE)

convertToEnrichedHeatmapMat

export a profileplyr object to a list of matrices that can be used as an
input for EnrichedHeatmap

Description

export a profileplyr object to a list of matrices that can be used as an input for EnrichedHeatmap

Usage

convertToEnrichedHeatmapMat(object = "profileplyr", sample_names = "character")

S4 method for signature 'profileplyr'
convertToEnrichedHeatmapMat(object = "profileplyr", sample_names = NULL)

Arguments

object A profileplyr object

sample_names A character vector that will set the names of the heatmap components that are
generated from the profileplyr assays() matrices. This argument is optional,
by default the names will be the name of the samples in the profileplyr object
rownames(sampleData(object)).

Details

Takes a profileplyr object and converts all of the matrices in the assays() section of the object to
matrices that can be used as an input for EnrichedHeatmap

Value

A list of normalized matrices that can be used for generating visualizations with EnrichedHeatmap

10 export_deepToolsMat

Methods (by class)

• convertToEnrichedHeatmapMat(profileplyr): export a profileplyr object to a list of ma-
trices that can be used as an input for EnrichedHeatmap

Examples

example <- system.file("extdata", "example_deepTools_MAT", package = "profileplyr")
object <- import_deepToolsMat(example)

library(EnrichedHeatmap)
EH_mat <- convertToEnrichedHeatmapMat(object)
EnrichedHeatmap(EH_mat[[1]], name = names(EH_mat[1]), column_title = names(EH_mat[1]))

export_deepToolsMat Export and import profileplyr from/to deeptools

Description

Export and Import files

Usage

export_deepToolsMat(
object = "profileplyr",
con = "character",
decreasing = "logical",
overwrite = "logical"

)

S4 method for signature 'profileplyr'
export_deepToolsMat(
object = "profileplyr",
con = "character",
decreasing = FALSE,
overwrite = FALSE

)

import_deepToolsMat(con)

Arguments

object A profileplyr object

con Connection to write/read deeptools data to/from.

decreasing If object@params$mcolToOrderBy has been set and not NULL, then the ranges
will be ordered by the column indicated in this slot of the metadata. By default,
the order will be increasing for the factor or numeric value. For decreasing order,
choose decreasing = TRUE.

overwrite Logical specifying whether to overwrite output if it exists.

generateEnrichedHeatmap 11

Details

A profileplyr object

Value

The path to deepTools matrix file

A profileplyr object

Methods (by class)

• export_deepToolsMat(profileplyr): Export and import profileplyr from/to deeptools

Examples

example <- system.file("extdata", "example_deepTools_MAT", package = "profileplyr")
object <- import_deepToolsMat(example)
export_deepToolsMat(object,file.path(tempdir(),"ATAC_Example.MAT"))

generateEnrichedHeatmap

generateEnrichedHeatmap

Description

export a profileplyr object directly to an object of the EnrichedHeatmap class

Usage

generateEnrichedHeatmap(
object,
include_group_annotation = TRUE,
extra_annotation_columns = NULL,
sample_names = NULL,
return_ht_list = FALSE,
ylim = "common_max",
top_anno_height = unit(2, "cm"),
samples_to_sortby = NULL,
decreasing = FALSE,
all_color_scales_equal = TRUE,
matrices_color = NULL,
color_by_sample_group = NULL,
matrices_pos_line = FALSE,
matrices_pos_line_gp = gpar(lty = 2),
top_anno_axis_font = gpar(fontsize = 8),
matrices_column_title_gp = gpar(fontsize = 8, fontface = "bold"),
matrices_axis_name = NULL,
matrices_axis_name_gp = gpar(fontsize = 8),
group_anno_color = NULL,
group_anno_width = 3,
group_anno_row_title_gp = gpar(fontsize = 10),
group_anno_column_names_gp = gpar(fontsize = 10),

12 generateEnrichedHeatmap

extra_anno_color = vector(mode = "list", length = length(extra_annotation_columns)),
extra_anno_top_annotation = TRUE,
extra_anno_width = (rep(6, length(extra_annotation_columns))),
only_extra_annotation_columns = FALSE,
gap = 2,
genes_to_label = NULL,
gene_label_font_size = 6,
show_heatmap_legend = NULL,
legend_params = list(),
use_raster = length(object) > 2000,
raster_device = "CairoPNG",
raster_quality = 2,
raster_device_param = list()

)

Arguments

object A profileplyr object
include_group_annotation

If TRUE (default value) then the Heatmap will be grouped based on the range
metadata column specified by ’rowGroupsInUse’

extra_annotation_columns

A character vector of names that match column names of mcols(object). Extra
annotation columns will be added to the heatmap based on the values of these
indicated range metadata columns.

sample_names A character vector that will set the names of the heatmap components that are
generated from the profileplyr assays() matrices. This argument is optional,
by default the names will be the name of the samples in the profileplyr object
rownames(sampleData(object)).

return_ht_list Whether the returned object is the heatmap list and not the actual figure. This
will be a list of the various components (heatmaps and annotation columns) that
can be added to with additional columns in a customized manner.

ylim A numeric vector of two numbers that specifies the minimum and maximum of
the yaxis of all the heatmaps generated for the matrices. The default is to use
the max of the heatmap with the highest signal (ylim = ’common_max’). If ylim
= NULL, different ranges will be inferred for each heatmap. If ylim is a single
numeric vector, then that range will be used for all heatmaps. Different ranges
can be set for each heatmap by making ylim a list that is the same length as
the number of heatmaps/matrices, with each element of the list corresponding to
each heatmap. Lastly, ylim can be a character string matching a column name
in sampleData(object), and this will make the heatmaps with the same grouping
have the same ylims as determined by the common max within groups.

top_anno_height

The height (as a unit object) of the top annotation of all heatmaps representing
the matrices

samples_to_sortby

Only relevant if object@params$mcolToOrderBy is NULL (i.e it hasn’t been
changed), meaning that the rows are sorted by the mean signal of all heatmaps.
This argument allows sorting by the mean of a subset of samples, and should
be either a character or numeric vector. If numeric, then the samples/matrices
that have that index in the profileplyr object will be used to order the rows of

generateEnrichedHeatmap 13

the heatmap. If a character vector, then the elements must match the name of
a sample in the object (rownames(sampleData(object))), and these samples will
be used to order the heatmap.

decreasing If object@params$mcolToOrderBy has been changed and is not NULL, then
the ranges will be ordered by the column indicated in this slot of the metadata.
By default, the order will be increasing for the factor or numeric value. For
decreasing order, choose decreasing = TRUE.

all_color_scales_equal

If TRUE (default value) then the same color scale will be used for each separate
heatmap. If FALSE, color scales will be inferred for each heatmap as indicated
by the legends.

matrices_color Either a single character vector, a numeric vector, a function call to colorRamp2
from the circlize package, or a list. For anything but a list, all the heatmaps
generated for the matrices of the profileplyr object will be the same and will
be colored as specified here. The character and numeric vector inputs must
be either two or three elements in length (denoting color progressions - three
elements will give a middle color break), and each element must be a character
string or number that points to a color. By default, numeric vectors use the
colors in palette(), however this can be expanded with other R color lists(e.g.
colors()). If this argument is a list then it’s length must equal the number of
matrices/samples that exist in the input profileplyr object. The components of
the list can be either a numeric vector, character vector, or color function (they
do not have to all be the same type of specification). Each element in the list
will be the color mapping to the corresponding element in the profileplyr object.

color_by_sample_group

A character vector that is identical to a column name in sampleData(object), and
if set, the heatmaps will be colored based on that column (should be a factor, if
not it will be converted to one)

matrices_pos_line

A logical for whether to draw a vertical line(s) at the position of the target (for
both a single point or a window). Default is true.

matrices_pos_line_gp

Graphics parameters for the vertical position lines. Should be set with the gpar()
function from the grid() package.

top_anno_axis_font

The fontsize of the y-axis labels for the top annotation of all heatmaps repre-
senting the matrices

matrices_column_title_gp

Graphics parameters for the titles on top of each range/matrix. Should be set
with the gpar() function from the grid() package.

matrices_axis_name

Names for axis which is below the heatmap. For profileplyr object made from
BamBigwig_to_chipProfile/as_profileplyr functions, the names will be of length
three, with the middle point being the midpoint of each range. If the profile-
plyr object was made from a deeptools matrix with import_deepToolsMat(),
the names will be length three if matrix was generated with ’computeMatrix
reference-point’, or length of four if matrix was generated with ’computeMatrix
scale-regions’ corresponding to upstream, start of targets, end of targets and
downstream (or length of two if no upstream/downstream included).

matrices_axis_name_gp

Graphics parameters for the text on the x-axis of each matrix heatmap. Should
be set with the gpar() function from the grid() package.

14 generateEnrichedHeatmap

group_anno_color

This will specify colors for the grouping column if the ’include_group_annotation’
argument is set to TRUE. Since the group column of the range metadata should
always be a discrete value, this should be either a numeric vector or character
vector with color names. By default, numeric vectors use the colors in palette(),
however this can be expanded with other R color lists(e.g. colors()). The length
of this vector must equal the number of groups.

group_anno_width

A numeric value that is used to will set the width of the column bar (in mm using
the unit() function from the grid package) for the grouping annotation column.

group_anno_row_title_gp

Graphics parameters for the labels of the groups on the side of the heatmap.
Should be set with the gpar() function from the grid() package.

group_anno_column_names_gp

Graphics parameters for the label of the grouping annotation column. Should be
set with the gpar() function from the grid() package.

extra_anno_color

This will specify colors for the annotation columns added by the ’extra_annotation_columns’
argument. This must be a list that is of equal length to the ’extra_annotation_columns’
argument. Each element of this list will be used to specify the color scheme for
the corresponding element of the ’extra_annotation_columns’ vector. If an ele-
ment is NULL, the default colors will be used for the column annotation. For a
column with discrete variables this will typically be a vector of numbers or a vec-
tor of color names. By default, numeric vectors use the colors in palette(), how-
ever this can be expanded with other R color lists(e.g. colors()). For columns
with continuous variables, this can also be a a vector of numbers or a vector of
color names to signify the color progression, or it can be color mapping function
using colorRamp2() from the circlize package.

extra_anno_top_annotation

This is a logical vector that determines whether annotation plots are shown on
top of the heatmaps for the extra annotations. This must either be a length of
1, in which case all of the heatmaps will abide by this value. Otherwise this
must be a vector of equal length to the ’extra_annotation_columns’ argument
and the elements of this vector will correspond to the equivalent elements in
’extra annotation_columns’

extra_anno_width

This will set the width of the individual extra annotation columns on the right
side of the figure. This must be a numeric vector with each element setting the
width for the corresponding element in the ’extra_annotation_columns’ argu-
ment.

only_extra_annotation_columns

If set to TRUE, only the heatmaps representing the extra annotation columns
will be shown, and the range based heatmaps from the assay matrices will be
excluded.

gap The size of the gap between heatmaps and annotations. Only relevant if re-
turn_ht_list = FALSE

genes_to_label A character vector of gene symbols that should match character strings in the
’SYMBOL’ column that results from either ’annotateRanges’ or ’annotateRanges_great’.
Genes that are both in this vector and in the ’SYMBOL’ column will be labeled
on the heatmap.

generateProfilePlot 15

gene_label_font_size

The size of the text for the labels for genes specified in ’genes_to_label’ argu-
ment.

show_heatmap_legend

A logical vector with each position corresponding to each matrix heatmap (not
including the ’extra_annotation_columns’) that determines whether a legend is
produced for that heatmap. By default a single legend is made if all heatmaps
use the same color scale, or separate legends are made for each matrix heatmap
if the scales are different.

legend_params A list that contains parameters for the legend. See color_mapping_legend-ColorMapping-method
for all available parameters.

use_raster Whether render the heatmap body as a raster image. It helps to reduce file size
when the matrix is huge.

raster_device Graphic device which is used to generate the raster image. Options are "png",
"jpeg", "tiff", "CairoPNG", "CairoJPEG", "CairoTIFF"

raster_quality A value set to larger than 1 will improve the quality of the raster image.

raster_device_param

A list of further parameters for the selected graphic device. For raster image sup-
port, please check https://jokergoo.github.io/ComplexHeatmap-reference/
book/a-single-heatmap.html#heatmap-as-raster-image .

Details

Takes a profileplyr object and generates a heatmap that can be annotated by group or by range
metadata columns of the profileplyr object

Value

By default a customized version of a heatmap from EnrichedHeatmap, if return_ht_list = TRUE then
a heatmap list is returned that can be modified and then entered as an input for the EnrichedHeatmap
function

Examples

example <- system.file("extdata", "example_deepTools_MAT", package = "profileplyr")
object <- import_deepToolsMat(example)

generateEnrichedHeatmap(object, include_group_annotation = FALSE)

generateProfilePlot Import ChIPprofile object to profileplyr

Description

Function to convert soGGi ChIPprofile objects to profileplyr object .

https://jokergoo.github.io/ComplexHeatmap-reference/book/a-single-heatmap.html#heatmap-as-raster-image
https://jokergoo.github.io/ComplexHeatmap-reference/book/a-single-heatmap.html#heatmap-as-raster-image

16 gene_list_character

Usage

generateProfilePlot(
object,
sampleNames = rownames(sampleData(object)),
colorGroup = params(object)$rowGroupsInUse,
colorlist = NULL,
facet_nrow = 1,
facet_ncol = NULL,
facet_scales = "fixed"

)

Arguments

object A profileplyr object
sampleNames The names used to label the samples in the profileplyr object. By default, the

names stored in rownames(sampleData(object)) are used.
colorGroup The name of the column in mcols(object) that will be used for color grouping

in the plot. By default the column name in params(object)$rowGroupsInUse is
used. If this column is not a factor variable, then it will be converted into one.

colorlist A vector containing the colors to be used. The positions in the vector will be
matched with the levels of the factor variable chosen in the ’colorGroup’ argu-
ment.

facet_nrow The number of rows when making the plot panels. This argument is passed to
’nrow’ of the ggplot2 function facet_wrap.

facet_ncol The number of columns when making the plot panels. This argument is passed
to ’ncol’ of the ggplot2 function facet_wrap.

facet_scales Whether the scales of all plot panels should be fixed ("fixed", default), free
("free"), or free in one dimension ("free_x" or "free_y"). This argument is
passed to ’scales’ of the ggplot2 function facet_wrap.

Value

A profileplyr object

Examples

example <- system.file("extdata", "example_deepTools_MAT", package = "profileplyr")
object <- import_deepToolsMat(example)

generateProfilePlot(object)

gene_list_character Character vector of the top differentially expressed genes from hind-
brain versus liver as measured by RNA-seq

Description

This dataset contains a character vector of the top differenetially expressed genes in the hindbrain
versus liver as measured by RNA-seq (both genes that go up and those that go down). Data was
downloaded from ENCODE.

gene_list_dataframe 17

Usage

data(gene_list_character)

Details

• gene_list_character

Value

A character vector of the top differentially expressed genes in the hindbrain versus liver as measured
by RNA-seq/

gene_list_dataframe Dataframe of top differentially expressed genes from hindbrain versus
liver as measured by RNA-seq

Description

This dataset contains a dataframe of the top differentially expressed genes in the hindbrain versus
liver as measured by RNA-seq (both genes that go up and those that go down). The gene names are
the rownames, and the first column is the ’stat’ column from DESeq2. Data was downloaded from
ENCODE.

Usage

data(gene_list_dataframe)

Details

• gene_list_dataframe

Value

A dataframe of top differentially expressed genes from hindbrain versus liver as measured by RNA-
seq/

groupBy group the rows and ranges of the profileplyr object

Description

group the rows and ranges of the profileplyr object

18 groupBy

Usage

groupBy(
object = "profileplyr",
group = "ANY",
GRanges_names = "character",
levels = "ANY",
include_nonoverlapping = "logical",
separateDuplicated = "logical",
inherit_groups = "logical"

)

S4 method for signature 'profileplyr'
groupBy(
object = "profileplyr",
group = "ANY",
GRanges_names = NULL,
levels = NULL,
include_nonoverlapping = FALSE,
separateDuplicated = TRUE,
inherit_groups = FALSE

)

Arguments

object A profileplyr object

group How the ranges will be grouped. If this is a character string, then it must match
a column name of the range metadata, and this column will be used for grouping
of any exported deepTools matrix. If this is a GRanges, or GRangesList, then
the ranges will be subset based on overlap with these GRanges. If this is a list,
each element should contain ether 1) a character vector of genes, and ranges will
be subset based on overlap with these genes, as determined by the annotations
made by annotateRanges() or annotateRanges_great() functions, or 2) a data
frame with the gene symbols as the rownames. Any additional columns of this
dataframe will be added to the range metadata.

GRanges_names The names of the GRanges that were used for the "GRanges" argument. This
will be used to label these groups in the construction of the resulting profileplyr
object.

levels This will set the levels of the grouping column set by ’rowGroupsInUse’ (if the
grouping column is not a factor, it will be converted to one). If levels are not
provided, they will remain unchanged if the grouping column was already a
factor, or will use default leveling (e.g. alphabetical) if grouping column is not
already a factor variable.

include_nonoverlapping

A logical argument, if FALSE (default) the regions from the original deepTools
matrix that do not overlap with the user defined regions will be left out of the
returned profileplyr object.

separateDuplicated

A logical argument, if TRUE (default) then regions that overlap multiple in-
puts to ’GRanges’ argument will be separated and made into their own group.
All possible combinations of region overlaps will be tested, so it is not recom-
mended to have more than 3 groups if this option is TRUE. If FALSE, then

inherit_group_function 19

regions that overlap each individual ’GRanges’ input will be in the output, and
if one region overlaps multiple ’GRanges’ inputs, then it will be duplicated in
the output and will show up in the section for each group.

inherit_groups A logical whether that groups the exist in the profileplyr object in the ’object’
argument should be included in the default grouping scheme for the output ob-
ject of this function. The default is TRUE. If false, only the GRanges or gene
list overlap annotation will be used for heatmap grouping.

Details

Takes a SE object and groups rows

Value

A profileplyr object

Methods (by class)

• groupBy(profileplyr): group the rows and ranges of the profileplyr object

Examples

group by gene list or list of data frames with genes as rownames
not shown here but see vignette for grouping by gene lists

group by GRanges

example <- system.file("extdata", "example_deepTools_MAT", package = "profileplyr")
object <- import_deepToolsMat(example)
data("K27ac_GRlist_hind_liver_top5000") # load pre-made GRanges
K27ac_groupByGR <- groupBy(object, group = K27ac_GRlist_hind_liver_top5000)

switch rowGroupsInUse

switchGroup <- groupBy(K27ac_groupByGR, group = "GR_overlap_names")
params(switchGroup)$rowGroupsInUse

inherit_group_function

Redundant code for inheriting grouping wrapped into subset-
byRangeOverlap() or subsetbyGeneListOverlap() functions

Description

Redundant code for inheriting grouping wrapped into subsetbyRangeOverlap() or subsetbyGeneLis-
tOverlap() functions

Usage

inherit_group_function(object, rowGroupsInUse_input, type, separateDuplicated)

20 K27ac_GRlist_hind_liver_top5000

Arguments

object A profileplyr object
rowGroupsInUse_input

the inherited rowGroupsInUse

type Either "GR" for subsetbyRangeOverlap() function or "GL" for subsetbyGeneLis-
tOverlap() function

separateDuplicated

A logical argument, if TRUE then regions that overlap multiple inputs to ’GRanges’
argument will be separated and made into their own group. All possible com-
binations of region overlaps will be tested, so it is not recommended to have
more than 3 groups if this option is TRUE. If FALSE, then regions that overlap
each individual ’GRanges’ input will be in the output, and if one region overlaps
multiple ’GRanges’ inputs, then it will be duplicated in the output and will show
up in the section for each group.

Details

tbd

Value

A profileplyr object

K27ac_GRlist_hind_liver_top5000

GRangesList of the top 5000 H3K27ac peaks from hindbrain and liver
downloaded from ENCODE

Description

This dataset contains a GRangesList of the H3K27ac peaks in either the hindbrain or the liver with
the highest signal. Data was downloaded from ENCODE.

Usage

data(K27ac_GRlist_hind_liver_top5000)

Details

• K27ac_GRlist_hind_liver_top5000

Value

A GRangesList of the top 5000 H3K27ac peaks from hindbrain and liver downloaded from EN-
CODE/

orderBy 21

orderBy choose the column by which to order the ranges by within each group

Description

choose the column by which to order the ranges by within each group

Usage

orderBy(object = "profileplyr", column = "ANY")

S4 method for signature 'profileplyr'
orderBy(object = "profileplyr", column = "ANY")

Arguments

object A profileplyr object

column Which column of mcols(proplyrObject) should be used for ordering the ranges.
If NULL removes any previous setting for row ordering.

Details

Takes a profileplyr object and orders the rows based on a user defined metadata column of rowRanges

Value

A profileplyr object

Methods (by class)

• orderBy(profileplyr): choose the column by which to order the ranges by within each
group

Examples

example <- system.file("extdata", "example_deepTools_MAT", package = "profileplyr")
object <- import_deepToolsMat(example)

library(SummarizedExperiment)
cluster <- clusterRanges(object, fun = rowMeans, cutree_rows = 3)
cluster_order <- orderBy(cluster, column = "hierarchical_order")
params(cluster_order)$mcolToOrderBy

22 profileplyr-class

params Retrieve and set parameters in profileplyr object

Description

Retrieve and set parameters in profileplyr object

Usage

params(object)

Arguments

object A profileplyr object

Value

A list containing parameters for profileplyr object.

Examples

example <- system.file("extdata", "example_deepTools_MAT", package = "profileplyr")
object <- import_deepToolsMat(example)
params(object)

profileplyr-class Join, subset and manipulate ChIPprofile objects

Description

Join, subset and manipulate ChIPprofile objects

Usage

S4 method for signature 'profileplyr'
c(x, ...)

S4 method for signature 'profileplyr,ANY,ANY,ANY'
x[i, j, k, ..., drop = FALSE]

Arguments

x profileplyr object

... Additional arguments.

i An integer or character scalar indicating ranges of profileplyr object to return

j An integer or character scalar indicating columns of profileplyr object to return
or a An integer or character scalar indicating which profileplyr object samples
to return

k An integer or character scalar indicating samples of profileplyr object to return.

drop A logical whether to drop empty samples

sampleData 23

Value

A profileplyr object

sampleData Retrieve and set sample data in profileplyr object

Description

Retrieve and set sample data in profileplyr object

Usage

sampleData(object = "profileplyr")

S4 method for signature 'profileplyr'
sampleData(object = "profileplyr")

sampleData(object) <- value

S4 replacement method for signature 'profileplyr,DataFrame'
sampleData(object) <- value

Arguments

object A profileplyr object

value DataFrame of sample information

Value

A DataFrame containing sample data

A DataFrame containing sample data to replace current sample data

Examples

example <- system.file("extdata", "example_deepTools_MAT", package = "profileplyr")
object <- import_deepToolsMat(example)
sampleData(object)
sampleData(object)$scale <- c(1,10,1)

24 subsetbyGeneListOverlap

subsetbyGeneListOverlap

Subset ranges based on overlap with lists of Gene sets

Description

The ranges from the deepTools matrix will be subset based on whether they overlap with user
defined gene sets

Usage

subsetbyGeneListOverlap(
object,
group,
include_nonoverlapping = FALSE,
separateDuplicated = TRUE,
inherit_groups = FALSE

)

Arguments

object A profileplyr object
group How the ranges will be grouped. If this is a character string, then it must match

a column name of the range metadata, and this column will be used for grouping
of any exported deepTools matrix. If this is a GRanges, or GRangesList, then
the ranges will be subset based on overlap with these GRanges. If this is a list,
each element should contain ether 1) a character vector of genes, and ranges will
be subset based on overlap with these genes, as determined by the annotations
made by annotateRanges() or annotateRanges_great() functions, or 2) a data
frame with the gene symbols as the rownames. Any additional columns of this
dataframe will be added to the range metadata.

include_nonoverlapping

A logical argument, if FALSE the regions from the original deepTools matrix
that do not overlap with the user defined regions will be left out of the returned
profileplyr object.

separateDuplicated

A logical argument, if TRUE (default) then regions that overlap multiple in-
puts to ’GRanges’ argument will be separated and made into their own group.
All possible combinations of region overlaps will be tested, so it is not recom-
mended to have more than 3 groups if this option is TRUE. If FALSE, then
regions that overlap each individual ’GRanges’ input will be in the output, and
if one region overlaps multiple ’GRanges’ inputs, then it will be duplicated in
the output and will show up in the section for each group.

inherit_groups A logical whether that groups the exist in the profileplyr object in the ’object’
argument should be included in the default grouping scheme for the output ob-
ject of this function. The default is TRUE. If false, only the gene list overlap
annotation will be used for heatmap grouping.

Details

tbd

subsetbyRangeOverlap 25

Value

A profileplyr object

Examples

see the groupby function within profileplyr for examples

subsetbyRangeOverlap Subset ranges based on overlap with a GRanges object

Description

The ranges from the deepTools matrix will be subset based on whether they overlap with user
defined ranges

Usage

subsetbyRangeOverlap(
object,
group,
GRanges_names = NULL,
include_nonoverlapping = FALSE,
separateDuplicated = TRUE,
inherit_groups = FALSE

)

Arguments

object A profileplyr object

group How the ranges will be grouped. If this is a character string, then it must match
a column name of the range metadata, and this column will be used for grouping
of any exported deepTools matrix. If this is a GRanges, or GRangesList, then
the ranges will be subset based on overlap with these GRanges. If this is a list,
each element should contain ether 1) a character vector of genes, and ranges will
be subset based on overlap with these genes, as determined by the annotations
made by annotateRanges() or annotateRanges_great() functions, or 2) a data
frame with the gene symbols as the rownames. Any additional columns of this
dataframe will be added to the range metadata.

GRanges_names The names of the GRanges that were used for the "GRanges" argument. This
will be used to label these groups in the construction of the resulting profileplyr
object.

include_nonoverlapping

A logical argument, if FALSE the regions from the original deepTools matrix
that do not overlap with the user defined regions will be left out of the returned
profileplyr object.

separateDuplicated

A logical argument, if TRUE then regions that overlap multiple inputs to ’GRanges’
argument will be separated and made into their own group. All possible com-
binations of region overlaps will be tested, so it is not recommended to have

26 subset_GR_GL_common_top

more than 3 groups if this option is TRUE. If FALSE, then regions that overlap
each individual ’GRanges’ input will be in the output, and if one region overlaps
multiple ’GRanges’ inputs, then it will be duplicated in the output and will show
up in the section for each group.

inherit_groups A logical whether that groups the exist in the profileplyr object in the ’object’
argument should be included in the default grouping scheme for the output ob-
ject of this function. The default is TRUE. If false, only the GRanges overlap
annotation will be used for heatmap grouping.

Details

tbd

Value

A profileplyr object

Examples

see the groupby function within profileplyr for examples

subset_GR_GL_common_top

Redundant code wrapped into subsetbyRangeOverlap() or subsetby-
GeneListOverlap() functions

Description

Redundant code wrapped into subsetbyRangeOverlap() or subsetbyGeneListOverlap() functions

Usage

subset_GR_GL_common_top(object, overlap, input_names, type, separateDuplicated)

Arguments

object A profileplyr object

overlap hits object from subsetByOverlap function

input_names names of either the gene list of the granges that go into function

type Either "GR" for subsetbyRangeOverlap() function or "GL" for subsetbyGeneLis-
tOverlap() function

separateDuplicated

A logical argument, if TRUE (default) then regions that overlap multiple in-
puts to ’GRanges’ argument will be separated and made into their own group.
All possible combinations of region overlaps will be tested, so it is not recom-
mended to have more than 3 groups if this option is TRUE. If FALSE, then
regions that overlap each individual ’GRanges’ input will be in the output, and
if one region overlaps multiple ’GRanges’ inputs, then it will be duplicated in
the output and will show up in the section for each group.

summarize 27

Details

tbd

Value

A list of profileplyr objects

summarize summarize the rows of a deepTools matrix

Description

summarize the rows of a deepTools matrix

Usage

summarize(
object = "profileplyr",
fun = "function",
output = "character",
keep_all_mcols = "logical",
sampleData_columns_for_longPlot = "character"

)

S4 method for signature 'profileplyr'
summarize(
object = "profileplyr",
fun = "function",
output = "character",
keep_all_mcols = FALSE,
sampleData_columns_for_longPlot = NULL

)

Arguments

object A profileplyr object

fun the function used to summarize the ranges (e.g. rowMeans or rowMax)

output Must be either "matrix", "long", or "object".

keep_all_mcols if output is ’long’ and this is set to TRUE, then all metadata columns in the
rowRanges will be included in the output. If FALSE (default value), then only
the column indicated in the ’rowGroupsInUse’ slot of the metadata will be in-
cluded in the output dataframe.

sampleData_columns_for_longPlot

If output is set to ’long’, then this argument can be used to add information
stored in sampleData(object) to the summarized data frame. This needs to be a
character vector with elements matching coumn names in sampleData(object).

Details

Takes a SE object and outputs a summarized experiment object with a matrix containing ranges as
rows and each sample having one column with summary statistic

28 summarize

Value

If output="matrix" returns a matrix, if output="long" returns a data.frame in long format, if out-
put="object" returns a SummarizedExperiment object with the summarized matrix.

Methods (by class)

• summarize(profileplyr): summarize the rows of a deepTools matrix

Examples

example <- system.file("extdata", "example_deepTools_MAT", package = "profileplyr")
object <- import_deepToolsMat(example)

output matrix (can be used to make a heatmap)

object_sumMat <- summarize(object, fun = rowMeans, output = "matrix")

output long dataframe for ggplot

object_long <- summarize(object, fun = rowMeans, output = "long")
object_long[1:3,]

library(ggplot2)
ggplot(object_long, aes(x = Sample, y = log(Signal))) + geom_boxplot()

output profileplyr object containing summarized matrix

summarize(object, fun = rowMeans, output = "object")

Index

∗ datasets
gene_list_character, 16
gene_list_dataframe, 17
K27ac_GRlist_hind_liver_top5000,

20
[,profileplyr,ANY,ANY,ANY-method

(profileplyr-class), 22

annotatePeak, 3
annotateRanges, 2
annotateRanges,profileplyr-method

(annotateRanges), 2
annotateRanges_great, 4
annotateRanges_great,profileplyr-method

(annotateRanges_great), 4
as_profileplyr, 5

BamBigwig_to_chipProfile, 5
BiocParallelParam, 6

c,profileplyr-method
(profileplyr-class), 22

clusterRanges, 7
clusterRanges,profileplyr-method

(clusterRanges), 7
convertToEnrichedHeatmapMat, 9
convertToEnrichedHeatmapMat,profileplyr-method

(convertToEnrichedHeatmapMat),
9

EnrichedHeatmap, 15
export_deepToolsMat, 10
export_deepToolsMat,profileplyr-method

(export_deepToolsMat), 10

facet_wrap, 16

gene_list_character, 16
gene_list_dataframe, 17
generateEnrichedHeatmap, 11
generateProfilePlot, 15
groupBy, 17
groupBy,profileplyr-method (groupBy), 17

import_deepToolsMat
(export_deepToolsMat), 10

inherit_group_function, 19

K27ac_GRlist_hind_liver_top5000, 20

orderBy, 21
orderBy,profileplyr-method (orderBy), 21

params, 22
profileplyr-class, 22

sampleData, 23
sampleData,profileplyr-method

(sampleData), 23
sampleData<- (sampleData), 23
sampleData<-,profileplyr,DataFrame-method

(sampleData), 23
submitGreatJob, 4
subset_GR_GL_common_top, 26
subsetbyGeneListOverlap, 24
subsetbyRangeOverlap, 25
summarize, 27
summarize,profileplyr-method

(summarize), 27

29

	annotateRanges
	annotateRanges_great
	as_profileplyr
	BamBigwig_to_chipProfile
	clusterRanges
	convertToEnrichedHeatmapMat
	export_deepToolsMat
	generateEnrichedHeatmap
	generateProfilePlot
	gene_list_character
	gene_list_dataframe
	groupBy
	inherit_group_function
	K27ac_GRlist_hind_liver_top5000
	orderBy
	params
	profileplyr-class
	sampleData
	subsetbyGeneListOverlap
	subsetbyRangeOverlap
	subset_GR_GL_common_top
	summarize
	Index

