## ----setup, echo=FALSE, results="hide"------------------------------------------------------------ knitr::opts_chunk$set( tidy = FALSE, cache = TRUE, echo = TRUE, dev = c("png", "pdf"), package.startup.message = FALSE, message = FALSE, error = FALSE, warning = FALSE ) options(width = 100) ## ----preprocess.data------------------------------------------------------------------------------ library(dreamlet) library(muscat) library(ExperimentHub) library(scater) # Download data, specifying EH2259 for the Kang, et al study eh <- ExperimentHub() sce <- eh[["EH2259"]] sce$ind <- as.character(sce$ind) # only keep singlet cells with sufficient reads sce <- sce[rowSums(counts(sce) > 0) > 0, ] sce <- sce[, colData(sce)$multiplets == "singlet"] # compute QC metrics qc <- perCellQCMetrics(sce) # remove cells with few or many detected genes ol <- isOutlier(metric = qc$detected, nmads = 2, log = TRUE) sce <- sce[, !ol] # set variable indicating stimulated (stim) or control (ctrl) sce$StimStatus <- sce$stim ## ----aggregate------------------------------------------------------------------------------------ # Since 'ind' is the individual and 'StimStatus' is the stimulus status, # create unique identifier for each sample sce$id <- paste0(sce$StimStatus, sce$ind) # Create pseudobulk data by specifying cluster_id and sample_id for aggregating cells pb <- aggregateToPseudoBulk(sce, assay = "counts", cluster_id = "cell", sample_id = "id", verbose = FALSE ) ## ----crumblr-------------------------------------------------------------------------------------- library(crumblr) # use dreamlet::cellCounts() to extract data cellCounts(pb)[1:3, 1:3] # Apply crumblr transformation # cobj is an EList object compatable with limma workflow # cobj$E stores transformed values # cobj$weights stores precision weights cobj <- crumblr(cellCounts(pb)) ## ----vp------------------------------------------------------------------------------------------- library(variancePartition) fit <- dream(cobj, ~ StimStatus + ind, colData(pb)) fit <- eBayes(fit) topTable(fit, coef = "StimStatusstim", number = Inf) ## ----session, echo=FALSE-------------------------------------------------------------------------- sessionInfo()