## ----echo = FALSE------------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, warning = FALSE, message = FALSE, echo = TRUE, comment = "#>" ) ## ----echo=FALSE--------------------------------------------------------------- library(RFLOMICS) ## ----createRlomisMAE---------------------------------------------------------- data(ecoseed.mae) factorInfo <- data.frame( "factorName" = c("Repeat", "temperature", "imbibition"), "factorType" = c("batch", "Bio", "Bio"), "factorRef" = c("rep1", "Low", "DS") ) # create rflomicsMAE object with ecoseed data MAE <- createRflomicsMAE( projectName = "Tests", omicsData = ecoseed.mae, omicsTypes = c("RNAseq", "proteomics", "metabolomics"), factorInfo = factorInfo ) names(metadata(MAE)) head(getDesignMat(MAE)) ## ----designMetadata----------------------------------------------------------- form <- generateModelFormulae(MAE) form MAE <- setModelFormula(MAE, form[2]) getModelFormula(MAE) ## ----contr-------------------------------------------------------------------- possibleContrasts <- generateExpressionContrast(MAE) possibleContrasts$averaged$contrastName MAE <- setSelectedContrasts(MAE, contrastList = possibleContrasts$averaged[1:3]) getSelectedContrasts(MAE)[, -c(1, 3)] ## ----runNorm------------------------------------------------------------------ MAE <- runDataProcessing( object = MAE, SE.name = "RNAtest", samples = colnames(MAE[["RNAtest"]])[-1], filterStrategy = "NbReplicates", cpmCutoff = 1, normMethod = "TMM" ) |> runDataProcessing( SE.name = "metatest", normMethod = "median", transformMethod = "log2" ) |> runDataProcessing( SE.name = "protetest", normMethod = "none", transformMethod = "log2" ) |> runOmicsPCA(SE.name = "metatest") # Access to the normalization settings for metabolomics data getNormSettings(object = MAE[["metatest"]]) # Obtain the list of filtered features for the RNAseq data getFilteredFeatures(object = MAE[["RNAtest"]])[1:10] ## ----plotPCA, fig.width=10, fig.height=5, fig.show = "hold"------------------- plotOmicsPCA(MAE[["metatest"]], raw = TRUE) plotOmicsPCA(MAE[["metatest"]], raw = FALSE) ## ----plotDataDistribution, fig.width=10, fig.height=5, fig.show = "hold"------ plotDataDistribution(MAE[["metatest"]], raw = TRUE) plotDataDistribution(MAE[["metatest"]], raw = FALSE) ## ----diff--------------------------------------------------------------------- MAE <- runDiffAnalysis(MAE, SE.name = "RNAtest", p.adj.method = "BH", method = "edgeRglmfit", p.adj.cutoff = 0.05, logFC.cutoff = 0 ) |> runDiffAnalysis( SE.name = "protetest", p.adj.method = "BH", method = "limmalmFit", p.adj.cutoff = 0.05, logFC.cutoff = 0 ) |> runDiffAnalysis( SE.name = "metatest", p.adj.method = "BH", method = "limmalmFit", p.adj.cutoff = 0.05, logFC.cutoff = 0 ) # access to the settings getDiffSettings(MAE, SE.name = "RNAtest") # Summary of the differential analysis getDiffStat(MAE[["RNAtest"]]) ## ----volcano, fig.width=7, fig.height = 4.5, fig.align="center"--------------- plotDiffAnalysis(MAE, SE.name = "RNAtest", contrastName = "(temperatureMedium - temperatureLow) in mean", typeofplots = "volcano" ) ## ----boxplot, fig.width=7, fig.align="center"--------------------------------- plotBoxplotDE(MAE[["RNAtest"]], feature = "AT4G04810" ) ## ----coexp-------------------------------------------------------------------- MAE <- runCoExpression(MAE, SE.name = "protetest", K = 2:5, replicates = 5, merge = "union" ) getCoExpAnalysesSummary(MAE) plotCoExpression(MAE[["protetest"]])$ICL plotCoExpressionProfile(MAE[["protetest"]], cluster = 2) ## ----enrich------------------------------------------------------------------- MAE <- runAnnotationEnrichment(MAE, SE.name = "protetest", OrgDb = "org.At.tair.db", keyType = "TAIR", pvalueCutoff = 0.05, from = "DiffExp", database = "GO", domain = "CC" ) results <- getEnrichRes(MAE[["protetest"]], from = "DiffExp", database = "GO" ) sumORA(MAE[["protetest"]], from = "DiffExp", database = "GO") plotEnrichComp(MAE[["protetest"]], from = "DiffExp", database = "GO", matrixType = "FC" ) ## ----------------------------------------------------------------------------- listIntegration <- prepareForIntegration(MAE, omicsNames = c("protetest", "metatest"), variableLists = rownames(MAE), method = "mixOmics" ) MAE <- runOmicsIntegration( object = MAE, preparedObject = listIntegration, method = "mixOmics", selectedResponse = "temperature", ncomp = 3 ) ## ----fig.width = 7, fig.align = "center"-------------------------------------- mixOmics::plotIndiv(getMixOmics(MAE, response = "temperature")) ## ----------------------------------------------------------------------------- sessionInfo()