
An overview of the girafe package

J. Toedling, C. Ciaudo, O. Voinnet, E. Heard, E. Barillot

October 30, 2017

1 Introduction

The intent of package girafe is to facilitate the functional exploration of the alignments of
multiple reads1 from next-generation sequencing (NGS) data to a genome.

It extends the functionality of the Bioconductor (Gentleman et al., 2004) packages Short-
Read (Morgan et al., 2009) and genomeIntervals.

> library("girafe")

> library("RColorBrewer")

If you use girafe for analysing your data, please cite:

� J Toedling, C Ciaudo, O Voinnet, E Heard and E Barillot (2010) girafe – an R/Bioconductor
package for functional exploration of aligned next-generation sequencing reads. Bioin-
formatics, 26(22):2902-3.

Getting help

If possible, please send questions about girafe to the Bioconductor mailing list.
See http://www.bioconductor.org/docs/mailList.html

Their archive of questions and responses may prove helpful, too.

2 Workflow

We present the functionality of the package girafe using example data that was downloaded
from the Gene Expression Omnibus (GEO) database (Edgar et al., 2002, GSE10364). The
example data are Solexa reads of 26 nt length derived from small RNA profiling of mouse
oocytes. The data has previously been described in Tam et al. (2008).

> exDir <- system.file("extdata", package="girafe")

> ### load object describing annotated mouse genome features:

> load(file.path(exDir, "mgi_gi.RData"))

1 The package has been developed for analysing single-end reads (fragment libraries) and does not support
mate-pair reads yet.

1

http://www.bioconductor.org/docs/mailList.html

2.1 Adapter trimming

We load reads that include parts of the adapter sequence.

> ra23.wa <- readFastq(dirPath=exDir, pattern=

+ "aravinSRNA_23_plus_adapter_excerpt.fastq")

> show(ra23.wa)

class: ShortReadQ

length: 1000 reads; width: 26 cycles

To removing adapter sequences, we use the function trimAdapter, which relies on the pair-
wiseAlignment function from the Biostrings package. The adapter sequence was obtained
from the GEO page of the data.

> adapter <- "CTGTAGGCACCATCAAT"

> ra23.na <- trimAdapter(ra23.wa, adapter)

> show(ra23.na)

class: ShortReadQ

length: 1000 reads; width: 23 cycles

2.2 Importing aligned reads

The reads have been mapped to the mouse genome (assembly mm9) using the alignment
tool Bowtie alignment tool (Langmead et al., 2009).

The resulting tab-delimited map file can be read into an object of class AlignedRead using
the function readAligned. Both, this class and this function, are defined in the Biocon-
ductor package ShortRead .

> exA <- readAligned(dirPath=exDir, type="Bowtie",

+ pattern="aravinSRNA_23_no_adapter_excerpt_mm9_unmasked.bwtmap")

> show(exA)

class: AlignedRead

length: 1689 reads; width: 23 cycles

chromosome: chr14 chr17 ... chr3 chr14

position: 115443405 13011859 ... 68813840 62250772

strand: + + ... + -

alignQuality: NumericQuality

alignData varLabels: similar mismatch

The object of class AlignedRead can be converted into an object of class AlignedGenomeIn-
tervals, which is the main class of the girafe package.

2

> exAI <- as(exA, "AlignedGenomeIntervals")

> organism(exAI) <- "Mm"

For alignments in BAM format (Li et al., 2009), there is an alternative way of importing
the data. The function agiFromBam can be used to directly create AlignedGenomeIntervals
objects from indexed and sorted BAM files, making use of functionalities in the Rsamtools
package.

2.3 Exploring the aligned reads

> show(exAI)

1,286 genome intervals with 1,689 aligned reads on 22 chromosome(s).

Organism: Mm

Which chromosomes are the intervals located on?

> table(seqnames(exAI))

chr1 chr10 chr11 chr12 chr13 chr14 chr15 chr16 chr17 chr18 chr19 chr2 chr3

112 50 60 53 65 74 59 48 47 43 19 87 62

chr4 chr5 chr6 chr7 chr8 chr9 chrMT chrX chrY

57 52 82 51 57 69 5 132 2

A subset of the intervals on a specific chromosome can be obtained using subsetting via
'['.

> detail(exAI[seqnames(exAI)=="chrMT"])

start end seq_name strand reads matches sequence

1 964 986 chrMT + 1 1 GTTTATGAGAGGAGATAAGTTGT

2 11613 11635 chrMT + 10 2 AAGAAAGATTGCAAGAACTGCTA

3 11613 11635 chrMT + 1 2 AAGCAAGATTGCAAGAACTGCTA

4 11613 11635 chrMT + 1 2 AAGAACGATTGCAAGAACTGCTA

5 11613 11635 chrMT + 1 3 AAGAAAGATTGCAAGAACTGTTA

Finally, what is the number of aligned reads per chromosome?

> summary(exAI)

Number of aligned reads per chromosome:

chr1 chr10 chr11 chr12 chr13 chr14 chr15 chr16 chr17 chr18 chr19 chr2 chr3

139 51 105 56 83 131 68 61 48 44 19 106 107

chr4 chr5 chr6 chr7 chr8 chr9 chrMT chrX chrY

61 52 107 57 70 102 14 206 2

3

2.4 Processing the aligned intervals

Sometimes, users may wish to combine certain aligned intervals. One intention could be
to combine aligned reads at exactly the same position, which only differ in their sequence
due to sequencing errors. Another objective could be to combine overlapping short reads
that may be (degradation) products of the same primary transcript. The function reduce

combines a set of aligned intervals into a single aligned interval, if the intervals:

� are on the same strand,

� are overlapping (or contained in each other) or directly adjacent to each other AND

� have the same read match specificity (see below)

Read match specificity By the read match specificity r(Ii) of an interval Ii, we refer to
the total number of valid alignments of reads that have been aligned to Ii, i.e. the total
numbers of intervals with the same reads aligned in the whole genome (or other set of
reference sequences). If r(Ii) = 1, the reads that were aligned to the interval Ii have no
other valid alignments in the whole genome, i.e. the interval Ii is the unique match position
of these reads. If r(Ii) = 2, the reads that were aligned to the interval Ii have exactly one
other valid alignment to another interval Ij , j 6= i. The match specificity is stored in the
matches slot of objects of the class AlignedGenomeIntervals.

We first demonstrate the reduce using a toy example data object.

> D <- AlignedGenomeIntervals(

+ start=c(1,3,4,5,8,10,11), end=c(5,5,6,8,9,11,13),

+ chromosome=rep(c("chr1","chr2","chr3"), c(2,2,3)),

+ strand=c("-","-","+","+","+","+","+"),

+ sequence=c("ACATT","ACA","CGT","GTAA","AG","CT","TTT"),

+ reads=rep(1,7), matches=c(rep(1,6),3))

> detail(D)

start end seq_name strand reads matches sequence

1 1 5 chr1 - 1 1 ACATT

2 3 5 chr1 - 1 1 ACA

3 4 6 chr2 + 1 1 CGT

4 5 8 chr2 + 1 1 GTAA

5 8 9 chr3 + 1 1 AG

6 10 11 chr3 + 1 1 CT

7 11 13 chr3 + 1 3 TTT

Calling the reduce method on these example data results in the following:

> detail(reduce(D))

start end seq_name strand reads matches sequence

1 1 5 chr1 - 2 1 ACATT

2 4 8 chr2 + 2 1 CGTAA

3 8 11 chr3 + 2 1 AGCT

4 11 13 chr3 + 1 3 TTT

4

Note that the two last intervals still show overlap. However, the last interval is a non-unique
match position of the respective reads (matches= 3), in contrast to the other intervals.

Here is another example using the data introduced above.

> S <- exAI[seqnames(exAI)=="chrX" & matches(exAI)==1L & exAI[,1]>1e8]

> detail(S)

start end seq_name strand reads matches sequence

1 100768450 100768472 chrX - 1 1 ATATAATACAACCTGCTAACTGT

2 101311567 101311589 chrX - 18 1 TGAGGTTGGTGTACTGTGTGTGG

3 101311567 101311589 chrX - 12 1 TGAGGTTGGTGTACTGTGTGTGA

4 101311567 101311589 chrX - 2 1 TGAGGTTGGTGTACTGTGTGTGT

5 101311567 101311589 chrX - 1 1 TGACGTTGGTGTACTGTGTGTGA

6 101311567 101311589 chrX - 1 1 TGAGGTTGGTGTACTGTGTGCGG

7 148346896 148346918 chrX + 4 1 TGAGGTAGTAGATTGTATAGTTT

Calling the reduce method on these data leads to the following result:

> detail(reduce(S))

start end seq_name strand reads matches sequence

1 100768450 100768472 chrX - 1 1 ATATAATACAACCTGCTAACTGT

2 101311567 101311589 chrX - 34 1 TGAGGTTGGTGTACTGTGTGTGG

3 148346896 148346918 chrX + 4 1 TGAGGTAGTAGATTGTATAGTTT

Notice that the reads that match the same segment of the X chromosome differ in their
last base. However, since most of the reads have a ’G’ as final letter, the combined aligned
interval als has a ’G’ as the last letter.

The additional argument method="exact" can be specified if you want to solely combine
intervals that have exactly the same start and stop position (but may have reads of slightly
different sequence aligned to them). Consider the following example:

> S2 <- exAI[seqnames(exAI)=="chr11" & matches(exAI)==1L & exAI[,1]>8e7]

> detail(S2)

start end seq_name strand reads matches sequence

1 86397621 86397643 chr11 - 20 1 TAGCTTATCAGACTGATGTTTAC

2 86397621 86397643 chr11 - 1 1 TAGATTATCAGACTGATGTTTAC

3 86397621 86397643 chr11 - 2 1 TAGCTTATCAGACTGATGTTCAC

4 88515338 88515360 chr11 - 1 1 GGTGCAGGGAGCGCCAGTGTCTC

5 96178500 96178522 chr11 + 2 1 TACCCTGTAGATCCGAATTTTTG

6 96178501 96178523 chr11 + 1 1 ACCCTGTAGATCCGAATTTGTGA

7 108873196 108873218 chr11 - 1 1 AGTGCGGTAACGCGACCGCTACC

> detail(reduce(S2, method="exact"))

5

start end seq_name strand reads matches sequence

1 86397621 86397643 chr11 - 23 1 TAGCTTATCAGACTGATGTTTAC

2 88515338 88515360 chr11 - 1 1 GGTGCAGGGAGCGCCAGTGTCTC

3 96178500 96178522 chr11 + 2 1 TACCCTGTAGATCCGAATTTTTG

4 96178501 96178523 chr11 + 1 1 ACCCTGTAGATCCGAATTTGTGA

5 108873196 108873218 chr11 - 1 1 AGTGCGGTAACGCGACCGCTACC

Notice that the 6th aligned interval in S2 is only shifted by 1 nt from the 5th one. By
default, the function reduce would merge them into one aligned genome interval. However,
when method="exact" is specified, these two intervals are not merged since they are not
at exactly the same position. There are additional methods for restricting the merging
to intervals with the same 5’- and 3’-ends (specify method="same5" and method="same3",
respectively).

2.5 Visualising the aligned genome intervals

The package girafe contains functions for visualising genomic regions with aligned reads.

> plot(exAI, mgi.gi, chr="chrX", start=50400000,

+ end=50410000, show="minus")

See the result in Figure 1.

25

20

15

10

5

0

R
ea

ds
 o

n
C

ric
k

st
ra

nd

Mir450b
Mir450−1

Mir450−2
Mir542 Mir351 Mir503

Mir322

50400000 50401000 50402000 50403000 50404000 50405000 50406000 50407000 50408000 50409000 50410000

Chromosome chrX coordinate [bp]

Figure 1: A 10-kb region on the mouse X chromosome. Reads aligned to the Watson strand
in this region would be shown above the chromosome coordinate axis with the annotation of
genome elements in this region, while reads aligned to the Crick strand are shown below. In
the region shown, there are only intervals with aligned reads on the Crick strand, and these
four intervals overlap with annotated microRNA positions.

Note that the annotation of genome elements (as shown in Figure 1) has to be supplied to
the function. Here the object mgi.gi contains most annotated genes and ncRNAs for the

6

mouse genome (assembly: mm9). This object has been created beforehand2 and it is of
class Genome intervals stranded , a class defined in package genomeIntervals.

2.6 Summarising the data using sliding windows

The data can be searched for regions of defined interest using a sliding-window approach
implemented in the function perWindow. For each window, the number of intervals with
aligned reads, the total number of reads aligned, the number of unique reads aligned, the
fraction of intervals on the Plus-strand, and the higher number of aligned reads at a single
interval within the window are reported.

> exPX <- perWindow(exAI, chr="chrX", winsize=1e5, step=0.5e5)

> head(exPX[order(exPX$n.overlap, decreasing=TRUE),])

chr start end n.overlap n.reads n.unique frac.plus max.reads

942 chrX 50341103 50441102 18 55 18 0 28

943 chrX 50391103 50491102 18 55 18 0 28

1960 chrX 101241103 101341102 5 34 5 0 18

1961 chrX 101291103 101391102 5 34 5 0 18

1216 chrX 64041103 64141102 4 5 4 0 2

1215 chrX 63991103 64091102 3 4 3 0 2

first last

942 50401220 50407226

943 50401220 50407226

1960 101311567 101311589

1961 101311567 101311589

1216 64049984 64092296

1215 64049984 64067192

2.7 Exporting the data

The package girafe also contains methods for exporting the data into tab-delimited text
files, which can be uploaded to the UCSC genome browser3 as ’custom tracks’.

Currently, there are methods for exporting the data in ’bed’ format and ’bedGraph’ format,
either writing intervals from both strands into one file or into two separate files. Details
about these track formats can be found at the UCSC genome browser web pages.

> export(exAI, con="export.bed",

+ format="bed", name="example_reads",

+ description="Example reads",

+ color="100,100,255", visibility="pack")

2See the script prepareAnnotation.R in the package scripts directory for an example of how to create
such an object.

3http://genome.ucsc.edu

7

http://genome.ucsc.edu

Additional arguments to the export function, besides object, con, and format, are treated
as attributes for the track definition line, which specifies details concerning how the data
should be visualised in the genome browser.

Users may also wish to consult the Bioconductor package rtracklayer for data transfer and
direct interaction between R and the UCSC genome browser.

2.8 Overlap with annotated genome features

Next, we determine the degree of overlap of the aligned reads with annotated genomic
elements. In this example, the annotated genome elements are provided as an object of
class Genome intervals stranded4. This objects needs to be created beforehand. See the
script prepareAnnotation.R in the package scripts directory5 for an example of how to
create such an object.

> exOv <- interval_overlap(exAI, mgi.gi)

How many elements do read match positions generally overlap?

> table(listLen(exOv))

0 1 2 12

815 340 130 1

What are the 12 elements overlapped by a single match position?

> mgi.gi$ID[exOv[[which.max(listLen(exOv))]]]

[1] "Pcdha1" "Pcdha2" "Pcdha3" "Pcdha4" "Pcdha5" "Pcdha6" "Pcdha7"

[8] "Pcdha8" "Pcdha9" "Pcdha10" "Pcdha11" "Pcdha12"

And in general, what kinds of annotated genome elements are overlapped by reads?

> (tabOv <- table(as.character(mgi.gi$type)[unlist(exOv)]))

gene lincRNA miRNA ncRNA pseudogene rRNA snoRNA

238 15 297 19 28 10 1

tRNA

4

We display these overlap classes using a pie chart.

> my.cols <- brewer.pal(length(tabOv), "Set3")

> pie(tabOv, col=my.cols, radius=0.88)

8

gene

lincRNA

miRNA

ncRNA

pseudogene

rRNA
snoRNAtRNA

Figure 2: Pie chart showing what kinds of genome elements are overlapped by aligned reads.
Note that the proportions of the pie chart are given by the proportions among all annotated
genome elements that have ≥ 1 reads mapped to them and not by the total numbers of reads
mapped to elements of that class, in which case the proportion of the miRNA class would
be significantly larger.

See the result in Figure 2.

Note that function interval.overlap only determines whether two intervals are overlap-
ping by at least one base. For restricting the result to intervals overlapping by at least a cer-
tain number of bases or by a fraction of the interval’s length, see the function fracOverlap.

3 Memory usage

At the moment, girafe and the packages that it depends on, retain all the information
concerning the read alignments in memory. This allows quick access to and swift operations
on the data, but may limit the package’s usability on machines with low amounts of RAM.

The step with the highest RAM requirements is importing the alignments and saving them
as objects of the AlignedRead class using the functionality in package ShortRead . Usually,
objects of the AlignedGenomeIntervals class are created starting from AlignedRead objects
and the AlignedRead objects can safely be discarded after this step. Since the data is
summarised in that process, AlignedGenomeIntervals objects require about 10–100 times

4Objects of class Genome intervals and AlignedGenomeIntervals are also allowed.
5system.file("scripts", package="girafe")

9

less memory than the original AlignedRead object6. We recommend that the import of
the alignments and the generation of the AlignedGenomeIntervals are performed using a
separate script which only needs to be called once on a machine with sufficient RAM.

A suggestion for limiting memory usage is to perform the read alignments and import of the
results in batches of a few million reads each. The batch-wise result AlignedGenomeIntervals
objects can later be combined using the basic R function ”c”, the standard way of combining
objects, optionally followed by calls of the reduce function.

For alignments in SAM/BAM format, the Samtools software suite (Li et al., 2009) as well
as the Bioconductor package Rsamtools allow the user to access and import only selected
subsets of the data, which also leads to a lower memory footprint. For details, please refer
to the documentation of these packages.

Finally, while the processing of AlignedRead objects is the principal way of generating
AlignedGenomeIntervals objects, there is also a convenience function called
AlignedGenomeIntervals, which can be used to create these objects from simpler objects in
the work space, such as data read in using basic R functions such as scan. This convenience
function may be easier to use for importing and processing the data in manageable chunks.

When following these suggestions, most operations with the girafe package should be pos-
sible on a machine with 4 Gb of RAM, and we have not so far encountered a situation that
requires more than 12 Gb (state as of the end of 2009). However, increased throughput of
sequencing machines and longer reads will lead to increased memory requirements. Future
developments of this and other NGS-related Bioconductor packages will therefore likely
concern ways to reduce the memory footprint. One idea is to make use of packages like ff ,
which provide ways of swapping data from RAM to flat files on the hard disk, while still
allowing fast and direct access to the data.

4 A word about speed

For improving the run time on machines with multiple processors, some of the functions in
the girafe package have been implemented to make use of the functionality in the parallel
package. If parallel has been attached and initialised before calling these functions, the
functions will make use of mclapply instead of the normal lapply function. The number of
cores to be used in parallel is determined by the mc.cores option (see the example below).

For example, if parallel is functional on a given system7, there should be an obvious speed
improvement in the following code example.

> library("parallel")

> options("mc.cores"=4) # adjust to your machine

> exAI.R <- reduce(exAI, mem.friendly=TRUE)

6e.g., an AlignedRead object for holding 106 reads of length 36 bp aligned to the mouse reference genome
occupies about 1.4 Gb in RAM but is processed into an AlignedGenomeIntervals object of size 66.7 Mb

7The mclapply function currently does not support Windows operating systems.

10

5 Links to other Bioconductor packages

The girafe package is mostly built upon the interval notation and implementation pro-
vided by the packages intervals and genomeIntervals. Functions from the ShortRead pack-
age (Morgan et al., 2009) are used for importing the data, and Biostrings provides help for
working with the read nucleotide sequences. girafe also makes limited use of the Rle and
IRanges classes defined in the IRanges package. Furthermore, the data can be converted
between object classes defined in girafe and IRanges.

We note that many of the interval operations in girafe can also be performed using classes
and functions defined in the IRanges package. However, the scope of the packages is slightly
different. While IRanges is meant to be a generic infrastructure package of the Bioconductor
project, the aim of girafe is to provide a single, comparatively lightweight, object class for
working with reads aligned to the genome, the AlignedGenomeIntervals. This class and its
methods allow easy access to such data and facilitate standard operations and workflows.

There is some overlap in functionality between girafe, IRanges, GenomicRanges and track-
layer . The range of interactions between these packages and new Bioconductor packages
related to next-generation sequencing is likely to increase over the releases. Our aim is to
provide users with a broad range of alternatives for selecting the classes and functions that
are most suited for their workflows.

Package versions

This vignette was generated using the following package versions:

� R version 3.4.2 (2017-09-28), x86_64-pc-linux-gnu

� Running under: Ubuntu 16.04.3 LTS

� Matrix products: default

� BLAS: /home/biocbuild/bbs-3.6-bioc/R/lib/libRblas.so

� LAPACK: /home/biocbuild/bbs-3.6-bioc/R/lib/libRlapack.so

� Base packages: base, datasets, grDevices, graphics, grid, methods, parallel, stats, stats4, utils

� Other packages: AnnotationDbi 1.40.0, Biobase 2.38.0, BiocGenerics 0.24.0,
BiocParallel 1.12.0, Biostrings 2.46.0, DelayedArray 0.4.0, GenomeInfoDb 1.14.0,
GenomicAlignments 1.14.0, GenomicRanges 1.30.0, IRanges 2.12.0, RColorBrewer 1.1-2,
Rsamtools 1.30.0, S4Vectors 0.16.0, ShortRead 1.36.0, SummarizedExperiment 1.8.0,
XVector 0.18.0, genomeIntervals 1.34.0, girafe 1.30.0, intervals 0.15.1, matrixStats 0.52.2,
org.Mm.eg.db 3.4.2

� Loaded via a namespace (and not attached): DBI 0.7, GenomeInfoDbData 0.99.1,
Matrix 1.2-11, RCurl 1.95-4.8, RSQLite 2.0, Rcpp 0.12.13, bit 1.1-12, bit64 0.9-7,
bitops 1.0-6, blob 1.1.0, compiler 3.4.2, digest 0.6.12, hwriter 1.3.2, lattice 0.20-35,
latticeExtra 0.6-28, memoise 1.1.0, pkgconfig 2.0.1, rlang 0.1.2, tibble 1.3.4, tools 3.4.2,
zlibbioc 1.24.0

Acknowledgements

Many thanks to Nicolas Servant, Valérie Cognat, Nicolas Delhomme, and especially Patrick Aboyoun
for suggestions and feedback on the package. Special thanks to Julien Gagneur and Richard Bourgon

11

for writing genomeIntervals and for rapidly answering all my questions regarding the package.
The plotting functions in package girafe are largely based on the function plotAlongChrom and its
auxiliary functions from package tilingArray , most of which were written by Wolfgang Huber.
Funding: This work was supported by the Institut Curie, INCa ”GepiG”.

References

R. Edgar, M. Domrachev, and A. E. Lash. Gene Expression Omnibus: NCBI gene expression and
hybridization array data repository. Nucleic Acids Res, 30(1):207–210, Jan 2002.

R. C. Gentleman, V. J. Carey, D. J. Bates, B. M. Bolstad, M. Dettling, S. Dudoit, B. Ellis, L. Gau-
tier, Y. Ge, J. Gentry, K. Hornik, T. Hothorn, W. Huber, S. Iacus, R. Irizarry, F. Leisch, C. Li,
M. Maechler, A. J. Rossini, G. Sawitzki, C. Smith, G. K. Smyth, L. Tierney, Y. H. Yang, and
J. Zhang. Bioconductor: Open software development for computational biology and bioinformat-
ics. Genome Biology, 5:R80, 2004.

B. Langmead, C. Trapnell, M. Pop, and S. L. Salzberg. Ultrafast and memory-efficient alignment
of short DNA sequences to the human genome. Genome Biology, 10(3):R25, 2009.

H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, G. Marth, G. Abecasis, and R. D.
and. The Sequence Alignment/Map format and SAMtools. Bioinformatics, 25(16):2078–9, Aug
2009.

M. Morgan, S. Anders, M. Lawrence, P. Aboyoun, H. Pages, and R. Gentleman. ShortRead: a
Bioconductor package for input, quality assessment and exploration of high-throughput sequence
data. Bioinformatics, 25(19):2607–2608, Oct 2009.

O. H. Tam, A. A. Aravin, P. Stein, A. Girard, E. P. Murchison, S. Cheloufi, E. Hodges, M. Anger,
R. Sachidanandam, R. M. Schultz, and G. J. Hannon. Pseudogene-derived small interfering RNAs
regulate gene expression in mouse oocytes. Nature, 453(7194):534–538, May 2008.

J. Toedling, C. Ciaudo, O. Voinnet, E. Heard, and E. Barillot. girafe - an R/Bioconductor package
for functional exploration of aligned next-generation sequencing reads. Bioinformatics, 26(22):
2902–2903, Nov 2010.

12

	Introduction
	Workflow
	Adapter trimming
	Importing aligned reads
	Exploring the aligned reads
	Processing the aligned intervals
	Visualising the aligned genome intervals
	Summarising the data using sliding windows
	Exporting the data
	Overlap with annotated genome features

	Memory usage
	A word about speed
	Links to other Bioconductor packages

