Package 'ceRNAnetsim'

April 7, 2025

Type Package

Title Regulation Simulator of Interaction between miRNA and Competing RNAs (ceRNA)

Version 1.19.0

Description This package simulates regulations of ceRNA

(Competing Endogenous) expression levels after a expression level change in one or more miRNA/mRNAs. The methodolgy adopted by the package has potential to incorparate any ceRNA (circRNA, lincRNA, etc.) into miRNA:target interaction network. The package basically distributes miRNA expression over available ceRNAs where each ceRNA attracks miRNAs proportional to its amount. But, the package can utilize multiple parameters that modify miRNA effect on its target (seed type, binding energy, binding location, etc.). The functions handle the given dataset as graph object and the processes progress via edge and node variables.

License GPL (>= 3.0)

URL https://github.com/selcenari/ceRNAnetsim

BugReports https://github.com/selcenari/ceRNAnetsim/issues

Depends R (>= 4.0.0), dplyr, tidygraph

Imports furrr, rlang, tibble, ggplot2, ggraph, igraph, purrr, tidyr, future, stats

Suggests knitr, png, rmarkdown, testthat, covr

VignetteBuilder knitr

biocViews NetworkInference, SystemsBiology, Network, GraphAndNetwork, Transcriptomics

Encoding UTF-8

LazyData false

RoxygenNote 7.1.2

git_url https://git.bioconductor.org/packages/ceRNAnetsim

git_branch devel

2 Contents

Maintainer Selcen Ari Yuka <selcenarii@gmail.com>

Contents

Index

calc_perturbation	3
find_affected_nodes	4
find_iteration	5
find_node_perturbation	6
find_targeting_nodes	7
gene_knockdown	8
huge_example	9
midsamp	9
midsamp_new_counts	0
minsamp	0
mirtarbasegene	1
new_counts	1
normalize	2
prepare_rhs	2
prepare_rhs_once	3
priming_graph	3
simulate	4
simulate_vis	5
TCGA_E9_A1N5_mirnanormal	7
TCGA_E9_A1N5_mirnatumor	7
TCGA_E9_A1N5_normal	8
TCGA_E9_A1N5_tumor	9
update_how	9
update_nodes	0.
update_variables	1
vis_graph	2

24

calc_perturbation 3

calc_perturbation	Calculates average expression changes of all nodes except trigger and
	finds the perturbed node count for a given node.
	• • •

Description

Calculates average expression changes of all nodes except trigger and finds the perturbed node count for a given node.

Usage

```
calc_perturbation(input_graph, node_name, how = 1, cycle = 1, limit = 0)
```

Arguments

input_graph the graph object that was processed with priming graph in previous step.

node_name The node that is trigger for simulation.

how The change of count of the given node in terms of fold change.

cycle The iteration of simulation.

limit The minimum fold change which can be taken into account for perturbation

calculation on all nodes in terms of percentage.

Details

calc_perturbation calculates mean expression changes of elements except trigger after the change in the network in terms of percentage. It also calculates the number of nodes that have expression changes after the change occur in the network. The function determines the perturbation efficiency and number of perturbed nodes after given change with how, cycle and limit parameter.

Value

a tibble with two columns, the perturbation efficiency and number of perturbed nodes.

```
data('minsamp')
minsamp%>%
    priming_graph(competing_count = Competing_expression,
        miRNA_count = miRNA_expression)%>%
    calc_perturbation('Gene6', how= 3, cycle = 4)

minsamp%>%
    priming_graph(competing_count = Competing_expression, miRNA_count = miRNA_expression,
        aff_factor = c(energy,seed_type), deg_factor = region)%>%
    calc_perturbation('Gene6',3, cycle = 4)
```

4 find_affected_nodes

find_affected_nodes

Finds top affected nodes for perturbation from a particular node

Description

Finds top affected nodes for perturbation from a particular node

Usage

```
find_affected_nodes(
  input_graph,
  node_name,
  how = 1,
  cycle = 1,
  limit = 0,
  top = 5
)
```

Arguments

input_graph The graph object that was processed with priming_graph function.

node_name The node to trigger perturbations.

how The change of count (expression) of the given node in terms of fold change.

cycle The iteration of simulation.

limit The minimum fold change which can be taken into account for perturbation

calculation on all nodes in terms of percentage.

top Determines how many nodes most affected will be listed.

Details

Lists the most affected nodes after perturbation initiated from a particular node. In the background, it compares the calculated values after the simulation with their initial values.

Value

It gives a tibble form dataset that includes perturbation node, affected nodes and changes of them.

find_iteration 5

top = 2)

find_iteration

Finds the iteration which provides maximum affected node number

Description

searches the iteration that provides maximum affected node number. The user defines a symbolic iteration with .iter. The function calculates the number of affected nodes for each iteration and then selects the iteration that has maximum affected nodes' number.

Usage

```
find_iteration(df, limit = 0.1, plot = FALSE)
```

Arguments

df	A tbl graph that includes the miRNA and competing targets triggered and simu-
	lated for number of cycles.

limit The minimum amount of change of any node.

plot If TRUE, returns a plot.

Value

It gives an iteration number to use in simulate() function.

```
data('midsamp')
midsamp %>%
    priming_graph(Gene_expression, miRNA_expression) %>%
    update_how('Gene2',2) %>%
    simulate(10) %>%
    find_iteration(limit=0)
```

find_node_perturbation

Calculates average expression changes of all (or specified) nodes except trigger and finds the perturbed node count for all (or specified) nodes in system.

Description

Calculates average expression changes of all (or specified) nodes except trigger and finds the perturbed node count for all (or specified) nodes in system.

Usage

```
find_node_perturbation(input_graph, how = 2, cycle = 1, limit = 0, fast = 0)
```

Arguments

input_graph	The graph object that was processed with priming_graph function.
how	The change of count (expression) of the given node in terms of fold change.
cycle	The iteration of simulation.
limit	The minimum fold change which can be taken into account for perturbation calculation on all nodes in terms of percentage.
fast	specifies percentage of affected target in target expression. For example, if fast = 1, the nodes that are affected from miRNA repression activity more than one percent of their expression is determined as subgraph.

Details

find_node_perturbation calculates mean expression changes of elements after the change in the network in terms of percentage. It also calculates the number of nodes that have expression changes after the change occur in the network. The outputs of the function are the perturbation efficiency and perturbed count of nodes for each nodes.

Value

It gives a tibble form dataset that includes node names, perturbation efficiency and perturbed count of nodes.

```
data('minsamp')
data('midsamp')

minsamp%>%
priming_graph(competing_count = Competing_expression, miRNA_count = miRNA_expression)%>%
find_node_perturbation()%>%
select(name, perturbation_efficiency, perturbed_count)
```

find_targeting_nodes 7

```
minsamp%>%
priming_graph(competing_count = Competing_expression, miRNA_count = miRNA_expression,
    aff_factor = c(energy,seed_type), deg_factor = region)%>%
find_node_perturbation(how = 3, cycle = 4)%>%
    select(name, perturbation_efficiency, perturbed_count)

midsamp%>%
priming_graph(competing_count = Gene_expression, miRNA_count = miRNA_expression)%>%
find_node_perturbation(how = 2, cycle= 3, limit=1, fast = 5)%>%
    select(name, perturbation_efficiency, perturbed_count)
```

find_targeting_nodes Finds potential affecting node for given particular target.

Description

Finds potential affecting node for given particular target.

Usage

```
find_targeting_nodes(
  input_graph,
  how = 2,
  cycle = 1,
  limit = 0,
  fast = 0,
  top = 5,
  target = NULL
)
```

Arguments

input_graph	The graph object that was processed with priming_graph function.
how	The change of count (expression) of the given node in terms of fold change.
cycle	The iteration of simulation.
limit	The minimum fold change which can be taken into account for perturbation calculation on all nodes in terms of percentage.
fast	specifies percentage of affected target in target expression. For example, if fast = 1, the nodes that are affected from miRNA repression activity more than one percent of their expression is determined as subgraph.
top	Determines how many nodes most affected will be evaluated.
target	The target node in which is being investigated.

8 gene_knockdown

Details

Lists potential targeting nodes by running find_affected_nodes function for all nodes in network.

Value

It gives a tibble form dataset that includes parturbation node (source) and change in count of targeting node

Examples

gene_knockdown

Knocks down given node.

Description

Knocks down given node.

Usage

```
gene_knockdown(input_graph, node_name)
```

Arguments

input_graph The graph object that processed in previous step/s.

node_name The name of the node whose count is to be knocked down.

Details

knocks down a given gene target.

Value

the graph object.

huge_example 9

huge_example huge example

Description

A sample dataset which is utilised through integration of TCGA_E9_A1N5_normal, TCGA_E9_A1N5_mirnanormal and high-throughput experimental miRNA:gene dataset.

Format

A data frame with 7 variables and 26176 observation:

competing name of gene

miRNA name of miRNA

competing_counts Expression values of competing element (gene)

mirnaexpression_normal Expression value of miRNA elements in normal tissue

Energy Energy of miRNA:target binding

region_effect Coefficient for efficiency of location on target

seed_type_effect Coefficient for efficiency of seed sequence of miRNA:target interaction

Source

Dataset was integrated by us.

midsamp

midsamp

Description

middle sized sample dataset

Format

A data frame with 7 variables and 26 observation of them:

Genes symbol of gene

miRNAs symol of miRNA

Gene_expression Expression values of competing gene

miRNA_expression Expression value of miRNA

seeds Coefficient for efficiency of seed type of miRNA:target interaction

targeting_region Coefficient for efficiency of location on target

Energy Energy of miRNA:target binding

Source

Dataset was created by us.

10 minsamp

midsamp_new_counts

midsamp_new_counts

Description

includes new expression values for middle sized sample dataset

Format

A data frame with 4 variables and 26 observation of them:

Competing symbol of gene

miRNA symol of miRNA

Competing_count Expression values of competing gene

miRNA_count Expression value of miRNA

Source

Dataset was created by us.

minsamp

minsamp

Description

minimal sample dataset

Format

A data frame with 7 variables and 7 observation of them:

competing symbol of gene

miRNA symol of miRNA

Competing_expression Expression values of competing gene

miRNA_expression Expression value of miRNA

seed_type Coefficient for efficiency of seed sequence of miRNA:target interaction

region Coefficient for efficiency of location on target

energy Energy of miRNA:target binding

Source

Dataset was created by us.

mirtarbasegene 11

mirtarbasegene

mirtarbasegene

Description

the dataset that includes miRNA:target gene interactions downloaded from mirtarbase

Format

Classes tbl_df, tbl and data.frame with 380627 observation of 2 variables:

miRNA miRNA symbol

Target target gene symbol

Source

http://mirtarbase.mbc.nctu.edu.tw/php/index.php

new_counts

new_counts

Description

includes new expression values for minimal sample dataset

Format

A data frame with 7 variables and 7 observation of them:

Competing symbol of gene

miRNA symol of miRNA

Competing_count Expression values of competing gene

miRNA_count Expression value of miRNA

Source

Dataset was created by us.

12 prepare_rhs

normalize

normalize

Description

normalizes the values according to maximum values inside a group. The helper function of priming_graph.

Usage

```
normalize(x)
```

Arguments

Х

The variable name that is normalized.

Value

normalized values

prepare_rhs

Carries the variables from edge to node

Description

Carries the variables from edge to node.

Usage

```
prepare_rhs(input_graph)
```

Arguments

input_graph

Processed graph object in previous step.

Details

The function is a helper function for processing of graph object with update_nodes function.

Value

tibble object

prepare_rhs_once 13

prepare_rhs_once

Carries the variables from edge to node.

Description

Carries the variables from edge to node.

Usage

```
prepare_rhs_once(input_graph)
```

Arguments

input_graph Processed graph object in previous step.

Details

The function is a helper function for processing of graph object with update_nodes function.

Value

tibble object

priming_graph

Converts the given dataframe using first variable as competing and the second as miRNA. The function converts the given dataframe using first variable as competing and the second as miRNA. If user defines interaction factors as affinity or degradation, the factors are taken into account.

Description

Converts the given dataframe using first variable as competing and the second as miRNA. The function converts the given dataframe using first variable as competing and the second as miRNA. If user defines interaction factors as affinity or degradation, the factors are taken into account.

Usage

```
priming_graph(
   df,
   competing_count,
   miRNA_count,
   aff_factor = dummy,
   deg_factor = dummy)
```

14 simulate

Arguments

df A data frame that includes the miRNA and competing targets.

competing_count

The counts (or expression) of competing elements of the dataset.

miRNA_count The counts (or expression) of repressive element (miRNA) of the dataset.

aff_factor The parameter/s of binding between miRNA and targets.

deg_factor The parameter/s for degradation of bound miRNA:target complex.

Details

priming_graph provides grouping of competing targets and evaluation of targets within the groups taking into account miRNA:target, target:total target, interaction and degradation parameters. The target groups are determined according to miRNAs. If the factors that are important in target interactions are specified as arguments, the factors also are evaluated separately within each group. priming_graph also calculates the miRNA efficiency in steady-state conditions. It is assumed that quantity of competing targets and miRNAs are shown in the steady-state system after the miRNAs exhibit repressive efficiency. Note that the data must not include missing values such as NA or '-'.

Value

the graph object.

Examples

```
data('minsamp')
priming_graph(minsamp, Competing_expression, miRNA_expression)
priming_graph(minsamp, Competing_expression, miRNA_expression,
    aff_factor = c(seed_type,energy), deg_factor = region)
```

simulate

Utilizes the change in expression value/s as triggering.

Description

simulate function uses the change in expression value/s as triggering.

Usage

```
simulate(input_graph, cycle = 1, threshold = 0, knockdown = TRUE)
```

simulate_vis 15

Arguments

input_graph The graph object that processed in previous steps.

cycle Optimal iteration number for gaining steady-state.

threshold absolute minimum amount of change required to be considered as up/down reg-

ulated element

knockdown specifies gene knockdown with default TRUE

Details

The steady-state conditions of the system are disturbed after the change in the graph (with update_how or update_variables). In this case, the system tend to be steady state again. The arrangement of competetive profiles of the targets continue until all nodes are updated and steady-state nearly. Note that, If 'how' argument is specified as '0', *simulate()* and *update_how()* functions process the variables to knockdown of specified gene with default 'knockdown = TRUE' and knocked down competing RNA is kept at zero. However, if 'knockdown= FALSE' argument is applied, competing RNA which has initial expression level of zero is allowed to increase or fluctuate during calculations.

Value

The graph.

Examples

simulate_vis

Provides visualisation of the graph in addition to simulate function.

Description

simulate_vis provides visualisation of the graph in addition to simulate function.

16 simulate_vis

Usage

```
simulate_vis(
  input_graph,
  cycle = 1,
  threshold = 0,
  save = FALSE,
  Competing_color = "green",
  mirna_color = "orange",
  Upregulation = "red",
  Downregulation = "blue",
  title = "GRAPH",
  layout = "kk"
)
```

Arguments

input_graph The graph object that processed in previous steps. cycle Optimal iteration number for gaining steady-state.

threshold absolute minimum amount of change required to be considered as up/down reg-

ulated element

save provides to save graph output

Competing_color

The color of competing elements on the graph with "green" default.

mirna_color The color of miRNAs on the graph with "orange" default.

Upregulation The color of Upregulated elements on the graph with "red" default.

Downregulation The color of Downregulated elements on the graph with "blue" default.

title Title of the given graph.

layout The layout that will be used for visualisation of the graph.

Details

simulate_vis gives the last graph object and each iterations' image.

Value

It gives a graph and the images of states in each iteration until the end of the simulation.

```
# When does the system gain steady-state conditions again?
## new_counts, the dataset that includes the current counts of nodes.
data("minsamp")
data("new_counts")
priming_graph(minsamp, Competing_expression, miRNA_expression)%>%
```

```
update_variables(new_counts)%>%
  simulate_vis()

priming_graph(minsamp, Competing_expression, miRNA_expression,
    aff_factor = c(seed_type,energy), deg_factor = c(region))%>%
  update_variables(new_counts)%>%
  simulate_vis(cycle = 12)
```

TCGA_E9_A1N5_mirnanormal

TCGA_E9_A1N5_mirnanormal

Description

The dataset contains mirna expression values for normal tissue sample of TCGA-E9-A1N5 barcoded patient

Format

Classes tbl_df, tbl and data.frame with 750 observation of 6 variables:

barcode Sample, normal tissue, barcode of patient based on TCGA

mirbase_ID mirbase id of miRNA

miRNA miRNA name

Precusor Precusor id of miRNA which is given in miRNA variable

total_read total reading count of miRNA which is produced from different gene locations

total_RPM total RPM (reading per million) of miRNA

Source

```
https://portal.gdc.cancer.gov/
```

TCGA_E9_A1N5_mirnatumor

TCGA_E9_A1N5_mirnatumor

Description

The dataset contains mirna expression values for tumor tissue sample of TCGA-E9-A1N5 barcoded patient

Format

```
Classes tbl_df, tbl and data.frame with 648 observation of 6 variables:
```

barcode Sample, tumor tissue, barcode of patient based on TCGA

mirbase_ID mirbase id of miRNA

miRNA miRNA name

Precusor Precusor id of miRNA which is given in miRNA variable

total_read total reading count of miRNA which is produced from different gene locations

total_RPM total RPM (reading per million) of miRNA

Source

```
https://portal.gdc.cancer.gov/
```

TCGA_E9_A1N5_normal

TCGA_E9_A1N5_normal

Description

The dataset contains gene expression values for normal tissue sample of TCGA-E9-A1N5 barcoded patient

Format

Classes tbl_df, tbl and data.frame with 56830 observation of 7 variables:

patient Barcode of patient based on TCGA

sample Tissue sample barcode of the patient

barcode Sample barcode of the patient

definition Tissue type of sample (Solid Tissue Normal)

ensembl_gene_id Gene id

external_gene_name Gene symbol

gene_expression Gene expression value

Source

```
https://portal.gdc.cancer.gov/
```

TCGA_E9_A1N5_tumor

TCGA_E9_A1N5_tumor

Description

The dataset contains gene expression values for cancer tissue sample of TCGA-E9-A1N5 barcoded patient

Format

Classes tbl_df, tbl and data.frame with 56830 observtion of 7 variables:

patient Barcode of patient based on TCGAsample Tissue sample barcode of the patient

barcode Sample barcode of the patient

definition Tissue type of sample (Primary solid Tumor)

ensembl_gene_id Gene id

external_gene_name Gene symbol

gene_expression Gene expression value

Source

```
https://portal.gdc.cancer.gov/
```

update_how

Converts the count value of the given node.

Description

this function converts the count value of the given node.

Usage

```
update_how(input_graph, node_name, how, knockdown = TRUE)
```

Arguments

input_graph The graph object that processed in previous step/s.

node_name The name of the node whose count is to be changed.

how The change in terms of fold change.

knockdown specifies gene knockdown with default TRUE

20 update_nodes

Details

update_how function calculates the current value of given mirna or gene node on the graph object. User must specify current value as fold change.

Value

the graph object.

Examples

```
data('minsamp')
priming_graph(minsamp, Competing_expression, miRNA_expression)%>%
    update_how('Gene1',3)

priming_graph(minsamp, Competing_expression, miRNA_expression,
    aff_factor = c(seed_type,energy), deg_factor = region)%>%
    update_how('Gene1', 3)

priming_graph(minsamp, Competing_expression, miRNA_expression,
    aff_factor = c(seed_type,energy), deg_factor = region)%>%
    update_how('Gene1', how=0, knockdown= TRUE)
```

update_nodes

Carries variables from edge to node.

Description

This function carries variables from edge to node and should be used after 'update_how' or 'update_variables' functions

Usage

```
update_nodes(input_graph, once = FALSE, limit = 0)
```

Arguments

input_graph Processed graph object in previous step.

once The argument is about when the carrying process runs (internal use only)

limit absolute minimum amount of change required to be considered as up/down reg-

ulated element

update_variables 21

Details

If the carrying process performs after priming_graph function, the argument must be TRUE. The function helps to visualisation of processed graph object, especially that includes too many nodes. This step makes it easily to follow the processes.

Value

the graph object.

Examples

```
data('minsamp')
minsamp %>%
    priming_graph(Competing_expression, miRNA_expression) %>%
    update_how('Gene2',2)
```

update_variables

Replaces new values with previous values of competing or miRNA counts.

Description

This function replaces new values with previous values of competing or miRNA counts.

Usage

```
update_variables(input_graph, current_counts)
```

Arguments

Details

update_variables function provides updating edge variables to current values. If the microRNA or competing expression (or both) change (decreasing or increasing), this function switches the values that are found in a new dataset provided by user. But the current value dataset must be equal with initial dataset in terms of node name.

Value

the graph object.

vis_graph

Examples

```
data('minsamp')
data('new_counts')

minsamp%>%
priming_graph(Competing_expression, miRNA_expression,
    aff_factor = c(seed_type,energy), deg_factor = region)%>%
    update_variables(new_counts)
    #new_counts includes the current counts of nodes.
```

vis_graph

Provides visualisation of the graph.

Description

'vis_graph' Provides visualisation of the graph.

Usage

```
vis_graph(
  input_graph,
  Competing_color = "green",
  mirna_color = "orange",
  Upregulation = "red",
  Downregulation = "blue",
  title = "GRAPH",
  layout = "kk"
)
```

Arguments

input_graph The graph object.

Competing_color

The color of competing elements on the graph with 'green' default.

mirna_color The color of miRNAs on the graph with 'orange' default.

 $\label{thm:color} \mbox{Upregulated elements on the graph with 'red' default.}$

Downregulation The color of Downregulated elements on the graph with 'blue' default.

title Title of the given graph.

layout The layout that will be used for visualisation of the graph.

Details

vis_graph ensures the process to be followed.

vis_graph 23

Value

The graph object.

```
data('minsamp')
data('new_counts')

# Visualisation of graph in steady-state.

priming_graph(minsamp, Competing_expression, miRNA_expression,
    aff_factor = c(seed_type,energy), deg_factor = region)%>%
    vis_graph()

# Visualisation of graph after the change.

priming_graph(minsamp, Competing_expression, miRNA_expression,
    aff_factor = c(seed_type,energy), deg_factor = region)%>%
    update_variables(new_counts)%>%
    vis_graph()
```

Index

```
* internal
    gene_knockdown, 8
    normalize, 12
    prepare_rhs, 12
    prepare_rhs_once, 13
calc_perturbation, 3
find_affected_nodes, 4
find\_iteration, 5
find_node_perturbation, 6
find_targeting_nodes, 7
gene_knockdown, 8
huge_example, 9
midsamp, 9
midsamp_new_counts, 10
minsamp, 10
mirtarbasegene, 11
new_counts, 11
normalize, 12
prepare_rhs, 12
prepare_rhs_once, 13
priming_graph, 13
simulate, 14
simulate_vis, 15
TCGA_E9_A1N5_mirnanormal, 17
TCGA_E9_A1N5_mirnatumor, 17
TCGA_E9_A1N5_normal, 18
TCGA_E9_A1N5_tumor, 19
update_how, 19
update_nodes, 20
update_variables, 21
vis_graph, 22
```