## ----setup, include = FALSE--------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>", crop = NULL ## Related to https://stat.ethz.ch/pipermail/bioc-devel/2020-April/016656.html ) ## ----vignetteSetup, echo=FALSE, message=FALSE, warning = FALSE---------------- ## Bib setup library("RefManageR") ## Write bibliography information bib <- c( R = citation(), AnnotationHub = citation("AnnotationHub")[1], BiocFileCache = citation("BiocFileCache")[1], dplyr = citation("dplyr")[1], ExperimentHub = citation("ExperimentHub")[1], ggplot2 = citation("ggplot2")[1], graphics = citation("graphics")[1], grDevices = citation("grDevices")[1], matrixStats = citation("matrixStats")[1], methods = citation("methods")[1], purrr = citation("purrr")[1], rafalib = citation("rafalib")[1], RColorBrewer = citation("RColorBrewer")[1], reshape2 = citation("reshape2")[1], S4Vectors = citation("S4Vectors")[1], scran = citation("scran")[1], SingleCellExperiment = citation("SingleCellExperiment")[1], spatialLIBD = citation("spatialLIBD")[1], stats = citation("stats")[1], stringr = citation("stringr")[1], SummarizedExperiment = citation("SummarizedExperiment")[1], tibble = citation("tibble")[1], utils = citation("utils")[1], Biobase = citation("Biobase")[1], BiocStyle = citation("BiocStyle")[1], BisqueRNA = citation("BisqueRNA")[1], covr = citation("covr")[1], HDF5Array = citation("HDF5Array")[1], knitr = citation("knitr")[1], RefManageR = citation("RefManageR")[1], rmarkdown = citation("rmarkdown")[1], sessioninfo = citation("sessioninfo")[1], testthat = citation("testthat")[1], tidyr = citation("tidyr")[1], tidyverse = citation("tidyverse")[1], DeconvoBuddies = citation("DeconvoBuddies")[1], DeconvoBuddiespaper = citation("DeconvoBuddies")[2] ) ## ----"install", eval = FALSE-------------------------------------------------- # if (!requireNamespace("BiocManager", quietly = TRUE)) { # install.packages("BiocManager") # } # # BiocManager::install("DeconvoBuddies") # # ## Check that you have a valid Bioconductor installation # BiocManager::valid() ## ----"citation"--------------------------------------------------------------- ## Citation info citation("DeconvoBuddies") ## ----"load packages", message=FALSE, warning=FALSE---------------------------- suppressMessages({ library("DeconvoBuddies") library("SummarizedExperiment") library("dplyr") library("tidyr") library("tibble") }) ## ----`access data------------------------------------------------------------- ## Access and snRNA-seq example data if (!exists("sce_DLPFC_example")) sce_DLPFC_example <- fetch_deconvo_data("sce_DLPFC_example") ## Explore snRNA-seq data in sce_DLPFC_example sce_DLPFC_example ## Access Bulk RNA-seq data if (!exists("rse_gene")) rse_gene <- fetch_deconvo_data("rse_gene") ## Explore bulk data in rse_gene rse_gene ## ----`get_mean_ratio demo`---------------------------------------------------- ## find marker genes with get_mean_ratio marker_stats <- get_mean_ratio( sce_DLPFC_example, cellType_col = "cellType_broad_hc", gene_name = "gene_name", gene_ensembl = "gene_id" ) ## explore tibble output, gene with high MeanRatio values are good marker genes marker_stats ## ----`create_cell_colors demo 1`---------------------------------------------- test_cell_types <- c("cell_A", "cell_B", "cell_C", "cell_D", "cell_E") ## Preview "classic" colors test_cell_colors_classic <- create_cell_colors( cell_types = test_cell_types, palette_name = "classic", preview = TRUE ) ## Preview "gg" colors test_cell_colors_gg <- create_cell_colors( cell_types = test_cell_types, palette_name = "gg", preview = TRUE ) ## Preview "tableau" colors test_cell_colors_tableau <- create_cell_colors( cell_types = test_cell_types, palette_name = "tableau", preview = TRUE ) ## Check the color hex codes for "tableau" test_cell_colors_tableau ## Provide a palette from RColorBrewer test_cell_colors_brew <- create_cell_colors( cell_types = test_cell_types, palette = RColorBrewer::brewer.pal(n = length(test_cell_types), name = "Dark2"), preview = TRUE ) ## ----create_cell_colors demo 2`----------------------------------------------- my_cell_types <- levels(sce_DLPFC_example$cellType_hc) ## Ignore any suffix after the "_" character by using the "split" argument my_cell_colors <- create_cell_colors( cell_types = my_cell_types, palette_name = "classic", preview = TRUE, split = "_" ) ## ----`plot_marker_expression demo`-------------------------------------------- # plot expression of the top 6 Astro marker genes plot_marker_express( sce = sce_DLPFC_example, stats = marker_stats, cell_type = "Astro", n_genes = 6, cellType_col = "cellType_broad_hc", color_pal = my_cell_colors ) ## ----`demo plot_composition_bar`---------------------------------------------- # load example data data("rse_bulk_test") data("est_prop") # access the colData of a test rse dataset pd <- colData(rse_bulk_test) |> as.data.frame() ## pivot data to long format and join with test estimated proportion data est_prop_long <- est_prop |> rownames_to_column("RNum") |> pivot_longer(!RNum, names_to = "cell_type", values_to = "prop") |> left_join(pd) ## explore est_prop_long est_prop_long ## the composition bar plot shows cell type composition for Sample plot_composition_bar(est_prop_long, x_col = "RNum", add_text = FALSE ) + ggplot2::scale_fill_manual(values = test_cell_colors_classic) ## the composition bar plot shows the average cell type composition for each Dx plot_composition_bar(est_prop_long, x_col = "Dx") + ggplot2::scale_fill_manual(values = test_cell_colors_classic) ## ----reproduce3, echo=FALSE------------------------------------------------------------------------------------------- ## Session info library("sessioninfo") options(width = 120) session_info() ## ----vignetteBiblio, results = "asis", echo = FALSE, warning = FALSE, message = FALSE--------------------------------- ## Print bibliography PrintBibliography(bib, .opts = list(hyperlink = "to.doc", style = "html"))