Package ‘beadarray’

April 7, 2025

Title Quality assessment and low-level analysis for [llumina BeadArray
data

Version 2.57.0

Date 2024-10-17

Author Mark Dunning, Mike Smith, Jonathan Cairns, Andy Lynch, Matt Ritchie
Maintainer Mark Dunning <m. j.dunning@sheffield.ac.uk>

Description The package is able to read bead-level data (raw TIFFs and text
files) output by BeadScan as well as bead-summary data from BeadStudio.
Methods for quality assessment and low-level analysis are provided.

Depends R (>=2.13.0), BiocGenerics (>= 0.3.2), Biobase (>= 2.17.8),
hexbin

Imports BeadDataPackR, limma, AnnotationDbi, stats4, reshape?2,
GenomicRanges, [Ranges, illuminaio, methods, ggplot2

Suggests lumi, vsn, affy, hwriter, beadarrayExampleData,
illuminaHumanv3.db, gridExtra, BiocStyle,
TxDb.Hsapiens.UCSC.hg19.knownGene, ggbio, Nozzle.R1, knitr

License MIT + file LICENSE

biocViews Microarray, OneChannel, QualityControl, Preprocessing
LazyData yes

VignetteBuilder knitr

git_url https://git.bioconductor.org/packages/beadarray

git_branch devel

git_last_commit 21fcf33

git_last_commit_date 2024-10-29

Repository Bioconductor 3.21

Date/Publication 2025-04-07

2 Contents

Contents
beadarray-package L 3
addFeatureData 4
ANNOLAtion e e e e e e 5
backgroundCorrectSingleSection oL 6
BASH e e 7
BASHCompact e e e e 11
BASHDiIffuse e 13
BASHExtended e e 15
beadarrayUsersGuide L 16
beadIntensityPlots 17
beadLevelData-class e e 18
BeadLevelList-class 19
beadRegistrationData-class L 20
boxplot-methods 21
calculateDetection e e e e e 22
calculateOutlierStats e e e 23
checkRegistration e 25
COMDING v v vt e 26
controlProbeDetection 27
convertBeadLevelLlist 28
createTargetsFile e 29
deprecatedFunctions L 30
dim .. e e e 30
expressionQCPipeline 31
ExpressionSetlllumina-class L o 32
generateNeighbours oL 33
getBeadData e e 35
HULK . . e e 36
identifyControlBeads L 37
illuminaChannel-class e 38
illuminaOutlierMethod 39
Imageplot 40
imageProcessing 42
insertBeadData L 43
insertSectionData L. e 44
IimmaDE e 45
limmaResults-class 46
makeGEOSubmissionFiles 46
makeQCProfile 48
makeQCTable e e 49
medianNormalise L. 50
metaTemplate L 51
metrics-methodso L L 51
noOutlierMethod e e 52
normaliselllumina 53

numBeads 55

beadarray-package 3

outlierplot e e e e 56
platformSigs e 57
plotBeadLocations 57
plotChipLayout 58
plotMA-methods 59
PIOtMAXY . . e e e 60
PIOtTIFF o e 61
poscontPlot e 63
processSwathData L 64
quickSummary e 65
readBeadSummaryData L 66
readldatFiles 69
readlllumina L 70
readLocsFile 71
readSampleSheet 72
readTIFF 0 e 73
SECtIONNAMES v it e e e e e e e e 74
setWeights L L 75
show-method 75
showArrayMask L e e 76
squeezedVarOutlierMethod 77
SUMMATIZE .« « . v v v v v ot e 78
transformFunctionso 80
weightsOutlierMethod 82
Index 83
beadarray-package The beadarray package: a tool for low-level analysis of Illumina
BeadArrays
Description

The beadarray package: a tool for low-level analysis of Illumina BeadArrays

Author(s)

Mark Dunning, Mike Smith, Jonathan Cairns, Matt Richie, Andy Lynch

4 addFeatureData

addFeatureData Add probe data

Description
Adds extra probe-specific data to an ExpressionSetIllumina object using an installed annotation
package

Usage

addFeatureData(data, toAdd = c("SYMBOL", "PROBEQUALITY",
"CODINGZONE", "PROBESEQUENCE"), annotation = NULL)

Arguments
data An ExpressionSetlllumina object
toAdd Either a pre-prepared data frame, or characters which refer to mappings within
an annotation pacakge
annotation Optional character identifying the annotation of the ExpressionSetlllumina ob-
ject. e.g. Humanv3, Mousev2.
Details

The function will identify which package should be used by concatenating the character string
illumina with the value of the annotation slot of the object, or the annotation argument passed in. If
this package is not installed on the users computer, then the function will fail.

Assuming the package has been correctly loaded, the character vector toAdd is converted to the
names of environments within the package. These environments are then queried with the featureNames
of the input object. The result of each query is converted to a data frame and merged with the orig-

inal feature data of the object.

Alternatively, rather than querying from an annotation pacakge, a pre-prepared data frame can be
used.

Value
An ExpressionSetlllumina object with modified featureData
Examples
if(require(beadarrayExampleData)){
data(exampleSummaryData)
exampleSummaryData <- addFeatureData(exampleSummaryData)

head(fData(exampleSummaryData))
3

Annotation 5

Annotation Storage of annotation information

Description

An interface to set or retrieve information about the annotation of a beadLevelData or ExpressionSetIllumina

object.
Usage
suggestAnnotation(data, verbose=FALSE)
annotation(object,...)
Arguments
data An object of class beadLevelData-class
verbose If TRUE, report overlaps with known platforms
object Either a beadLevelData-class or ExpressionSetIllumina-class

Extra arguments used by annotation

Details

A character string is used to specify the annotation with the currently supported values being; Hu-
manv4, Humanv3, Humanv2, Humanv1, Mousev2, Mousev1, Mousev1pl and Ratv1. This string is
used within beadarray to retrieve control probe IDs within particular QC functions.

The suggestAnnotation function tries to determine a suitable value for a beadLevelData-class
based on the probe IDs and compiled list of IDs from all expression platforms. This is based on
the percentage of IDs on the array that overlap with IDs from known platforms. The platform with
highest overlap is chosen.

Author(s)

Mark Dunning

Examples
if(require(beadarrayExampleData)){
data(exampleBLData)
annotation(exampleBLData)
suggestAnnotation(exampleBLData, verbose=TRUE)

annotation(exampleBLData) <- "Humanv2"

6 backgroundCorrectSingleSection

data(exampleSummaryData)
annotation(exampleSummaryData)
annotation(exampleBLData) <- "Humanv1"

}

backgroundCorrectSingleSection
Background correct an array-section

Description
Function to perform a basic bead-level background correction using a defined set of foreground and
background intensities.

Usage

backgroundCorrectSingleSection(BLData, array =1, fg="Grn", bg="GrnB", newName = "Grn.bc")

Arguments
BLData a beadLevelData object
array the number of the array-section to be corrected
fg the name under which the foreground intensities are stored
bg the name under which the background intensities are stored
newName Name to store the corrected intensities

Details

This function takes two attributes of a bead-level object and returns that bead-level object with an
additional attribute consisting of the difference of the other two. We anticipate this being used as
a simple background correction step, returning the difference between foreground and background
intensities to be used as the specific intensity associated with a bead.

Functions to perform more advanced background correction steps can easily be constructed after
consideration of this function.

Value

beadLevelData object with modified beadData slot for the particular section

BASH 7

Author(s)

Mark Dunning

Examples

Not run:
if(require(beadarrayExampleData)){
data(exampleBLData)
head(exampleBLDatal[[11])
for(i in 1:2){
exampleBLData = backgroundCorrectSingleSection(exampleBLData, array=i)
}
head(exampleBLDatal[[1]])
} else {

stop("You will need the beadarrayExampleData package to run this example”)

End(Not run)

BASH BASH - BeadArray Subversion of Harshlight

Description

BASH is an automatic detector of physical defects on an array. It is designed to detect three types
of defect - COMPACT, DIFFUSE and EXTENDED.

Usage

BASH(BLData, array, neighbours=NULL, transFun = logGreenChannelTransform,
outlierFun = illuminaOutlierMethod, compn=3, wtsname=NULL, compact = TRUE,
diffuse = TRUE, extended = TRUE, cinvasions = 10, dinvasions = 15,
einvasions = 20, bgcorr = "median”, maxiter = 1@, compcutoff = 8,
compdiscard = TRUE, diffcutoff = 10, diffsig = 0.0001, diffn = 3,
difftwotail = FALSE, uselLocs = TRUE, ...)

Arguments

BLData
array

neighbours

transFun
outlierFun

compn

wtsname

compact
diffuse
extended
cinvasions

dinvasions

einvasions

bgcorr

maxiter

compcutoff

compdiscard

diffcutoff

diffsig

diffn

BASH

BeadlLevellist
integer specifying which section/array to plot.

the user may specify the neighbours matrix, rather than have BASH calculate
it. Time can be saved if using BASH and HULK, by calculating the neighbours
matrix once and passing it to the two functions.

function to use to transform data prior to running BASH
the choice of outlier calling function to use.

Numerical - when finding outliers in the compact analysis, how many MADs
away from the median (for example) an intensity must be for it to be labelled an
outlier.

name under which bead weights are stored in the BLData object. It is only
necessary to specify this if a) weights have already been set, and b) you wish
BASH to observe them.

Logical - Perform compact analysis?

Logical - Perform diffuse analysis?

Logical - Perform extended analysis?

Integer - number of invasions used whenever closing the image - see BASHCompact

Integer - number of invasions used in diffuse analysis, to find the kernel - see
BASHDiffuse

Integer - number of invasions used when filtering the error image - see BGFilter.

One of "none", "median", "medianMAD" - Used in diffuse analysis, this de-
termines how we attempt to compensate for the background varying across an
array. For example, on a SAM array this should be left at "median", or maybe
even switched to "none", but if analysing a large beadchip then you might con-
sider setting this to "medianMAD". (this code is passed to the method argument
of BGFilter). Note that "none" may be the correct setting if HULK has already
been applied.

Integer - Used in compact analysis - the max number of iterations allowed. (Ex-
ceeding this results in a warning.)

Integer - the threshold used to determine whether a group of outliers is in a com-
pact defect. In other words, if a group of at least this many connected outliers is
found, then it is labelled as a compact defect.

Logical - should we discard compact defect beads before doing the diffuse ana-
lyis?

Integer - this is the threshold used to determine the minimum size that clusters
of diffuse defects must be.

Probability - The significance level of the binomial test performed in the diffuse
analysis.

Numerical - when finding outliers on the diffuse error image, how many MADs
away from the median an intensity must be for it to be labelled an outlier.

BASH 9

difftwotail Logical - If TRUE, then in the diffuse analysis, we consider the high outlier and
low outlier images seperately.

uselocs Logical - If TRUE then a .locs file corresponding to the array is sought and, if
found, used to identify the neighbouring beads. If FALSE the neighbours are
infered algorithmically. See generateNeighbours for more details.

Logical - Perform compact analysis?

Details

The BASH pipeline function performs three types of defect analysis on an image.

The first, COMPACT DEFECTS, finds large clusters of outliers, as per BASHCompact. The outliers
are found using findAllOutliers(). We then find which outliers are clustered together. This
process is iterative - having found a compact defect, we remove it, and then see if any more defects
are found.

The second, DIFFUSE DEFECTS, finds areas which are densely populated with outliers (which are
not necessarily connected), as per BASHDiffuse. To make this type of defect more obvious, we first
generate an ERROR IMAGE, and then find outliers based on this image. (The error image is cal-
culated by using method = "median” and bgfilter = "medianMAD" in generateE, unless ebgcorr
= FALSE in which case we use bgfilter = "median”.) Now we consider a neighbourhood around
each bead and count the number of outlier beads in this region. Using a binomial test we determine
whether this is more that we would expect if the outliers were evenly spread over the entire array.
If so, we mark it as a diffuse defect. (A clustering algorithm similar to the compact defect analysis
is run to reduce false positives.)

After each of these two analyses, we "close" the image, filling in gaps.

The third, EXTENDED DEFECTS, returns a score estimating how much the background is chang-
ing across an array, as per BASHExtended. To estimate the background intensity, we generate
an error image using the median filter (i.e. generateE with method = "median” and bgfilter
= "median”). We divide the variance of this by the variance of an error image without using the
median filter, to obtain our extended score.

It should be noted that to avoid repeated computation of distance, a "neighbours" matrix is used in
the analysis. This matrix describes which beads are close to other beads. If a large number of beads
are missing (for example, if beads with ProbeID = 0 were discarded) then this algorithm may be
affected.

For more detailed descriptions of the algorithms, read the help files of the respective functions listed
in "see also".

BASH is currently quite a slow, memory-intensive function. It will only run on a single array at a
time, and for analysis of multiple arrays, we recommend parallelising the command. An example
is shown using the base parallel package.

Value

The output is a list with four attributes:

wts: A vector of weights for the matrix.

ext: A vector of extended scores (null if the extended analysis was disabled).
QC: A summary of the extended score and the number of beads masked.
call: The function you used to call BASH.

10 BASH

Author(s)

Jonathan Cairns

References
J. M. Cairns, M. J. Dunning, M. E. Ritchie, R. Russell, and A. G. Lynch (2008). BASH: a tool for
managing BeadArray spatial artefacts. Bioinformatics 15; 24(24)

See Also

BASHCompact, BASHDiffuse, BASHExtended, generateNeighbours, HULK

Examples
Not run:
if(require(beadarrayExampleData)){
data(exampleBLData)
output <- BASH(exampleBLData,array=1,useLocs=FALSE)

exampleBLData <- setWeights(exampleBLData, output$wts, array=1) #apply BASH weights to exampleBLData

###BASH only accepts one array at a time, but it can be made to run in a parallel fashion
library(parallel)

output <- mclapply(c(1,2), function(x) BASH(exampleBLData, array=x, useLocs=FALSE))
for(i in 1:2){

exampleBLData <- setWeights(exampleBLData, output[[i]]l$wts, array=i)
}

#diffuse test is stricter
output <- BASH(exampleBlLData, diffsig = 0.00001,array=1, useLocs=FALSE)

#more outliers on the error image are used in the diffuse analysis
output <- BASH(exampleBLData, diffn = 2,array=1, uselLocs=FALSE)

#only perform compact & diffuse analyses (we will only get weights)
output <- BASH(exampleBLData, extended = FALSE,array=1, useLocs=FALSE)

#attempt to correct for background.
output <- BASH(exampleBLData, bgcorr = "median”,array=1, useLocs=FALSE)
3

else{

stop(”"You will need the beadarrayExampleData package to run this example”)

}

BASHCompact

End(Not run)

11

BASHCompact

BASH - Compact Defect Analysis

Description

Creates a list of probes marked as being in compact defects.

Usage

BASHCompact(inten, probelDs, neighbours = NULL, wts=1, n=3, maxiter = 10,
cutoff = 8, cinvasions = 10, outlierFun=illuminaOutlierMethod, ...)

Arguments

inten

probelDs

neighbours

wts

n

maxiter
cutoff
cinvasions

outlierFun

Details

the (transformed) intensities associated with beads on an array.

the probe identities associated with those beads (i.e. indicating which beads are
of which sort)

A Neighbours matrix such as that generated by generateNeighbours. Com-
pulsory - the function will no longer generate this for you.

weights indicating any beads to be masked in calculations.

Specify a cut-off for outliers (e.g. as n median absolute deviations (MADs) from
the median). The default value is 3

Integer - Maximum number of iterations.

Integer - Size a cluster must be to be labelled a compact defect.
Integer - Number of invasions used when closing the image.
the choice of outlier calling function to use.

Additional arguments to be passed to outmeth.

BASHCompact finds "compact defects" on an array. A compact defect is defined as a large connected

cluster of outliers.

This function first finds the outliers on an array. This is done via the user’s choice of function (e.g.
illuminaOutlierMethod or squeezedVarOutlierMethod.

Next, using the Neighbours matrix and a Flood Fill algorithm, it determines which beads are in
large connected clusters of outliers (of size larger than cutoff). These beads are then temporarily
removed and the process repeated with the remaining beads. The repetition continues until either
no large clusters of outliers remain, or until we have repeated the process maxiter times (and in
this case, a warning will be given). In this way, we obtain a list of defective probes.

12 BASHCompact

Finally, we "close" the image, to fill in small gaps in the defect image. This consists of a "dilation"
and an "erosion". In the dilation, we expand the defect image, by adding beads adjacent to defective
beads into the defect image. This is repeated cinvasions times. In the erosion, we contract the
defect image, by removing beads adjacent to non-defective beads from the defect image. (Erosion
of the defect image is equivalent to a dilation of the non-defective image.)

Value

A vector consisting of the BeadIDs of beads labelled as compact defects.

Author(s)

Jonathan Cairns

References

J. M. Cairns, M. J. Dunning, M. E. Ritchie, R. Russell, and A. G. Lynch (2008). BASH: a tool for
managing BeadArray spatial artefacts. Bioinformatics 15; 24(24)

See Also

BASH, generateNeighbours

Examples

Not run:
if(require(beadarrayExampleData)){

data(exampleBLData)

0 <- BASHCompact(getBeadData(exampleBLData,array=1,what="Grn"),
getBeadData(exampleBLData,array=1,what="ProbeIDs"))

##increased no of closure invasions

0 <- BASHCompact(getBeadData(exampleBLData,array=1,what="Grn"),
getBeadData(exampleBLData,array=1,what="ProbelDs"), cinvasions = 10)

##only larger defects will be found with this setting

0 <- BASHCompact(getBeadData(exampleBLData,array=1,what="Grn"),

getBeadData(exampleBLData,array=1,what="ProbelDs"), cutoff = 12)

End(Not run)

BASHDiffuse

13

BASHDiffuse

BASH - Diffuse Defect Analysis

Description

Creates a list of probes marked as being in diffuse defects.

Usage

BASHDiffuse(inten, probeIDs, wts=NULL, neighbours = NULL, E = NULL, n = 3,
compact = NULL, sig = ©0.0001, invasions = 10, cutoff = 8, cinvasions = 10,

twotail = FALSE, einvasions = 20, outlierFun = illuminaOutlierMethod, ...)
Arguments

inten the (transformed) intensities associated with beads on an array.

probelDs the probe identities associated with those beads (i.e. indicating which beads are
of which sort)

wts weights indicating any beads to be masked in calculations.

neighbours A Neighbours matrix such as that generated by generateNeighbours. Com-
pulsory - the function will no longer generate this for you.

E Numerical vector - The error image to use. Optional - if left blank, it will be
computed, using generatek using bgfilter = "median”.

n Specify a cut-off for outliers (e.g. as n median absolute deviations (MADs) from
the median). The default value is 3

compact Vector - Optional. BeadIDs of beads in compact defects to remove from the
analysis.

sig Numerical - Significance level of binomial test.

invasions Integer - Number of invasions to use to find the kernel (see below).

cutoff Integer - Size a cluster must be to be labelled a diffuse defect.

cinvasions Integer - Number of invasions used when closing the image.

twotail Logical - If TRUE, then we analyse positive and negative outliers separately,
and then combine the diffuse defect images at the end.

einvasions Integer - Number of invasions used when forming the error image E.

outlierFun the choice of outlier calling function to use.

Additional arguments to be passed to outmeth.

14 BASHDiffuse

Details

BASHDiffuse finds "diffuse defects" on an array. A diffuse defect is defined as a region containing
an unusually large number of (not necessarily connected) outliers.

Firstly, we consider the error image E, and find outlier beads on this image. Outliers for a particular
bead type are determined using a 3 MAD cut-off from the median.

We now consider an area around each bead (known as the "kernel"). The kernel is found by an
invasion process using the neighbours matrix - we choose the beads which can be reached from the
central bead in cinvasions steps.

We count how many beads are in the kernel, and how many of these are marked as outliers. Using
a binomial test, we work out if there are significantly more outliers in the kernel than would be
expected if the outliers were equally distributed over the entire array. If so, then the central bead is
marked as a diffuse defect.

Lastly, we run a clustering algorithm and a closing algorithm similar to those in BASHCompact.

Value

A vector consisting of the BeadIDs of beads considered diffuse defects.

Author(s)

Jonathan Cairns

References

J. M. Cairns, M. J. Dunning, M. E. Ritchie, R. Russell, and A. G. Lynch (2008). BASH: a tool for
managing BeadArray spatial artefacts. Bioinformatics 15; 24(24)

See Also

BASH, generateNeighbours

Examples

Not run:

if(require(beadarrayExampleData)){
data(exampleBLData)
o <- BASHDiffuse(getBeadData(exampleBLData,array=1,what="Grn"), getBeadData(exampleBLData,array=1,what="ProbelD

0 <- BASHDiffuse(getBeadData(exampleBLData,array=1,what="Grn"), getBeadData(exampleBLData,array=1,what="ProbelD
0 <- BASHDiffuse(getBeadData(exampleBLData,array=1,what="Grn"), getBeadData(exampleBLData,array=1,what="ProbelD

}

End(Not run)

BASHExtended 15

BASHExtended BASH - Extended Defect Analysis

Description
Returns a score, which assesses the extent to which the background is changing across the ar-
ray/strip.

Usage

BASHExtended(BLData, array, transFun = logGreenChannelTransform, neighbours = NULL, uselLocs = TRUE, E =

Arguments

BLData BeadLevellList

array integer specifying which section/array to analyse

transFun Function to use to transform data prior to running BASH.

neighbours A Neighbours matrix. Optional - if left NULL, it will be computed, using default
generateNeighbours settings.

uselLocs Logical value, specifiying whether the .locs file (if present) should be used to
determine neighbours.

E Numerical vector - The error image to use. Optional - if left blank, it will be
computed, using generatek (with bgfilter = "none”,i.e. no background filter
applied).

E.BG Numerical vector - The background error image to use. Optional - if left blank,
it will be computed from E, using default BGFilter settings (i.e. method =
"median”).

Details

BASHExtended assesses the change of background across an array.

The error image used should not be background filtered (as opposed to the error image used in
BASHDiffuse). Here, E is the error image
Value

Scalar (Extended defect score)

Author(s)

Jonathan Cairns

References

J. M. Cairns, M. J. Dunning, M. E. Ritchie, R. Russell, and A. G. Lynch (2008). BASH: a tool for
managing BeadArray spatial artefacts. Bioinformatics 15; 24(24)

16 beadarrayUsersGuide

See Also

BASH, generateNeighbours,

Examples

Not run:

if(require(beadarrayExampleData)){

data(exampleBLData)
extended <- BASHExtended(exampleBLData, 1)

End(Not run)

beadarrayUsersGuide View beadarray User’s Guide

Description

Finds the location of the beadarray User’s Guide and opens it.

Usage

beadarrayUsersGuide(view=TRUE, topic="beadlevel”)

Arguments
view logical, should the document be opened using the default PDF document reader?
(default is TRUE)
topic character string specifying topic ("beadlevel”, "beadsummary” or "BASH")
Details

The function vignette("beadarray"”) will find the short beadarray vignette which describes how
to obtain the more detailed user’s guide on the analysis of raw "beadlevel” data, "beadsummary”
data or how to use the "BASH"” method for detecting spatial artefacts.

Value

Character string giving the file location.

beadIntensityPlots 17

Author(s)
Matt Ritchie

Examples

beadarrayUsersGuide (view=FALSE)
beadarrayUsersGuide(view=FALSE, topic="beadsummary")

beadIntensityPlots Plotting the intensities of selected beads on a section

Description

The function will plot the intensities of selected beads on a specified array

Usage

plotBeadIntensities(BLData, array = 1, BeadIDs, transFun = logGreenChannelTransform, cols = NULL, ..

Arguments
BLData a beadLevelData object
array numeric specifying which array to plot the intensities from
BeadIDs what ArrayAddress IDs to be plotted
transFun function specifying what transformation to be applied to the beadLevelData
prior to plotting
cols a vector of colours to be used to plot each ID. If NULL the rainbow function is
used to generate colours.
other argument that may be passed along to plot.
Details

The function will take all data from the specified section, apply the transformation (the default is to
do log2) and then find the subset of beads that have the specified ID. These IDs should match the
numeric ArrayAddress IDs that are stored in the beadLevelData object.

Value

Plot is produced on current graphical device.

Author(s)

Mark Dunning

>

18 beadLevelData-class

Examples

if(require(beadarrayExampleData)){

data(exampleBLData)
randIDs = sample(getBeadData(exampleBLData, array=1, what="ProbeID"),10)
plotBeadIntensities(exampleBLData, array=1, BeadIDs = randIDs)

}

beadLevelData-class Class "beadLevelData"

Description

A class for storing red and green channel foreground and background intensities from an Illumina
experiment.

Objects from the Class

Objects can be created by calls of the form new("beadLevelData"), but are usually created by
readIllumina.

Slots/List Components

Objects of this class contain the following slots

beadData: A list of arrays, indexed by array name. Each item in this list is itself a list, containing enviroments holdi
sectionData: a list containing information. Each item in the list is a data frame containing one row for each section
experimentData: a list containing the annotation of the platform, link to the sdf file and type of data (slide or Sentrix Array
history: Character vector storing the operations performed on this object.

Methods

show(beadLevelData) Printing method for BeadLevelList
sectionNames(object,arrays=NULL) Returns the strip/array names from a

numBeads (object,arrays=NULL) Returns the number of beads on selected arrays

Accessing data from the class

getBeadData retrieve data

insertBeadData Input or modify existing data

BeadLevelList-class 19

Author(s)
Mark Dunning, Mike Smith

See Also

readIllumina

Examples

if(require(beadarrayExampleData)){

data(exampleBLData)
sectionNames(exampleBLData)
head(exampleBLDatal[[1]])

getBeadData(exampleBLData, array=1, what="Grn")[1:10]

BeadlLevellList-class Class "BeadLevelList"

Description
A class for storing red and green channel foreground and background intensities from an Illumina
experiment.

Objects from the Class
Objects can be created by calls of the form new("BeadLevellList"), but are usually created by
readIllumina.

Slots/List Components

Objects of this class contain the following slots

beadData: an environment for storing the raw bead-level data. Each row correspond to a bead and columns the data.
phenoData: an ’AnnotatedDataFrame’ containing experimental information.
arrayInfo: a list containing array information.

annotation: character storing annotation package information.

20

Methods

arrayNames (object
for selected arr

beadRegistrationData-class

,arrays=NULL) Returns the strip/array names from a BeadLevellList object
ays

getArrayData(object,what="G",log=TRUE) Retrieves the what intensities on the 1og scale from

the BeadLevellL

Author(s)

ist

Mark Dunning and Matt Ritchie

beadRegistrationData-class

Class "beadRegistrationData"

Description

A class for storing information relating to the registration of the image.

Slots/List Components

Objects of this class contain the following slots

layout:
registrationData:
coordinateData:
cornerData:
p95:
imagelocations:
metrics:

Methods

A list entry containing details of the structure of a BeadChip. By default entries for the number of sect
A list with length equal to the total number of segments registered. Each entry contains a vector of the
A list with length equal to the total number of segments registered. Each entry contains the coordinates:
A list with length equal to the total number of segments registered. Each entry contains a set of four co
A numeric vector storing the 95th percentile of bead intensities within each segment.

Character vector storing the location of the tiff images of the array. These are obtained from the sectior
A data.frame, where each line contains the appropriate entry from the Metrics.txt file. Currently not us

boxplot(regScores, plotP95 = FALSE)

Author(s)
Mike Smith

See Also

checkRegistration

boxplot-methods 21

boxplot-methods Boxplots from summary data

Description

The standard boxplot function has been extended to work with the ExpressionSetIllumina class.
Moreover, it generates graphics using the ggplot2 package and can incorporate user-defined factors
into the plots.

Details

Extra factors can be added to the plots provided they are present in either the phenoData or
featureData or the object.

Value

A ggplot object is produced and displayed on screen

Author(s)

Mark Dunning
Examples
if(require(beadarrayExampleData)){
data(exampleSummaryData)
subset <- channel(exampleSummaryData, "G")[,1:8]
boxplot(subset)

boxplot(subset, what="nObservations")

###You can use columns from the featureData in the plots. Here we will use the control-type
head(fData(subset))

table(fData(subset)[,”Status”])

boxplot(subset, probeFactor = "Status”)

###Similarly, we group samples according to colums in phenoData

pData(subset)

boxplot(subset, SampleGroup = "SampleFac")

22 calculateDetection

##Both sample and probe factors can be combined into the same plot

boxplot(subset, SampleGroup = "SampleFac"”, probeFactor = "Status")

##Suppose we have found differentially expressed genes between experimental conditions and want to plot their respc
if(require(illuminaHumanv3.db)){

ids <- unlist(mget("ALB", revmap(illuminaHumanv3SYMBOL)))
subset2 <- subset[ids,]

boxplot (subset2, SampleGroup = "SampleFac")
boxplot(subset2, SampleGroup = "SampleFac”, probeFactor = "IlluminaID")

calculateDetection Calculate detection scores

Description

Function to calculate detection scores for summarized data if they are not available.

Usage

calculateDetection(BSData, status=fData(BSData)$Status, negativelLabel="negative")

Arguments
BSData An ExpressionSetlllumina object
status character vector giving probe types

negativelabel character giving identifer for negative controls

Details

Detection scores are a measure of whether the probe is showing any specific expression. This func-
tion implements Illumina’s method for calculating the detection scores for all bead types on a given
array. Within an array, [llumina discard negative control bead-types whose summary values are
more than three MADs from the median for the negative controls. Illumina then rank the summa-
rized intensity for each other bead-type against the summarized values for the remaining negative
control bead-types and calculate a detection p-value 1-R/N, where R is the relative rank of the bead
intensity when compared to the N remaining negative controls. Thus, if a particular bead has
higher intensity than all the negative controls it will be assigned a value of 0. This calculation is
repeated for all arrays.

The function expects the negative controls to be indicated by the Status column in the featureData
slot of the ExpressionSetIllumina object. If this is not present the user can supply a status vector
with the same length as the number of rows in the ExpressionSetlllumina object.

calculateOutlierStats 23

Value

Matrix of detection scores with the same dimensions as the exprs matrix of BSData. This matrix
can be stored in a ExpressionSetlllumina object using the Detection function

Author(s)
Mark Dunning and Andy Lynch

Examples
if(require(beadarrayExampleData)){

data(exampleSummaryData)
##By default, the status column of featureData is used

exampleSummaryData.log2 <- channel(exampleSummaryData ,"G")

det <- calculateDetection(exampleSummaryData.log?2)
Detection(exampleSummaryData.log2) <- det

##Example of specifying own status vector

exampleSummaryData.log2 <- addFeatureData(exampleSummaryData.log?2)
pq <- fData(exampleSummaryData.log2)$PROBEQUALITY

det2 <- calculateDetection(exampleSummaryData.log2, status="pq"”, negativelLabel="No match")

}

calculateOutlierStats Outlier distribution stats

Description
Function that determines the outlier beads on an array and how they are distributed among the
segments

Usage

calculateQutlierStats(BLData, array = array, transFun = logGreenChannelTransform, outlierFun = illumin

Arguments
BLData a beadLevelData-class object
array the number of the array of interest

transFun how the section data is to be transformed prior to calculating outliers

24 calculateOutlierStats

outlierFun a function for calculating outliers

n an indicator of how extreme an observation must be (e.g. how many MADs from
the median), to be passed to the function that will identify outliers

uselLocs use locs and sdf information (if available) to determine section layout
nSegments manually set how many segments the section is divided into

Additional arguments to be passed to outmeth.

Details

A section of an expression BeadChip (e.g. the Humanv3 or HumanHT-12) is made up of 9 physcially-
separate segments. A useful QA check is to see how the outliers are distributed among these seg-
ments. Outliers are beads that have outlying intensities according to some rule that the user can
specify. The default (as used by Illumina) is to exclude beads that are more than 3 median absolute
deviations from the median. Once outliers are determined, the coordinates for these outliers are
binned into segments by assuming that the segments are evenly spaced across the section surface.

Note that sections from Sentrix Array Matrix do not have segments, so the results may not be
informative

Value

vector with the percentage of beads found in each segment that were determined to be outliers

Author(s)

Mark Dunning

Examples
if(require(beadarrayExampleData)){
data(exampleBLData)
##Artificial example, there are no segments on this type of BeadArray
calculateOutlierStats(exampleBLData, array=1, nSegments=10, useLocs=FALSE)

calculateOutlierStats(exampleBLData, array=2, nSegments=10, uselLocs=FALSE)

checkRegistration 25

checkRegistration Perform check for misregistered array segments.

Description

Occasionally the registration of an array can go wrong, with the bead centres found in the wrong
place in an image. The effective result of this is a scrambling of the bead IDs.

Note that the function requires that the sdf file and locs file are present, and has particular expecta-
tions towards their file names and locations.

Usage
checkRegistration(BLData, array = 1)
Arguments
BLData An object of class beadLevelData-class.
array Integer specifying the index of the arrays to be checked. Can be a vector to
process multiple arrays e.g. 1:12.
Details

In order to check for mis-registration we can examine the within bead-type variance across the array.
This function computes this statistic twice for each array segment (since each segment is registered
independently), once using the given bead IDs and once using a randomly assigned set of IDs. The
former is then subtracted from the later. In cases where the registration has worked successfully
we expect the majority of these values to be greater than zero, which for misregistered arrays the
differences should be centred about zero.

Value

Returns an object of class beadRegistrationData.

Author(s)

Mike Smith

References

Smith ML, Dunning MJ, Tavare S, Lynch AG. Identification and correction of previously unreported
spatial phenomena using raw [llumina BeadArray data. BMC Bioinformatics (2010) 11:208

26 combine

combine Combine two objects.

Description

Combine two seperate objects into a single object.

Usage

S4 method for signature 'beadlLevelData,beadlLevelData'
combine(x, y)

S4 method for signature 'ExpressionSetIllumina,ExpressionSetIllumina
combine(x,y)

Arguments
X An object of class beadLevelData or ExpressionSetIllumina.
y An object of the same class as x.

Details

The combine function allows two objects of the same class that have been created seperately to be
combined into one.

Value

Returns an object of the same class as the two inputs.

Author(s)
Mark Dunning, Mike Smith

Examples
if(require(beadarrayExampleData)){
data(exampleBLData)
sectionNames(exampleBLData)
data2 <- combine(exampleBLData, exampleBLData)
sectionNames(data2)

3

controlProbeDetection 27

controlProbeDetection Percentage of beads detected

Description

Function to calculate the percentage of beads matching a defined set of control types that are de-
tected as having intensity above background level on an array-section.

Usage

controlProbeDetection(BLData, transFun = logGreenChannelTransform, array = 1, controlProfile = NULL, t:

Arguments
BLData a beadLevelData object
transFun transformation to be applied to data
array a numeric index of the array section

controlProfile optional data frame defining ArrayAddressIDs belonging to each control type

tagsToDetect vector of character strings defined which control types to interrogate

negativeTag character string defining which control type to use as background
detThresh numeric value for threshold for detection
Details

Details of the controls on the array-section can be inferred from the annotation of the beadLevelData
object or supplied as a data frame. The first column of the data frame should contain ArrayAd-
dressIDs, with the control type of the each ID in the second column. The strings supplied in the
tagsToDetect and negativeTag parameters should be present in this column.

The ArrayAddressIDs that correspond to the specified tags are matching to the ArrayAddressIDs
for the chosen array and intensities for all beads are extracted. The function implements Illumina’s
method for calculating the detection scores for all bead types on a given array. Within an array,
Illumina discard negative control bead-types whose summary values are more than three MADs
from the median for the negative controls. Illumina then rank the summarized intensity for each
other bead-type against the summarized values for the remaining negative control bead-types and
calculate a detection p-value 1-R/N, where R is the relative rank of the bead intensity when com-
pared to the N remaining negative controls. Thus, if a particular bead has higher intensity than
all the negative controls it will be assigned a value of 0. This calculation is repeated for all arrays.

The percentage reported is the percentage of beads of each control type that are detected at the
defined threshold.

Author(s)

Mark Dunning

28 convertBeadLevelList

See Also

beadStatusVector,calculateDetection
Examples
if(require(beadarrayExampleData)){
data(exampleBLData)
for(i in 1:2){
print(controlProbeDetection(exampleBLData, array = i, tagsToDetect=c("housekeeping”, "biotin"), negativeTag="neg
3
3

convertBeadlLevellList Convert a BeadLevelList object into a beadLevelData object

Description

As of beadarray version 2.0 the BeadLevelList class has been deprecated and replaced by the
beadLevelData class. Whilst these are superficially similar, the way the data are stored is quite
different, meaning most functionality within the package is no longer compatible with the original
BeadLevelList class.

This function converts any object that is of the old BeadLevelList class into a beadLevelData object.

Usage

convertBeadlLevellList(BeadlLevellist)

Arguments

BeadLevelList An object of class BeadLevelList

Value

Returns an object of class beadLevelData.

Author(s)
Mike Smith

See Also

beadLevelData-class

createTargetsFile 29

createTargetsFile A function to generate a targets file given a directory of lllumina bead-
level files

Description

This function, when pointed to a directory containing Illumina bead-level files (e.g. txt, idat, locs,
tif) will return a simple targets file of the sort expected by beadarray. Note that a user created targets
file is likely to be of greater value.

Usage

createTargetsFile(dir = NULL, nochannels = 1, channell = "Grn"”, channel2 = "Red"”, txtsuff = "txt", imgsu

Arguments

dir dir: The directory containing the Illumina bead-level files. By default, will
search the working directory.

nochannels nochannels: Does the directory contain 1 or 2 channel arrays? Setting this
argument to be null will result in the function making its best guess.

channell channell: The string indicating that files are associated with the first channel
(usually Grn).

channel?2 channel?2: The string indicating that files are associated with the second channel
(usually Red).

txtsuff txtsuff: The suffix of files containing the bead-level intensities (usually txt,
but occasionally csv).

imgsuff imgsuff: The suffix of files containing the images.

locssuff locssuff: The suffix of files containing the precise bead locations (usually
locs).

xmlsuff xmlsuff: The suffix of files containing the meta-data (usually xml).

verbose verbose: Determines whether or not the function reports on its progress as it
goes along.

special special: Files with names containing special words (such as fiducial) are ig-
nored.

ColourConfusionStop
ColourConfusionStop: This determines the behaviour of the function if there
is a discrepancy between the number of channels specified, and the number ap-
parently present.

metricsflag codemetricsflag: This gives the key word that can be used to identify metrics
files.

metsep metsep: This gives the cell separator used in the metrics file.

metricsection metricsection: This gives the column heading used in the metrics file to indi-
cate array section names.

metricchip metricchip: This gives the column heading used in the metrics file to indicate
the chip name.

30 dim

Details

This function bases its resultant targets file on the files with suffix txtsuff.

Value

This returns a dataframe containing

Author(s)
Andy Lynch

See Also

readllluminaData()

Examples

#createTargetsFile(verbose=T)

deprecatedFunctions Deprecated Functions

Description
Functions that have been renamed in the latest version of beadarray, but kept in for backwards
compatibility.

Author(s)
Mark Dunning

dim Retrieve the dimensions of an object

Description

Retrieve the dimension of an object.

Usage
S4 method for signature 'beadlLevelData'
dim(x)

S4 method for signature 'ExpressionSetIllumina’
dim(x)

expressionQCPipeline 31

Arguments

X An object of class beadLevelData or ExpressionSetIllumina

Author(s)

Mark Dunning

expressionQCPipeline Flexible bead-level QC pipeline

Description

Function to produce various QC plots and HTML summary pages for bead-level data.

Usage

expressionQCPipeline(BLData, transFun = logGreenChannelTransform, qcDir = "QC", plotType = ". jpeg”, hol

Arguments
BLData a beadLevelData object
transFun what transformation function to apply
qcDir a directory to write output to
plotType desired file extension for plots (jpeg or png)
horizontal if TRUE imageplots and outlier plots are produced with longest edge on x axis

controlProfile a data frame defining all control types. not required if annotation information is
stored in the bead-level object

overWrite if FALSE any plots that exist in the directory will not be recreated
nSegments how many segments each section is divided into
outlierFun a function to removed outliers

tagsToDetect which control types to used in the detection metrics
zlim the range of the imageplots
boxplotFun what transformation function to be used in boxplots
imageplotFun what transformation function to be used for imageplots
positiveControlTags

character strings defining which positive controls to plot
hybridisationTags

additional control types to be plotted

negativeTag character string to identify which control type in the control profile corresponds
to negative controls

32 ExpressionSetlllumina-class

Details

This function is a convient way of automatically generating QC plots for each section within a
beadlLevelData object. The following plots are produced for each section. i) scatter plots of all
bead observation of the positive controls. See poscontPlot. ii) Further scatter plots of other
controls of interest using poscontPlot. iii) imageplot (imageplot) of section data after applying
transformation function iv) plot of outlier locations using specified outlier function. A HTML page
displaying all the plots is produced.

After plots have been produced for each section, makeQCTable is run to make a table of mean and
standard deviations for the defined control types, followed by the results of calculateOutlierStats
and controlProbeDetection for each section and written to a HTML page in the requested direc-
tory.

The function should be able to run automatically for expression data that has its annotation stored
using setAnnotation or using readIllumina. Otherwise the controlProfile data frame can be
used to define the control types on the array and their associated ArrayAddressIDs. Similarly, the
function assumes single-channel data but a transformation function can be passed.

Author(s)

Mark Dunning

See Also

poscontPlot imageplot outlierplot controlProbeDetection

Examples

if(require(beadarrayExampleData)){
Not run:
data(exampleBLData)

expressionQCPipeline(exampleBLData, horizontal=T)

End(Not run)

3

ExpressionSetIllumina-class
Class "ExpressionSetlllumina”

generateNeighbours 33

Description

Container for high-throughput assays and experimental metadata. ExpressionSetIllumina class
is derived from eSet, and requires matrices exprs, se.exprs, nObservations, Detection as assay
data members. The slots featureData, phenoData are accessed in the usual manner using fData
and pData functions.

For ExpressionSetIllumina objects created from bead-level data (using the summarize function),
a QC slot is used to contain any quality control data that was present in the beadLevelData object.
This is a change from previous versions of beadarray, where the intensities of the control probes
themselves were stored in this slot. From version 2.0.0 onwards, control probes are stored in the
assayData slot with the regular probes and the featureData slot has a reference for which rows
correspond to controls.

The ExpressionSetIllumina class is able to accomodate different channels when created from
bead-level data. The channelNames function may be used to find out what channels are present
in the object. The channel function can be used to select a particular channel, returning an
ExpressionSetIllumina object.

Author(s)

Mark Dunning

generateNeighbours Generate matrix of neighbouring beads

Description
Generates a neighbours matrix from either a .locs file or the X and Y coordinates in a beadLevelData
object.

Usage

generateNeighbours(BLData, array = 1, uselLocs = TRUE, window = 30, margin = 10, thresh = 2.2)

Arguments
BLData An object of class beadLevelData-class
array integer specifying which section/array to process
uselLocs logical value, specifiying whether the .locs file (if present) should be used to
determine neighbours.
window numeric value, specifying window size (see below)
margin numeric value, specifying size of window margin (see below)

thresh numeric value, which determines how large links are removed. (see below)

34 generateNeighbours

Details

generateNeighbours determines, for each bead on the array, which beads are next to it. It assumes
that the beads are in a hexagonal lattice.

If the . locs file is present and uselLocs = TRUE then the ordering of the . locs file is used to infere
the grid layout. This is far quicker than the alternative and is thus recommended, but can only be
used on BeadChip platforms. If the data is from a Sentrix Array uselLocs is automatically set to
FALSE and the following algorithm is applied instead.

The algorithm used first links each bead to its 6 closest neighbours. It then removes the longest link
if its squared length is more than thresh multiplied by the squared length of the next longest link.
A similar process is applied to the 2nd and 3rd longest links.

Finally, any one way links are removed (i.e. a link between two beads is only preserved if each bead
considers the other to be its neighbour).

To ease computation, the algorithm only computes neighbours of beads in a square window of side
length 2x(window) which travels across the array. Beads in a margin around the square, of width
(margin), are also considered as possible neighbours.

Value

A matrix with 6 columns. Each row corresponds to a bead in the passed beadLevelData-class
and the six entries are the indices of the 6 neighbouring beads. Values of NA indicate that the
neighbouring bead appears to be missing, either due to failing Illumina’s decoding or being at the
edge of the array.

Author(s)

Jonathan Cairns, Mike Smith

References

Lynch AG, Smith ML, Dunning MJ, Cairns JM, Barbosa-Morais NL, Tavare S. beadarray, BASH
and HULK - tools to increase the value of Illumina BeadArray experiments. In A. Gusnato, K. V.
Mardia, & C.J. Fallaize (eds), Statistical Tools for Challenges in Bioinformatics. 2009 pp. 33-37.
Leeds, Leeds University Press.

See Also
HULK, BASH

Examples

Not run:
if(require(beadarrayExampleData)){

data(exampleBLData);
neighbours <- generateNeighbours(exampleBLData, array = 1, useLocs = FALSE);

}

getBeadData

End(Not run)

getBeadData Get raw data from a beadLevelData object

Description

Retrieves the raw bead data from a beadLevelData object for a given section/array.

Usage

getBeadData(BLData, what="Grn", array=1)

Arguments
BLData BeadLevellList
what character string specifying the values to retrieve (e.g. "ProbeID", "Grn" etc.).
array integer specifying the section/array to use

Value

A vector containing the specified bead data for the particular array.

Author(s)

Mark Dunning

Examples

if(require(beadarrayExampleData)){
data(exampleBLData)
summary (getBeadData(exampleBLData))

}

36 HULK

HULK HULK - Bead Array Normalization by NEighbourhood Residuals

Description
Normalizes an probe intensities by calculating a weighted average residual based on the residuals
of the surrounding probes.

Usage

HULK (BLData, array = 1, neighbours = NULL, invasions = 20, uselLocs = TRUE, weightName = "wts", transFun =

Arguments
BLData An object of class beadLevelData-class
array integer specifying which section/array to process
neighbours A Neighbours matrix. Optional - if left NULL, it will be computed.
invasions Integer - Number of invasions used when identifying neighbouring beads.
uselLocs If information from an associated .locs file is to be used. If available using a
Jocs file can improve both the speed and accuracy of determining the network
of neighbouring beads.
weightName Column name where bead weights are to be taken from.
transFun Transformation function.
outlierFun Name or definition for the function to be used to calculated outliers.
Details

HULK is a method of intensity normalization based upon the BASH framework. Firstly For each
bead a local neighbourhood of beads is determined, using the same process as the other BASH
functions.

For each bead a weighted average residual is calculated. The average residual is calculated as the
sum of the residuals for each bead in the neighbourhood, divided by 1 plus the number of invasions
it took to reach that bead. This calculation is made by a call to HULKResids.

The average residuals are then subtracted from each bead and a vector of the resulting corrected
intensities object is returned. These corrected intensities can be saved in the original beadLevelData
object using insertBeadData

Value

A vector of corrected intensities.

Author(s)
Mike Smith

identitfyControlBeads 37

References

Lynch AG, Smith ML, Dunning MJ, Cairns JM, Barbosa-Morais NL, Tavare S. beadarray, BASH
and HULK - tools to increase the value of Illumina BeadArray experiments. In A. Gusnato, K. V.
Mardia, & C.J. Fallaize (eds), Statistical Tools for Challenges in Bioinformatics. 2009 pp. 33-37.
Leeds, Leeds University Press.

See Also

BASH, insertBeadData, logGreenChannelTransform, squeezedVarQutlierMethod, illuminaQutlierMethod

Examples

Not run:

if(require(beadarrayExampleData)){

data(exampleBLData)
0 <- HULK(exampleBLData, 1)

}

End(Not run)

identifyControlBeads Classify each bead according to its control status

Description

Using the control annotation specified for the array, the function will classify each bead as belonging
to a control group, or as being a regular probe.

Usage

identifyControlBeads(BLData, array = 1, controlProfile = NULL)

Arguments
BLData a beadLevelData object
array the numeric id of the array section

controlProfile an optional control profile data frame

38 illuminaChannel-class

Details

The function requires either that a control profile data frame is specified (This associates probe IDs
with their control status - see the example), or that the annotation of the beadLevelData object be
set to an array that the package recognises (see getAnnotation). Note that some positive control
bead-types may also be functioning ’regular’ probes.

Value

a vector of character strings giving the status of each bead

Author(s)

Mark Dunning

Examples

if(require(beadarrayExampleData)){
data(exampleBLData)
statVec = identifyControlBeads(exampleBLData)

table(statVec)

illuminaChannel-class Class "illuminaChannel"”

Description

A class to define how illumina bead-level data are summarized

Details

From beadarray version 2.0 onwards, users are allowed more flexibility in how to create summa-
rized data from bead-level data. The illuminaChannel is a means of allowing this flexibility by
definining how summarization will be performed on each array section in the bead-level data object.
The three keys steps applied to each section are; 1) use a transform function to get the quantities
to be summarized (one value per bead). The most common use-case would be to extract the Green
channel intensities and possibly perform a log2 transformation. 2) remove any outliers from this
list of values 3) split the values according to ArrayAddressIDs and apply the definied exprFun and
varFun to the quantities belonging to each ArrayAddress.

illuminaOutlierMethod 39

Slots/List Components

Objects of this class contain the following slots

transFun: function to transform the data from each array-section.

outlierFun: A function for identifying outliers from a list of bead intensiites and associated ArrayAddressIDs .
exprFun: A function for producing a single summary of expression level from a vector of bead-type intensities. e.g. me:

varFun: A function for producing a single summary of variability from a vector of bead-type intensities. e.g. sd
name: Character vector that defines a name for the channel

Author(s)

Mark Dunning

See Also

summarize

Examples

greenChannel

redChannel = new("illuminaChannel”, redChannelTransform, illuminaQutlierMethod, mean, sd, "R")

logRatio = new("illuminaChannel”, logRatioTransform, illuminaOutlierMethod, mean, sd, "M")

illuminaOutlierMethod Identifier outliers on an array section

Description

Implementation of the illumina method for excluding outliers using a fixed number of MADs (me-
dian absolute deviations) cutoff for each bead type

Usage

illuminaOutlierMethod(inten, probelList, wts=1, n = 3)

Arguments
inten a list of intensities
probelist the IDs corresponding to each intensity value
wts Weights associated with beads, indicating those recommended for removal by,

for example, BASH
n number of MADs cutoff used

40 imageplot

Details

This function is called within the summarisation routine of beadarray to exclude outliers from an
array-section prior to summary. The intensities are not assumed to be on any particular scale and
can result from any user-defined transformation function.

Beads with weight zero do not contribute to the outlier calling.

Value

the positions in the original vector that were determined to be outliers

Author(s)

Mark Dunning

See Also

squeezedVarOutlierMethod
Examples
if(require(beadarrayExampleData)){
data(exampleBLData)
oList = illuminaOutlierMethod(logGreenChannelTransform(exampleBLData, 1), getBeadData(exampleBLData, array=1, wh

}

imageplot imageplot for beadLevelData object

Description

Generates an image plot for data from a beadLevelData object.

Usage

imageplot(BLData, array = 1, transFun = logGreenChannelTransform, squareSize = NULL, uselLocs = TRUE, hot

Arguments
BLData beadLevelData
array integer specifying what section to plot
transFun Function that defines how values from the BL.Data object are to be transformed

prior to plotting.

imageplot 41

squareSize Numeric specifying how many pixels in the original image make up each square
in the imageplot. If NULL, the function will guess a suitable value from the
data.

uselocs If TRUE the function will read the locs file associated with the section in order to

include the physical properties of the section in the plot

horizontal If TRUE the image will be plotted so that the longest edge of the section is on the
X axis.

low colour to use for lowest intensity

high colour to use for highest intensity

ncolors The number of colour graduations between high and low

zlim numerical vector of length 2 giving the extreme values of ’z’ to associate with

colours ’low’ and ’high’.
legend logical, if TRUE, z1im and range of data is added to plot.

other arguments to plot

Details

Produces a standard imageplot for the specified section. The default, transformation logGreenChannelTransform,
takes the log2 of the green channel. For two channel data, the red channel or log ratio can be plotted

by logRedChannelTransform or logRatioTransform functions can be used. The user can also

specify their own functions.

The default plotting orientation is such that the longest edge of the section is along the x axis. If
horizontal = FALSE, the longest edge will by on the y axis and should match how the correspond-
ing TIFF image from the BeadScan directory is orientated.

If locs = TRUE and locs file were made available to readIllumina, the segments that the section
is comprised of will be visible (For expression BeadChips, each section is made of nine physically
separate segments). The squareSize parameter will also be set appropriately.

As a result of both having identical function names this function can conflict with the imageplot
method in ’limma’. If both packages are loaded, the function from whichever package was loaded
last takes precedence. If the ’beadarray’ imageplot() function is masking that from ’limma’, one
can directly call the *limma’ method using the command "limma::imageplot()". Alternatively, one
can detach the "beadarray’ package using "detach(package:beadarray)". Similar techniques can be
used if "limma’ is masking the ’beadarray’ method.

Value

A ggplot object which is printed to screen by default

Author(s)

Mike Smith and Mark Dunning

42 imageProcessing
Examples

if(require(beadarrayExampleData)){

data(exampleBLData)

##By default the first array is plotted, here we plot the 2nd which should give a more interesting example
imageplot(exampleBLData, array=2)

}

Not run:

ip <- imageplot(exampleBLData, array=2, low="lightgreen”, high="darkgreen", horizontal=FALSE)
ggsave(ip, filename="myimageplot.png")

ip2 <- imageplot(exampleBLData, array=2, low="lightgreen”, high="darkgreen"”, horizontal=TRUE)

ggsave(ip2, filename="myimageplot2.png")

End(Not run)

imageProcessing Image processing functions

Description

Functions for obtaining bead intensity values from raw tiff images. The three commands with the
illumina prefix attempt to emulate the image processing implemented by Illumina. The median-
Background function implements a more robust background calculation recommended by Smith et
al.

Usage

illuminaForeground(pixelMatrix, beadCoords)
illuminaBackground(pixelMatrix, beadCoords)
illuminaSharpen(pixelMatrix)

medianBackground(pixelMatrix, beadCoords)

Arguments
pixelMatrix A matrix storing the individual pixel values of an image. Intended to be created
by readTIFF, although any matrix can be passed as input.
beadCoords Two column matrix with each row containing a pair of coordinates representing

a bead centre.

insertBeadData 43

Value

illuminaForeground, illuminaBackground and medianBackground return a vector of intensity val-
ues, with one entry for every row in the beadCoords argument. Any pairs of coordinates that fall
outside the dimensions of the image return NA.

illuminaSharpen returns a matrix with the same dimensions as the pixelMatrix argument.

Author(s)
Mike Smith

References

Smith ML, Dunning MJ, Tavare S, Lynch AG. Identification and correction of previously unreported
spatial phenomena using raw Illumina BeadArray data. BMC Bioinformatics (2010) 11:208

insertBeadData Add, modify or remove data in a beadLevelData object

Description

Add, modify or remove data in a beadLevelData object.

Usage
insertBeadData(BLData, array = 1, what, data)
removeBeadData(BLData, array = 1, what)
Arguments
BLData An object of class beadLevelData-class.
array Positive integer specifying what section should be modified.
what Name of the data that is being modified. If ‘what’ doesn’t exist then a new entry
is created using the name specified in this argument.
data A numeric vector to be stored, the same length as the number of beads in the
section specified by the array argument.
Details

These functions allow the beadData slot of the beadLevelData-class object to be modified for a
given array.

Value

Returns an object of class beadLevelData-class.

44 insertSectionData

Author(s)
Mike Smith

Examples

if(require(beadarrayExampleData)){

data(exampleBLData)
logIntensity <- log2(getBeadData(exampleBLData, what = "Grn”, array = 1))

This will add a new entry called "LogGrn" to BLData
exampleBLData <- insertBeadData(exampleBLData, array = 1, what = "LogGrn", data = logIntensity)
head(exampleBLDatal[[1]])

Supplying an existing entry to "what” will overwrite the current data
exampleBLData <- insertBeadData(exampleBLData, array = 1, what = "Grn”, data = logIntensity)
head(exampleBLDatal[[11])

}

insertSectionData Modify the sectionData slot

Description
A function to modify the sectionData slot of a beadLevelData object. Data can be be added if it is
a data frame with a number of rows equal to the number of sections in the beadLevelData object.
Usage

insertSectionData(BLData, what, data)

Arguments
BLData a beadLevelData object
what a character string specifiying a name for the new data
data a data frame containing the data we wish to add
Details

This function allows users to modifiy the per\-section information that is included in the sectionData
slot. Typical usage would be to store quality control data that has been computed.

Value

a modified beadLevelData object with the new data attached to sectionData

limmaDE 45

Author(s)

Mark Dunning

Examples

if(require(beadarrayExampleData)){

data(exampleBLData)

gct = makeQCTable(exampleBLData)

exampleBLData = insertSectionData(exampleBLData, what="ProbeQC", data = qct)
exampleBLData@sectionData

}

1immaDE Differential expression using limma

Description

Function to perform a standard limma analysis using a single command.

Usage

1limmaDE (summar