## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
  collapse = TRUE,
  comment = "#>"
)

## ----warning=FALSE, message=FALSE, eval=FALSE---------------------------------
# if (!requireNamespace("BiocManager", quietly = TRUE)) {
#   install.packages("BiocManager")
# }
# BiocManager::install("CPSM")

## ----warning=FALSE, message=FALSE---------------------------------------------
library(CPSM)
library(SummarizedExperiment)
set.seed(7) # set seed
data(Example_TCGA_LGG_FPKM_data, package = "CPSM")
Example_TCGA_LGG_FPKM_data

## -----------------------------------------------------------------------------
data(Example_TCGA_LGG_FPKM_data, package = "CPSM")
combined_df <- cbind(
  as.data.frame(colData(Example_TCGA_LGG_FPKM_data))
  [, -ncol(colData(Example_TCGA_LGG_FPKM_data))],
  t(as.data.frame(assay(
    Example_TCGA_LGG_FPKM_data,
    "expression"
  )))
)
New_data <- data_process_f(combined_df, col_num = 20, surv_time = "OS.time")
str(New_data[1:10])

## -----------------------------------------------------------------------------
data(New_data, package = "CPSM")
# Call the function
result <- tr_test_f(data = New_data, fraction = 0.9)
# Access the train and test data
train_FPKM <- result$train_data
str(train_FPKM[1:10])
test_FPKM <- result$test_data
str(test_FPKM[1:10])

## -----------------------------------------------------------------------------
# Step 3 - Data Normalization
# Normalize the training and test data sets
data(train_FPKM, package = "CPSM")
data(test_FPKM, package = "CPSM")
Result_N_data <- train_test_normalization_f(
  train_data = train_FPKM,
  test_data = test_FPKM,
  col_num = 21
)
# Access the Normalized train and test data
Train_Clin <- Result_N_data$Train_Clin
Test_Clin <- Result_N_data$Test_Clin
Train_Norm_data <- Result_N_data$Train_Norm_data
Test_Norm_data <- Result_N_data$Test_Norm_data
str(Train_Clin[1:10])
str(Train_Norm_data[1:10])

## ----warning=FALSE, message=FALSE, fig.width=7, fig.height=4------------------
# Step 4 - Lasso PI Score
data(Train_Norm_data, package = "CPSM")
data(Test_Norm_data, package = "CPSM")
Result_PI <- Lasso_PI_scores_f(
  train_data = Train_Norm_data,
  test_data = Test_Norm_data,
  nfolds = 5,
  col_num = 21,
  surv_time = "OS_month",
  surv_event = "OS"
)
Train_Lasso_key_variables <- Result_PI$Train_Lasso_key_variables
Train_PI_data <- Result_PI$Train_PI_data
Test_PI_data <- Result_PI$Test_PI_data
str(Train_PI_data[1:10])
str(Test_PI_data[1:10])
plot(Result_PI$cvfit)

## ----warning=FALSE, message=FALSE---------------------------------------------
# Step 4b - Univariate  Survival Significant Feature Selection.
data(Train_Norm_data, package = "CPSM")
data(Test_Norm_data, package = "CPSM")
Result_Uni <- Univariate_sig_features_f(
  train_data = Train_Norm_data,
  test_data = Test_Norm_data,
  col_num = 21,
  surv_time = "OS_month",
  surv_event = "OS"
)
Univariate_Suv_Sig_G_L <- Result_Uni$Univariate_Survival_Significant_genes_List
Train_Uni_sig_data <- Result_Uni$Train_Uni_sig_data
Test_Uni_sig_data <- Result_Uni$Test_Uni_sig_data
Uni_Sur_Sig_clin_List <- Result_Uni$Univariate_Survival_Significant_clin_List
Train_Uni_sig_clin_data <- Result_Uni$Train_Uni_sig_clin_data
Test_Uni_sig_clin_data <- Result_Uni$Test_Uni_sig_clin_data
str(Univariate_Suv_Sig_G_L[1:10])

## ----warning=FALSE, message=FALSE, error = TRUE-------------------------------
try({
data(Train_Clin, package = "CPSM")
data(Test_Clin, package = "CPSM")
data(Key_Clin_feature_list, package = "CPSM")
Result_Model_Type1 <- MTLR_pred_model_f(
  train_clin_data = Train_Clin,
  test_clin_data = Test_Clin,
  Model_type = 1,
  train_features_data = Train_Clin,
  test_features_data = Test_Clin,
  Clin_Feature_List = Key_Clin_feature_list,
  surv_time = "OS_month",
  surv_event = "OS"
)
survCurves_data <- Result_Model_Type1$survCurves_data
mean_median_survival_tim_d <- Result_Model_Type1$mean_median_survival_time_data
survival_result_bas_on_MTLR <- Result_Model_Type1$survival_result_based_on_MTLR
Error_mat_for_Model <- Result_Model_Type1$Error_mat_for_Model
})

## ----warning=FALSE, message=FALSE, error = TRUE-------------------------------
try({
data(Train_Clin, package = "CPSM")
data(Test_Clin, package = "CPSM")
data(Train_PI_data, package = "CPSM")
data(Test_PI_data, package = "CPSM")
data(Key_PI_list, package = "CPSM")
Result_Model_Type2 <- MTLR_pred_model_f(
  train_clin_data = Train_Clin,
  test_clin_data = Test_Clin,
  Model_type = 2,
  train_features_data = Train_PI_data,
  test_features_data = Test_PI_data,
  Clin_Feature_List = Key_PI_list,
  surv_time = "OS_month",
  surv_event = "OS"
)
survCurves_data <- Result_Model_Type2$survCurves_data
mean_median_surviv_tim_da <- Result_Model_Type2$mean_median_survival_time_data
survival_result_b_on_MTLR <- Result_Model_Type2$survival_result_based_on_MTLR
Error_mat_for_Model <- Result_Model_Type2$Error_mat_for_Model
})

## ----warning=FALSE, message=FALSE, error = TRUE-------------------------------
try({
data(Train_Clin, package = "CPSM")
data(Test_Clin, package = "CPSM")
data(Train_PI_data, package = "CPSM")
data(Test_PI_data, package = "CPSM")
data(Key_Clin_features_with_PI_list, package = "CPSM")
Result_Model_Type3 <- MTLR_pred_model_f(
  train_clin_data = Train_Clin,
  test_clin_data = Test_Clin,
  Model_type = 3,
  train_features_data = Train_PI_data,
  test_features_data = Test_PI_data,
  Clin_Feature_List = Key_Clin_features_with_PI_list,
  surv_time = "OS_month",
  surv_event = "OS"
)
survCurves_data <- Result_Model_Type3$survCurves_data
mean_median_surv_tim_da <- Result_Model_Type3$mean_median_survival_time_data
survival_result_b_on_MTLR <- Result_Model_Type3$survival_result_based_on_MTLR
Error_mat_for_Model <- Result_Model_Type3$Error_mat_for_Model
})

## ----warning=FALSE, message=FALSE, error = TRUE-------------------------------
try({
data(Train_Clin, package = "CPSM")
data(Test_Clin, package = "CPSM")
data(Train_Uni_sig_data, package = "CPSM")
data(Test_Uni_sig_data, package = "CPSM")
data(Key_univariate_features_with_Clin_list, package = "CPSM")
Result_Model_Type5 <- MTLR_pred_model_f(
  train_clin_data = Train_Clin,
  test_clin_data = Test_Clin,
  Model_type = 4,
  train_features_data = Train_Uni_sig_data,
  test_features_data = Test_Uni_sig_data,
  Clin_Feature_List = Key_univariate_features_with_Clin_list,
  surv_time = "OS_month",
  surv_event = "OS"
)
survCurves_data <- Result_Model_Type5$survCurves_data
mean_median_surv_tim_da <- Result_Model_Type5$mean_median_survival_time_data
survival_result_b_on_MTLR <- Result_Model_Type5$survival_result_based_on_MTLR
Error_mat_for_Model <- Result_Model_Type5$Error_mat_for_Model
})

## ----warning=FALSE, message=FALSE, error = TRUE , fig.width=7, fig.height=4----
try({
# Create Survival curves/plots for individual patients
data(survCurves_data, package = "CPSM")
plots <- surv_curve_plots_f(
  Surv_curve_data = survCurves_data,
  selected_sample = "TCGA-TQ-A7RQ-01"
)
# Print the plots
print(plots$all_patients_plot)
print(plots$highlighted_patient_plot)
})

## ----warning=FALSE, message=FALSE, error = TRUE , fig.width=7, fig.height=4----
try({
data(mean_median_survival_time_data, package = "CPSM")
plots_2 <- mean_median_surv_barplot_f(
  surv_mean_med_data =
    mean_median_survival_time_data,
  selected_sample = "TCGA-TQ-A7RQ-01"
)
# Print the plots
print(plots_2$mean_med_all_pat)
print(plots_2$highlighted_selected_pat)
})

## ----warning=FALSE, message=FALSE, error = TRUE, fig.width=7, fig.height=6----
try({
data(Train_Data_Nomogram_input, package = "CPSM")
data(feature_list_for_Nomogram, package = "CPSM")
Result_Nomogram <- Nomogram_generate_f(
  data = Train_Data_Nomogram_input,
  Feature_List = feature_list_for_Nomogram,
  surv_time = "OS_month",
  surv_event = "OS"
)
C_index_mat <- Result_Nomogram$C_index_mat
})

## -----------------------------------------------------------------------------
sessionInfo()