## ----style, echo = FALSE, results = 'asis'------------------------------------
BiocStyle::markdown()

## ----setup, include=FALSE-----------------------------------------------------
knitr::opts_chunk$set(dpi=25,fig.width=7)

## ---- eval=FALSE--------------------------------------------------------------
#  if (!requireNamespace("BiocManager", quietly=TRUE))
#      install.packages("BiocManager")
#  BiocManager::install("bandle")

## ----ldpkg, message=FALSE-----------------------------------------------------
library("bandle")

## ----ldpkg2, message=FALSE----------------------------------------------------
library("pheatmap")
library("viridis")

## ----loadpkgdat, message=FALSE, warning=FALSE, fig.width=7, fig.height=6------
library("pRolocdata")
data("tan2009r1")

## Let's set the stock colours of the classes to plot to be transparent
setStockcol(NULL)
setStockcol(paste0(getStockcol(), "90")) 

## Plot the data using plot2D from pRoloc
plot2D(tan2009r1,
       main = "An example spatial proteomics datasets", 
       grid = FALSE)
addLegend(tan2009r1, where = "topleft", cex = 0.7, ncol = 2)

## ----simdata, fig.width=8, fig.height=10--------------------------------------
set.seed(1)
tansim <- sim_dynamic(object = tan2009r1,
                      numRep = 6L,
                      numDyn = 100L)


## ----plotsims-----------------------------------------------------------------
plot_title <- c(paste0("Replicate ", seq(3), " condition", " A"), 
               paste0("Replicate ", seq(3), " condition", " B"))

par(mfrow = c(2, 3))
out <- lapply(seq(tansim$lopitrep), function(z) 
    plot2D(tansim$lopitrep[[z]], grid = FALSE, main = plot_title[z]))

## -----------------------------------------------------------------------------
tansim$lopitrep[[1]]

## ----fitgps, fig.height=10, fig.width=8---------------------------------------
par(mfrow = c(4, 3))
gpParams <- lapply(tansim$lopitrep, function(x) 
  fitGPmaternPC(x, hyppar = matrix(c(10, 60, 250), nrow = 1)))

## ----plotgps, fig.height=10, fig.width=8--------------------------------------
par(mfrow = c(4, 3))
plotGPmatern(tansim$lopitrep[[1]], params = gpParams[[1]])

## ----sethyppar----------------------------------------------------------------
K <- length(getMarkerClasses(tansim$lopitrep[[1]], fcol = "markers"))
pc_prior <- matrix(NA, ncol = 3, K)
pc_prior[seq.int(1:K), ] <- matrix(rep(c(10, 60, 250),
                                       each = K), ncol = 3)


## ----runhyppar----------------------------------------------------------------
gpParams <- lapply(tansim$lopitrep,
                   function(x) fitGPmaternPC(x, hyppar = pc_prior))

## ----setweightprior-----------------------------------------------------------
set.seed(1)
dirPrior = diag(rep(1, K)) + matrix(0.001, nrow = K, ncol = K)
predDirPrior <- prior_pred_dir(object = tansim$lopitrep[[1]],
                               dirPrior = dirPrior,
                               q = 15)

## -----------------------------------------------------------------------------
predDirPrior$meannotAlloc

## -----------------------------------------------------------------------------
predDirPrior$tailnotAlloc

## -----------------------------------------------------------------------------
hist(predDirPrior$priornotAlloc, col = getStockcol()[1])

## ----runbandle, message=FALSE, warning=FALSE, error=FALSE, echo = TRUE, results = 'hide'----
control <- tansim$lopitrep[1:3] 
treatment <- tansim$lopitrep[4:6]

bandleres <- bandle(objectCond1 = control,
                    objectCond2 = treatment,
                    numIter = 20,  # usually 10,000
                    burnin = 5L,   # usually 5,000
                    thin = 1L,     # usually 20
                    gpParams = gpParams,
                    pcPrior = pc_prior,
                    numChains = 1,  # usually >=4
                    dirPrior = dirPrior)

## -----------------------------------------------------------------------------
bandleres

## ----processbandle1-----------------------------------------------------------
summaries(bandleres)

## ----processbandle2-----------------------------------------------------------
bandleres <- bandleProcess(bandleres)

## ----processbandle3-----------------------------------------------------------
summary(summaries(bandleres))

## ----res----------------------------------------------------------------------
res <- summaries(bandleres)
length(res)

## ----seeslots-----------------------------------------------------------------
str(res[[1]])

## ----postest------------------------------------------------------------------
posteriorEstimates(res[[1]])

## ----getposteriors------------------------------------------------------------
pe1 <- posteriorEstimates(res[[1]])
pe2 <- posteriorEstimates(res[[2]])

## ----barplotalloc, fig.width=8, fig.height=5----------------------------------
alloc1 <- pe1$bandle.allocation
alloc2 <- pe2$bandle.allocation

par(mfrow = c(1, 2), oma = c(6,2,2,2))
barplot(table(alloc1), col = getStockcol()[2],
        las = 2, main = "Protein allocation: control")
barplot(table(alloc2), col = getStockcol()[2],
        las = 2, main = "Protein allocation: treatment")

## ----allocspost---------------------------------------------------------------
pe_alloc1 <- pe1$bandle.probability
pe_alloc2 <- pe1$bandle.probability

## ----heatmap_control----------------------------------------------------------
bjoint_control <- bandleJoint(summaries(bandleres)[[1]])
pheatmap(bjoint_control, cluster_cols = FALSE, color = viridis(n = 25))

## ----heatmap_treatment--------------------------------------------------------
bjoint_treatment <- bandleJoint(summaries(bandleres)[[2]])
pheatmap(bjoint_treatment, cluster_cols = FALSE, color = viridis(n = 25))

## ----bandpred-----------------------------------------------------------------
xx <- bandlePredict(control, 
                    treatment, 
                    params = bandleres, 
                    fcol = "markers")
res_control <- xx[[1]]
res_treatment <- xx[[2]]

## ----showlength---------------------------------------------------------------
length(res_control)
length(res_treatment)

## ----viewdata-----------------------------------------------------------------
fvarLabels(res_control[[1]])

## ----fdata, eval=FALSE--------------------------------------------------------
#  fData(res_control[[1]])$bandle.probability
#  fData(res_control[[1]])$bandle.allocation

## ----setthreshold-------------------------------------------------------------
res_control[[1]] <- getPredictions(res_control[[1]], 
                                   fcol = "bandle.allocation",                   
                                   scol = "bandle.probability",                   
                                   mcol = "markers",                   
                                   t = .99)

res_treatment[[1]] <- getPredictions(res_treatment[[1]], 
                                   fcol = "bandle.allocation",                   
                                   scol = "bandle.probability",                   
                                   mcol = "markers",                   
                                   t = .99)

## ----numtransloc--------------------------------------------------------------
diffloc_probs <- pe1$bandle.differential.localisation
head(diffloc_probs, 50)
length(which(diffloc_probs[order(diffloc_probs, decreasing = TRUE)] > 0.99))

## ----extractdiffloc-----------------------------------------------------------
plot(diffloc_probs[order(diffloc_probs, decreasing = TRUE)],
     col = getStockcol()[3], pch = 19, ylab = "Probability",
     xlab = "Rank", main = "Differential localisation rank plot")

## ----diffloc_boot-------------------------------------------------------------
set.seed(1)
boot_t <- bootstrapdiffLocprob(params = bandleres, top = 100,
                               Bootsample = 5000, decreasing = TRUE)

boxplot(t(boot_t), col = getStockcol()[5],
        las = 2, ylab = "Probability", ylim = c(0, 1),
        main = "Differential localisation \nprobability plot (top 100 proteins)")

## ----diffloc_binom------------------------------------------------------------
bin_t <- binomialDiffLocProb(params = bandleres, top = 100,
                             nsample = 5000, decreasing = TRUE)

boxplot(t(bin_t), col = getStockcol()[5],
        las = 2, ylab = "Probability", ylim = c(0, 1),
        main = "Differential localisation \nprobability plot (top 100 proteins)")

## ----get_pe-------------------------------------------------------------------
# more robust estimate of probabilities
dprobs <- rowMeans(bin_t)

# compute cumulative error, there is not really a false discovery rate in
# Bayesian statistics but you can look at the cumulative error rate
ce <- cumsum(1  - dprobs)

# you could threshold on the interval and this will reduce the number of
# differential localisations
qt <- apply(bin_t, 1, function(x) quantile(x, .025))

## -----------------------------------------------------------------------------
EFDR(diffloc_probs, threshold = 0.90)

## ----alluvial, warning=FALSE, message=FALSE, fig.height=8, fig.width=7--------
plotTranslocations(bandleres)

## ----chord, warning=FALSE, message=FALSE, fig.height=7, fig.width=7-----------
plotTranslocations(bandleres, type = "chord")

## ----plotafterthresh----------------------------------------------------------
## identify which proteins get a high differential localisation probability
ind <- which(fData(res_control[[1]])$bandle.differential.localisation > 0.99)

## create two new MSnSets with only these proteins
res_dl_control <- res_control[[1]][ind, ]
res_dl_treatment <- res_treatment[[1]][ind, ]

## ----plottlres, warning=FALSE, fig.height=8, fig.width=7----------------------
## specify colour palette
mycols <- c(getStockcol()[seq(getMarkerClasses(res_control[[1]]))], "grey")
names(mycols) <- c(getMarkerClasses(res_control[[1]]), "unknown")

## Create a list of the datasets for plotTranslocations
res <- list(res_dl_control, res_dl_treatment)

plotTranslocations(res, fcol = "bandle.allocation.pred", col = mycols)

## ----summaryfinal, warning=FALSE, message=FALSE-------------------------------
(tbl <- plotTable(res, fcol = "bandle.allocation.pred"))

## ---- bandleagain, message=FALSE, warning=FALSE, error=FALSE, echo = TRUE, results = 'hide',fig.height=4, fig.width=4----
control <- tansim$lopitrep[1:3] 
treatment <- tansim$lopitrep[4:6]

bandleres <- bandle(objectCond1 = control,
                    objectCond2 = treatment,
                    numIter = 50, # usually 10,000
                    burnin = 10L, # usually 5,000
                    thin = 1L, # usually 20
                    gpParams = gpParams,
                    pcPrior = pc_prior,
                    numChains = 4,
                    dirPrior = dirPrior)


## ---- convergence, fig.height=8-----------------------------------------------
par(mfrow = c(2, 2))
out <- plotConvergence(bandleres)

## ----sessionInfo--------------------------------------------------------------
sessionInfo()