## ----setup, echo=FALSE, results="hide"------------------------------------------------------------ knitr::opts_chunk$set( tidy = FALSE, cache = TRUE, echo = TRUE, dev = c("png", "pdf"), package.startup.message = FALSE, message = FALSE, error = FALSE, warning = FALSE ) options(width = 100) ## ----install, eval=FALSE-------------------------------------------------------------------------- # # 1) Make sure Bioconductor is installed # if (!require("BiocManager", quietly = TRUE)) { # install.packages("BiocManager") # } # # # 2) Install crumblr and dependencies: # # From Bioconductor # BiocManager::install("crumblr") ## ----crumblr-------------------------------------------------------------------------------------- library(crumblr) # Load cell counts, clustering and metadata # from Kang, et al. (2018) https://doi.org/10.1038/nbt.4042 data(IFNCellCounts) # Apply crumblr transformation # cobj is an EList object compatable with limma workflow # cobj$E stores transformed values # cobj$weights stores precision weights # corresponding to the regularized inverse variance cobj <- crumblr(df_cellCounts) ## ----vp, fig.height=4, fig.width=6---------------------------------------------------------------- library(variancePartition) # Partition variance into components for Subject (i.e. ind) # and stimulation status, and residual variation form <- ~ (1 | ind) + (1 | StimStatus) vp <- fitExtractVarPartModel(cobj, form, info) # Plot variance fractions fig.vp <- plotPercentBars(vp) fig.vp ## ----pca, fig.height=5, fig.width=5--------------------------------------------------------------- library(ggplot2) # Perform PCA # use crumblr::standardize() to get values with # approximately equal sampling variance, # which is a key property for downstream PCA and clustering analysis. pca <- prcomp(t(standardize(cobj))) # merge with metadata df_pca <- merge(pca$x, info, by = "row.names") # Plot PCA # color by Subject # shape by Stimulated vs unstimulated ggplot(df_pca, aes(PC1, PC2, color = as.character(ind), shape = StimStatus)) + geom_point(size = 3) + theme_classic() + theme(aspect.ratio = 1) + scale_color_discrete(name = "Subject") + xlab("PC1") + ylab("PC2") ## ----hclust--------------------------------------------------------------------------------------- heatmap(cobj$E) ## ----dream---------------------------------------------------------------------------------------- # Use variancePartition workflow to analyze each cell type # Perform regression on each cell type separately # then use eBayes to shrink residual variance # Also compatible with limma::lmFit() fit <- dream(cobj, ~ StimStatus + ind, info) fit <- eBayes(fit) # Extract results for each cell type topTable(fit, coef = "StimStatusstim", number = Inf) ## ----treeTest------------------------------------------------------------------------------------- # Perform multivariate test across the hierarchy res <- treeTest(fit, cobj, hcl, coef = "StimStatusstim") # Plot hierarchy and testing results plotTreeTest(res) # Plot hierarchy and regression coefficients plotTreeTestBeta(res) ## ----combined, fig.width=12----------------------------------------------------------------------- plotTreeTestBeta(res) + theme(legend.position = "bottom", legend.box = "vertical") | plotForest(res, hide = FALSE) | fig.vp ## ----session, echo=FALSE-------------------------------------------------------------------------- sessionInfo()