## ----style, echo = FALSE, results = 'hide', warning=FALSE, message=FALSE------ BiocStyle::markdown() suppressPackageStartupMessages({ library(knitr) library(enrichViewNet) library(gprofiler2) }) set.seed(1214) ## ----graphDemo01, echo = FALSE, fig.align="center", fig.cap="A network where significant GO terms and genes are presented as nodes while edges connect each gene to its associated term(s).", out.width = '90%'---- knitr::include_graphics("demo01.jpeg") ## ----graphDemo02, echo=FALSE, fig.align="center", fig.cap="An enrichment map using significant Kegg terms.", out.width = '95%'---- knitr::include_graphics("demo_KEGG_emap_v01.jpeg") ## ----installDemo01, eval=FALSE, warning=FALSE, message=FALSE------------------ # if (!requireNamespace("BiocManager", quietly = TRUE)) # install.packages("BiocManager") # # BiocManager::install("enrichViewNet") ## ----graphWorkflow, echo=FALSE, fig.align="center", fig.cap="The enrichViewNet workflow", out.width = '100%'---- knitr::include_graphics("Figure_workflow_v04.jpg") ## ----graphListToGraph01, echo = FALSE, fig.align="left", fig.cap="From an enrichment list to a Cytoscape network", out.width = '100%'---- knitr::include_graphics("FromListToGraph_v01.jpg") ## ----gprofiler, echo=TRUE, warning=FALSE, message=FALSE, collapse=F, eval=TRUE---- ## Required library library(gprofiler2) ## The dataset of differentially expressed genes done between ## napabucasin treated and DMSO control parental (Froeling et al 2019) ## All genes testd are present data("parentalNapaVsDMSODEG") ## Retain significant results ## (absolute fold change superior to 1 and adjusted p-value inferior to 0.05) retained <- which(abs(parentalNapaVsDMSODEG$log2FoldChange) > 1 & parentalNapaVsDMSODEG$padj < 0.05) signRes <- parentalNapaVsDMSODEG[retained, ] ## Run one functional enrichment analysis using all significant genes ## The species is homo sapiens ("hsapiens") ## The g:SCS multiple testing correction method (Raudvere U et al 2019) ## The WikiPathways database is used ## Only the significant results are retained (significant=TRUE) ## The evidence codes are included in the results (evcodes=TRUE) ## A custom background included the tested genes is used gostres <- gprofiler2::gost( query=list(parental_napa_vs_DMSO=unique(signRes$EnsemblID)), organism="hsapiens", correction_method="g_SCS", sources=c("WP"), significant=TRUE, evcodes=TRUE, custom_bg=unique(parentalNapaVsDMSODEG$EnsemblID)) ## ----gostResult, echo=TRUE, eval=TRUE----------------------------------------- ## The 'gostres' object is a list of 2 entries ## The 'result' entry contains the enrichment results ## The 'meta' entry contains the metadata information ## Some columns of interest in the results gostres$result[1:4, c("query", "p_value", "term_size", "query_size", "intersection_size", "term_id")] ## The term names can be longer than the one shown gostres$result[19:22, c("term_id", "source", "term_name")] ## ----cytoscapeLogo01, echo = FALSE, fig.align="center", fig.cap="Cytoscape software logo.", out.width = '75%'---- knitr::include_graphics("cy3sticker.png") ## ----runCreateNetwork, echo=TRUE, eval=TRUE, message=FALSE-------------------- ## Load saved enrichment results between parental Napa vs DMSO data("parentalNapaVsDMSOEnrichment") ## Create network for REACTOME significant terms ## The 'removeRoot=TRUE' parameter removes the root term from the network ## The network will either by created in Cytoscape (if the application is open) ## or a CX file will be created in the temporary directory createNetwork(gostObject=parentalNapaVsDMSOEnrichment, source="REAC", removeRoot=TRUE, title="REACTOME_All", collection="parental_napa_vs_DMSO", fileName=file.path(tempdir(), "parentalNapaVsDMSOEnrichment.cx")) ## ----networkInCytoscape, echo=FALSE, fig.align="center", fig.cap="All reactome terms in a gene-term network loaded in Cytoscape.", out.width = '110%'---- knitr::include_graphics("cytoscape_reactome_all_parental_napa_vs_DMSO.png") ## ----runCreateNetworkSelected, echo=TRUE, eval=TRUE, message=FALSE------------ ## Load saved enrichment results between parental Napa vs DMSO data("parentalNapaVsDMSOEnrichment") ## List of terms of interest reactomeSelected <- c("REAC:R-HSA-9031628", "REAC:R-HSA-198725", "REAC:R-HSA-9614085", "REAC:R-HSA-9617828", "REAC:R-HSA-9614657", "REAC:R-HSA-73857", "REAC:R-HSA-74160", "REAC:R-HSA-381340") ## All enrichment results results <- parentalNapaVsDMSOEnrichment$result ## Retain selected results selectedRes <- results[which(results$term_id %in% reactomeSelected), ] ## Print the first selected terms selectedRes[, c("term_name")] ## ----runCreateNetworkSelected2, echo=TRUE, eval=TRUE, message=FALSE, fig.align="center", fig.cap="Enrichment map."---- ## Create network for REACTOME selected terms ## The 'source="TERM_ID"' parameter enable to specify a personalized ## list of terms of interest ## The network will either by created in Cytoscape (if the application is open) ## or a CX file will be created in the temporary directory createNetwork(gostObject=parentalNapaVsDMSOEnrichment, source="TERM_ID", termIDs=selectedRes$term_id, title="REACTOME_Selected", collection="parental_napa_vs_DMSO", fileName=file.path(tempdir(), "parentalNapaVsDMSOEnrichment_REACTOME.cx")) ## ----networkInCytoscapeSelected, echo=FALSE, fig.align="center", fig.cap="Selected Reactome terms in a gene-term network loaded in Cytoscape.", out.width = '110%'---- knitr::include_graphics("cytoscape_with_selected_REACTOME_v01.png") ## ----networkFinalReactome, echo=FALSE, fig.align="center", fig.cap="Final Reactome network after customization inside Cytoscape.", out.width = '100%'---- knitr::include_graphics("REACTOME_Selected.jpeg") ## ----gprofiler2, echo=TRUE, warning=FALSE, message=FALSE, collapse=F, eval=TRUE---- ## Required library library(gprofiler2) ## The dataset of differentially expressed genes done between ## napabucasin treated and DMSO control parental (Froeling et al 2019) ## All genes testd are present data("parentalNapaVsDMSODEG") ## Retain significant results ## (absolute fold change superior to 1 and adjusted p-value inferior to 0.05) retained <- which(abs(parentalNapaVsDMSODEG$log2FoldChange) > 1 & parentalNapaVsDMSODEG$padj < 0.05) signRes <- parentalNapaVsDMSODEG[retained, ] ## Run one functional enrichment analysis using all significant genes ## The species is homo sapiens ("hsapiens") ## The g:SCS multiple testing correction method (Raudvere U et al 2019) ## The WikiPathways database is used ## Only the significant results are retained (significant=TRUE) ## The evidence codes are included in the results (evcodes=TRUE) ## A custom background included the tested genes is used gostres <- gprofiler2::gost( query=list(parental_napa_vs_DMSO=unique(signRes$EnsemblID)), organism="hsapiens", correction_method="g_SCS", sources=c("WP"), significant=TRUE, evcodes=TRUE, custom_bg=unique(parentalNapaVsDMSODEG$EnsemblID)) ## ----gostResult2, echo=TRUE, eval=TRUE---------------------------------------- ## The 'gostres' object is a list of 2 entries ## The 'result' entry contains the enrichment results ## The 'meta' entry contains the metadata information ## Some columns of interest in the results gostres$result[1:4, c("query", "p_value", "term_size", "query_size", "intersection_size", "term_id")] ## The term names can be longer than the one shown gostres$result[19:22, c("term_id", "source", "term_name")] ## ----runCreateEmap01, echo=TRUE, eval=TRUE, fig.cap="A Kegg enrichment map where terms with overlapping significant genes cluster together.", fig.align="center"---- ## Load saved enrichment results between parental Napa vs DMSO data(parentalNapaVsDMSOEnrichment) ## Set seed to ensure reproducible results set.seed(121) ## Create network for Kegg selected terms ## The 'source="TERM_ID"' parameter enable to specify a personalized ## list of terms of interest with 'termIDs' argument createEnrichMap(gostObject=parentalNapaVsDMSOEnrichment, query="parental_napa_vs_DMSO", source="KEGG") ## ----sessionInfo, echo=FALSE-------------------------------------------------- sessionInfo()